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Abstract

In this survey, we summarize different modeling and solution concepts of networking games, as well as a number
of different applications in telecommunications that make use of or can make use of networking games.We identify
some of the mathematical challenges and methodologies that are involved in these problems.We include here work
that has relevance to networking games in telecommunications from other areas, in particular from transportation
planning.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

With the deregulation of the telecommunication companies and the rapid growth of the Internet, the
researchareaofnetworkinggameshasexperienceda remarkabledevelopment.The impetus to this surgeof
research is theclear limitation in the telecomand internet industriesof thepureoptimizationapproach,with
respect to routing, resource or quality of service allocation and pricing. Indeed, the optimization approach
assumes that the goal of the routing strategy, allocation, or price choices can be defined independently of
the reactions of other actors, users, or players, in the industry. At nearly all levels of the decision process,
however, interaction across players is non-negligible, whereplayersmay refer to other telecom firms,
internet service providers, or even users themselves, who vie for limited resources. When interactions
are to be taken into account, because the choices of any one actor influence the choices of the others, a
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natural modeling framework involves seeking an equilibrium, or stable operating point, of the system.
In this setting, each actor seeks to optimize her or his own criterion, which includes the influence of the
decisions of the other actors upon his own, and all actors perform this optimization simultaneously. The
Nash equilibrium concept is one example of this, which has been extended to networks. However, as we
shall see in this survey, it is not the only such concept. In particular, many modeling aspects from the
study of equilibrium in transportation networks have been successfully applied to telecommunications.
Equilibriummodels in transportation networks have been studied for 50 years, since their introduction

in 1952[1], and many extensions and variations of this concept exist; most, though, have yet to be carried
over to the telecommunication arena. We shall highlight some particularly promising extensions in this
survey. At the same time, some very similar concepts appear to have emerged in game theory in the past
10 years; these too will be discussed here.
One clear need in the field of networking games in telecommunications is therefore to make the most

of research results of these different communities: mathematics, economics, information sciences and
transportation engineering. Another is to continue defining new problems and models from the point of
view of telecommunications technology, problems that may not before have been posed for lack of an
appropriate modeling paradigm, but that may lend themselves to the network equilibrium framework.
In preparing this survey on networking games in telecommunications, we attempted to summarize the

different modeling and solution concepts, and to highlight the different types of applications in which
networking games are useful in telecommunications, as well as to identify some of the mathematical
challenges that are involved in these problems.With respect to telecommunication applications, we have
encountered a rich literature in flow and congestion control[2–15,182–186], network routing[16–37,1],
file allocation[116], load balancing[39–43], multi-commodity flow[44,45], resource allocation[46–50]
and quality of service provisioning[50,51], see also[52–54]. Some papers have considered the com-
bination of flow and routing in a non-cooperative setting; see[55–59,35,60]and references therein. As
shown in[35] in a compendium of transportation equilibriummodels and algorithms, when the objective
functions of the players are the sum of link costs plus a reward which is a function of the throughput,
then the underlying game can be transformed into one involving only routing decisions.
A promising potential application of game theory is the area of network security, see[61] and[62].

Intensive research effort has also been devoted to game models in wireless networks. Some of the main
issues there are power control[63–71], pricing and incentive for cooperation between mobile termi-
nals [72–75], security issues[62], the access control to a common shared radio channel[76–78], and
auctions for resource reservation[79]. We shall not attempt to review the area of networking games in
wireless networks in this survey. Some other related surveys are[80], as well as a whole special issue
of the journalNetworks and Spatial Economicson Crossovers between Transportation Planning and
Telecommunications, to appear in 2003.
In this surveywe focus primarily on non-cooperative games.Wediscuss different equilibrium concepts,

in terms both of their qualitative and quantitative properties. In particular, we consider in depth the issue
of uniqueness of an equilibrium, the Braess paradox, controlling equilibria through design parameters
or pricing, as well as the Stackelberg framework for hierarchical, or leader–follower, equilibrium. We
provide as well a brief summary of some work on equilibria in cooperative games that are related to
resource allocation, pricing and to the Stackelberg framework.
The structure of the survey is as follows. We begin in Section 2 by presenting basic notions of game

theory related to this survey. We present there the notions of multi-criteria and hierarchical equilibria
as well as potential games. We then describe in Section 3 the state of the art in non-cooperative service
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provisioning and routing in networks. In Section 4 we discuss the work on non-cooperative flow control.
In Section 5 we discuss the uniqueness of equilibrium and in Section 6 we describe issues related to
convergence to equilibrium from initial non-equilibria strategies. Then we survey in Section 7 issues
related to some properties of equilibria and the way they can be influenced by network architecting
and administration, which includes the discussion of the Braess paradox, hierarchical games and pricing
issues. We conclude with the topic of cooperative equilibria in telecommunications.

2. Basic game concepts

In this section we introduce the basic definitions and notation needed by the equilibrium models that
have been studied in communication networks.
As the primary focus of the survey is the non-cooperative framework, in which each user optimizes

her or his decision in an individual way, we begin by presenting the non-cooperative Nash equilibrium.

2.1. Nash equilibrium and its variants

Let us consider a model withn users, each of whom attempts to maximize his own particular utility
function; denote the utility function of useri asJ i . Further, letui denote the decision, orstrategy, of
useri andu−i the strategies of all users other than useri. The utility function of useri is expressed as
a function both of the vector of strategies of all users,u = (u1, . . . , un), and of a vector of system, or
control, parameters,x, that is,J i(u, x).
Forx fixed, we say thatu∗(x) = (u1∗, . . . , un∗) is a Nash equilibrium if no user can improve her or his

utility by unilateral deviation. More precisely, for eachi ∈ {1,2, . . . , n}, a Nash equilibrium satisfies

J i(u∗(x), x)=max
ui

J i(u1∗, . . . , ui−1∗, ui, ui+1∗, . . . , un∗, x)

= max
ui

J i(u−i∗, ui, x). (1)

In practice, a user may have constraints on her or his strategy, and this gives rise to constrained Nash
equilibria. One example is the so-called “coupled constraint” set of[81]. Denote

�(x) = {u : gl(u, x)�0, l = 1, . . . , k},
the set ofn-tuple actions of then users that satisfy thek × k′ constraints, wheregl(., x) is a mapping of
Rn → Rk′

, with each component ofgl being a convex function. In the special case where the constraint
sets are orthogonal we have�(x)=�1(x)×�2(x)×· · ·×�n(x), where�i(x)={u : gi

l (u
i , x)�0, l =

2, . . . , ki} is the set of actions that satisfy theki constraints for useri. Thenumber of orthogonal constraints
imposed on each decision problem may vary across users, where that number is referred to aski . The
vectoru∗ is then said to be a constrained Nash equilibrium ifu∗ ∈ �(x), and, in addition,

J i(u∗(x), x) =max
ui

(J i(u−i∗, ui, x) such that(u−i∗, ui) ∈ �(x)). (2)

As this survey is preoccupiedwith telecommunication applications, it is of interest to define the network
extension of the standard Nash equilibrium paradigm. To do so, consider first a strongly connected
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network,G= (N, A), whereN is the set of nodes of the network andA the set of links. Consider as well a
set of users, or requests for connection, which are defined over node pairs, so that nown� |N ×N |, since
in the simplest case, a single connection is established for each node pair. The strategy of a user,ui , is
then vector-valued, that is,ui = (ui

1, . . . , ui
mi

), for somemi . Similarly, the vector of control parameters,
x, is then a vector of vectors, each parameter type being defined over every node, link, or route of the
network.
A natural variant of the Nash network equilibrium as defined above is one in which each node pair can

accommodate several user classes, or differentiated traffic types. Clearly, in terms of the model, this is
just a reformulation of the above with onemore index to represent the user class or traffic type, or through
a superposition of networks, one for each user type and coupled by constraints across user classes on the
physical links. This multi-class or multi-user generalization does, however, have important consequences
for the uniqueness of the equilibrium solution.
A final variant of the Nash equilibrium concept that we shall introduce here is that of multi-criteria

equilibrium. In this setting, each user may have several criteria or utility functions to optimize. Let us
denote the (now vector-valued) utility function of useri asJ i = (J i

1, . . . , J i
pi

). We say that a vectory of
dimensionp dominatesa vectorzof the same dimension if, for anyj = 1, . . . , p we have:yj �zj , with
strict inequality holding for at least onej. In this case we writeydomz.Then,u∗ is called amulti-criteria,
or Pareto–Nash, equilibrium, if no useri can gain by unilaterally deviating (in the sense of the order
“dom”) from her or his strategy. In other words, for eachi, there is noui such that

J i(u−i∗, ui, x)domJ i(u∗, x).

Existence of Nash equilibrium is guaranteed under fairly mild conditions, if one allows for mixed,
rather than pure or 0–1, strategies; for example, a Nash point can be shown to exist under the convexity
and compactness of the strategy space and the semi-continuity of the utility functions together with some
quasi-concavity properties, see e.g.[82].

2.2. Hierarchical, or Stackelberg, optimization

We now extend the framework to the case that a decision maker (who may represent, in telecommuni-
cation networks, the network administrator, the network designer, or a service provider) has an objective,
possibly a vector-valued utility function, which she wishes to optimize. Among the components of this
optimization objective there may be elements that coincide with the users’ utilities, when the manager
wishes to satisfy the users, and, for example, minimize their individual delays or loss probabilities. How-
ever, the manager is typically concerned not only with the efficient use of resources but also with purely
economic considerations such as profit maximization.
The hierarchical relationship between the manager, on the one hand, who sets the parameters so as to

achieve some objective, and the users who respond by seeking a new equilibrium, is modeled as a bilevel
program, or a Stackelberg leader–follower problem[83]. Denote byR(u(x), x) the utility, or objective,
of the manager. The functionRdepends on the parameters the manager sets, which we denote byx, and
on the users’ policy, strategy, or response to those parameters,u(x).
When the equilibriumu∗(x) defined in Section 2.1 exists and is unique, the objective of the network

manager is to determinex that maximizes the functionR, assuming that the users react to the parameters
chosen,x, through their equilibrium actionsu∗(x). In other words, the objective of the manager is to find
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x∗ that satisfies

R(u∗(x∗), x∗) =max
x∈X

R(u∗(x), x), (3)

for some set of feasible actions,X. This problem class is tremendously useful, in principle, since it
models the optimization that the decision maker wishes to perform simultaneously with the complex
reactions of the users. However, it is also notoriously difficult to solve. When the users’ equilibrium
problem has constraints, even in its simplest form, the Stackelberg, or hierarchical, or bilevel, program,
is fundamentally non-convex and non-differentiable. Showing existence of a solution to the hierarchical
problem is also trickier than for the Nash equilibrium. See, for more details[84,85].
Several extensions and variations of the Stackelberg theme can be formulated as well. In the basic

Stackelberg framework, the users and the manager have utility functions,J i andR, respectively, that
map fromRn toR [83]. However, in telecommunications applications,J i andRmay be vector-valued
functions. Reinterpreting (3) for this Pareto–Nash framework case means that there does not exist a point
x such thatR(u∗(x), x) domR(u∗(x∗), x∗).
Another extension arises when the equilibrium solutionu∗(x) ∈ U∗(x) is not unique for everyx.

In this case, the problem (3) is not well-defined, sinceR(u(x), x) is no longer a function, but rather a
point-to-set mapping. In that case, it is unclear to which value inU∗(x) the decision maker should use
in adjusting her or his control parameters,x. There are essentially two ways to reformulate the problem
in this case so that it becomes well-defined[86]. In the first, the objective for the network may be to
guarantee the best performance for any possible equilibrium, i.e. the decision maker ispessimistic(or
assumes non-cooperative users) and therefore seeks anx∗ that satisfies

R(u∗(x∗), x∗) =max
x

min
u∗(x)∈U∗(x)

R(u∗(x), x). (4)

On the other hand, if the decision maker isoptimistic(or is in a cooperative setting), she may assume that
the users will choose the equilibrium solution that favors her objective, in this case, maximization ofR,
giving the following problem: findx∗ such that

R(u∗(x∗), x∗) =max
x

max
u∗(x)∈U∗(x)

R(u∗(x), x). (5)

Finally, onemay consider the case of competition between several networks. This can give rise to a still
more complex hierarchical game; taking into account the reactionsu∗(x), of then users to the decisions
x = (x1, x2, . . . , xm) of m network managers, the solution concept becomes an extension of Eq. (3) of
the form

Ri(u∗(x∗), x∗) =max
xi

Ri(u∗(x−i∗, xi), x−i∗, xi), (6)

wherex−i∗ = (x1∗, . . . , xi−1∗, xi+1∗, . . . , xm∗), Ri represents the utility (scalar or vector) of decision
makeri, andxi her or his decisions.

2.3. Potential games

In 1996, Monderer and Shapley[87] identified a class of games called “potential games”. This class
includes in particular several types of network routing games, such as the congestion games introduced in
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[36] as well as the routing games in[1] used heavily throughout transportation planning (see in particular
[88,89]). A game is apotential gameif there exists a real-valued function on the decision space which
measures exactly the difference in the utility that any user accrues if she or he is the only user to deviate.
Mathematically, a potential game withn users is characterized by a potential function,�(u), such that
for any useri, we have

J i(ui, u−i) − J i(vi, u−i) = �(ui, u−i) − �(vi, u−i).

Thedefinitionwasextended in[88,89]toafinitenumberof classes,eachofwhichhasan infinitepopulation
of users. It is this latter setting that includes as a special case the equilibrium models in transportation,
for which the Wardrop equilibrium, defined below, is the solution concept.
Potential games have nice properties, such as uniqueness of equilibrium and convergence of greedy

algorithms to the equilibrium. This is discussed later in the context of networks in more detail.

2.4. Wardrop equilibrium

Network games have been studied in the context of road traffic since the 1950s,whenWardrop proposed
his definition of a stable traffic flow on a transportation network[1]. The definition proposed byWardrop
was the following: “The journey times on all the routes actually used are equal, and less than those which
would be experienced by a single vehicle on any unused route” (see p. 345 of[1]).
This definition of equilibrium is different than the one proposed by Nash. Expressing the Nash equi-

librium in terms of network flows, one can say thata network flow pattern is in Nash equilibrium if
no individual decision maker on the network can change to a less costly strategy, or, route.When the
decision makers in a game are finite in number, a Nash equilibrium can be achieved without the costs
of all used routes being equal, contrary to Wardrop’s equilibrium principle. The Wardrop equilibrium
assumes therefore that the contribution to costs or delays by any individual user is zero; in other words,
the population of users is considered infinite. In some cases,Wardrop’s principle represents a limiting case
of the Nash equilibrium principle as the number of users becomes very large[90,58] (see also[88,91]).
There are other ways to draw a parallel between the Wardrop and Nash equilibrium concepts, some of
which define a “user” to be an origin-destination pair[58].
The Wardrop equilibrium falls into the category of potential games with an infinite number of users.

Indeed, theWardrop equilibrium condition can be expressedmathematically to state that the flow on every
router serving a commodity, or origin-destination (OD) pair,w, in the network is either zero, or its cost
is equal to the minimum cost on that OD pair. The following system of equations is obtained from the
following constraints (i) the cost on any route serving an OD pair is at least as high as the minimum cost
on that OD pair (ii) a route serving an OD pair is not used if its cost is strictly larger than the minimum
cost between that OD pair, and (iii) the demand for each OD pair is satisfied.

hwr(cwr − �w) = 0, r ∈ Rw, w ∈ W, (7)

cwr − �w �0, r ∈ Rw, w ∈ W, (8)

∑
r∈Rw

hwr = dw, w ∈ W, (9)
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wherehwr is the flow on router ∈ Rw,Rw is the set of routes joining node pairw ∈ W , andW is the set
of origin-destination node–node pairs. The cost or delay on that route,r, is cwr , and�w is the minimum
cost on any route joining node pairw. The demand for service between the node pairw is denoteddw.
Then, adding non-negativity restrictionshwr �0 and�w �0, the resulting system of equalities and

inequalities can be seen as the Karush–Kuhn–Tucker (KKT) optimality conditions of the following
optimization problem, known as the Beckmann transformation:

min f (x) =
∑
l∈A

∫ xl

0
tl(xl)dx =

∑
l∈A

∫ ∑
i∈I xil

0
tl(xl)dx

subject to ∑
r∈Rw

hwr = dw, w ∈ W, (10)

∑
w∈W

∑
r∈Rw

hwr�
l
wr = xl, l ∈ A, (11)

xl �0, l ∈ A, (12)

wherexl is the flow on linkl, xil is the class-i flow on link l, I being the set of classes, and�l
wr is a

0–1 indicator function that takes the value 1 if and only if linkl is present on router ∈ Rw. In other
words, contrary to the Nash equilibrium, the Wardrop equilibrium can be expressed as a single convex
optimization program.
We may re-express the above classic definition of the Wardrop equilibrium in a way related to the

definition of Nash equilibrium, i.e. as a minimization problem faced by each individual. All individuals
belonging to population (travelers, packets or sessions) that haveagivenorigins(i)andagivendestination
d(i) face thesameoptimizationproblem.This population is called classi.Thestrategy setSi of individuals
in such a population is identified with all the paths in the network available betweens(i) andd(i). The
choice of a path is made by each one of the individuals. In the setting of Wardrop equilibrium, instead of
describing the strategy of a given individual of a class (say classi), we define the amount of individuals
within the class that use each strategy.We thus refer to the (class-i) strategyui as describing the behavior
of all individuals in classi, so thatui

j is the flow of individuals of classi that choose a pathj ∈ Si .
In the context ofWardrop equilibriumwe refer typically to costs (delay) rather than utilities. Denote by

Dk(u), k ∈ {1, . . . , m}, the delay (or cost) of pathk. Then, lettingSi∗ ⊂ Si be the subset of paths actually
used by useri, i.e. the indicesj such thatui

j >0,u∗ is a Wardrop equilibrium if and only if it satisfies

min
k∈Si

Dk(u∗) = Dj (u∗), ∀j ∈ Si∗, ∀i.

This type ofmodel has been extended to a number ofmore general settings. In[92] and other references
by its authors, the Wardrop equilibrium was extended to include link-level constraints, and in[19] to
include different traffic classes, where delays in nodes or in links may depend on the traffic class.
Multiple user classes (in which the cost of using a link or a path depends on the user type) complicate

theWardrop equilibrium as well, since when cost functions depend uponmore than one type of user flow,
the set of KKT conditions above, one for each user class, need no longer correspond to the optimality
conditions of a convex optimization problem (for special cases where a convex optimization is still
applicable, see[93,94]and Theorem 3.4 in[35]). Rather, the multi-class KKT conditions can be stated
compactly as a variational inequality (see Chapter 3 of[35]).
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Another important variant of theWardrop network equilibrium concept is the stochastic network equi-
librium,whichassumes that usersmakeerrors in their perceptionsof delaysand thoseerrors aredistributed
according to some probability distribution around the true, mean delay (on each route). According to the
probability distribution used, one obtains either the Gaussian (probit) equilibrium model or the Weibull
(logit) model. (See, for example,[95] for a dated but still valuable introduction to the topic.) Unlike the
basic andmulti-class extensions, the stochastic network equilibrium concept does not appear to have been
applied to date in communications applications.
On the importance of the concept of Wardrop equilibrium, we can learn from the numerous times that

it has been reinvented. The results on Wardrop equilibrium were in fact obtained independently almost
50 years later in a context of mobile telecommunications in[96] and in the context of potential games in
[88]. Wardrop-type principles were also obtained independently around thirty years before Wardrop in
an economics, rather than network, context[97].
Nash equilibrium andWardrop equilibrium are two extreme cases that can bemodeled in networks. But

also the combination of these may occur: some agents may have a large quantity of flow to ship (service
providers that may control the routing decisions of all their users) while others agents (individual users
who determine directly their routing) may have an infinitesimal amount of flow to ship. This scenario,
along with the corresponding equilibrium notion, has been formalized and studied in[21,98,41,99].
Finally, we note that the hierarchical, or Stackelberg, or bilevel framework can encompass a Wardrop

equilibrium governing the users’behavior in the sameway aswas defined in the Nash setting; the problem
formulation (3) remains valid.

3. Non-cooperative service provisioning and network routing

In telecommunication networks, users can, in many cases, make decisions concerning routing, as well
as the type and amount of resources that they wish to obtain. For example, in ATM architectures[100]
used in high speed networks, the users decide on their type of service, be it CBR (constant bit rate), VBR
(variable bit rate), or ABR (available bit rate). ABR, in contrast to CBR and VBR, is anelasticservice,
i.e. the user adapts her or his transmission rate to the state of the network; ABR is used, for example, in
the present internet, through best-effort service.
In addition to choosing the type of service, the users may negotiate their quality of service (QoS), or

performance parameters, namely, whether their quality guarantees are to be expressed in terms of PCR
(peak cell rate), CLR (cell loss ratio), maximum delay, etc.
Different sets of parameters may suit the service requirements of a user. However, the performance

measures (such as throughput, CLR, delay) depend not only on the user’s choices in establishing the
communication, but also on the decisions of other connected users, where this dependence is often
described as a function of some network “state”. For example, the available resources and the delay of
a best-effort type connection, such as ABR, depend not only on the user’s own choices, but clearly also
upon the choices made by other users. In this setting, the game paradigm becomes a natural choice, at
the user level.
Constrained Nash equilibrium is quite natural in the context of, for example,ATM architectures, where

users express their requirements for quality of service bybounds theywish to haveondelays,CLR, etc. For
interactiveaudioapplications, for example, thequality of the communication is insensitive todelay, as long
as it is below approximately 100msec. An audio application could therefore seek to (selfishly) minimize
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losses, subject to a maximum bound on the delay it experiences. Such constrained Nash equilibria have
been studied in telecommunications and internet provisioning applications (e.g.[51,101–104,14]).
Next, we present a basic structure that many network games have in common, along with several

examples.

3.1. Framework of a service provisioning game

Many games arising in networks may be modeled as follows. There aren applications or users, andm
service classes.Application, or user,i has a traffic of rate�i , and has to determine how to split it between a
subsetSi of service classes available to that user (application).A strategy of useri is given by an allocation
vectorui = (ui

1, ui
2, . . . , ui

m) whereui
j is the amount of traffic that useri assigns to service classj. The

set of policies for applicationi is given by the simplex{ui ∈ Rm|∑m
j=1ui

j = �i , ui
j �0, j = 1, . . . , m}.

This framework has been used in particular in the contexts of service provisioning[105] and routing
games[58,34].
In [105], there was no explicit use of the network. In that reference,Si = {1, . . . , m} for all users, and

the utility function for using any service class is binary valued and are defined as follows:

• There is a QoS (Quality of Service)qj defined for eachservice class, j, which is a monotone function
of the summation over all users (applications) of that service class:

∑n
i=1ui

j .

• The utility for useri of assigningui
j to classj is given byJi(u

i
j , qj ), which is assumed to bemonotone

in both arguments.1 The global utility for classi is the sum overj of Ji(u
i
j , qj ).

This corresponds to a distinction between acceptable versus unacceptable QoS. The goal of a user in
[105] was to maximize the fraction of the traffic that receives acceptable QoS. This gives rise to non-
concave utilities and hence to cases of nonexistence of an equilibrium. Sufficient conditions are given
in that reference for the existence of equilibria, and an extension to multidimensional QoS for each user
was presented. Moreover, there are some results on the convergence of greedy update policies to the
equilibrium.

3.2. Routing games

A problem somewhat related to[105], yet with significantly more complex utility functions, occurs
when the network itself is incorporated into the model. In this case, each user has a given amount of flow
to ship and has several paths through which he may split that flow. Such a routing game may be handled
by models similar to[105] in the special case of a topology of parallel links. This type of topology is
studied in detail in the first part of[34] as well as in[19]. However, the model of[105] does not extend
directly to other topologies. Indeed, in more general topologies, the delay over apathdepends on how
much traffic is sent by other users on any other path that shares common links.

1More precisely,Ji(u
i
j
, qj ) is monotone increasing in its first argument, and ifqj represents a “desirable” feature then

Ji(u
i
j
, qj ) is monotone increasing inqj as well; also in that caseqj is monotone decreasing in

∑n
i=1 ui

j
. Note however that

in [105], qj stood for loss probabilities, which stands for a “negative” feature, so in factJi(u
i
j
, qj ) was taken to be monotone

decreasing inqj andqj was monotone increasing in
∑n

i=1 ui
j
.
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Routing games with general topologies have been studied, for example, in[58], in the second part of
[34], as well as in[19]. A related model was studied thirty years ago in[36,37] in a discrete setting.
Rosenthal proposed a discrete approach to the network equilibrium model; in his setting, there aren
players, where each has one unit to ship from an origin to a destination and wants to minimize her
transport cost (which is the sum of the link costs used). It is shown that in such a model there always
exists a pure strategy Nash equilibrium. He introduces a kind of discrete potential function for computing
the equilibrium. Nevertheless, if a player has more than one unit to ship, such an equilibrium does not
always exist.
The paper[49] considers a multi-user network shared by non-cooperative users, in which each user

reserves some resource in order to establish a virtual path. Users are non-cooperative: each user seeks to
optimize her or his own selfish utility, which includes the guaranteed quality of service, as well as the
cost incurred for reserving the resource. For the case of a shared resource (the total resource available
to users modeled by a single link), existence and uniqueness of the Nash equilibrium is proved. The
authors establish the convergence to this unique equilibrium under Gauss-Seidel and Jacobi schemes. For
a general network, users may be sharing more than one resource and each user would have preferences
among several links; the authors extend the results of the one-resource model to various general network
topologies. The formal results are tested by simulating the schemes on an experimental network.
In the transportation sector, this is the classicfixed demandequilibrium routingmodel, described above

and formulated initially by[1]. See[35] for an extensive list of references using this paradigm in the
transportation literature.

4. Non cooperative flow control games

Flow control problems have been considered in different settings, both in dynamic as well as static
contexts. By “dynamic”wemean that the decisions of users dependon someobserved state of the network,
which may vary dynamically. Flow control can often appear as part of a routing game where both routes
as well as quantity (or rates) to be shipped should be determined.

4.1. Static flow control

The static flow control problem is related to the question of what should be the average transmission
rate of a user. It is known that this type of problem can often be handled as part of routing problems in
which one wishes to determine how much traffic should be sent over each path in the network; if we
do not impose a demand constraint (stating that the sum of flows sent over all paths should be a given
constant) then the solution to this routing problem clearly provides at the same time the solution of the
flow control problem. Thus routing and flow control decisions can be done simultaneously, and in the
same framework as discussed before, i.e. of routing games.
Indeed, in the context of transportation equilibrium models, the demand level of users between node

pairs is given by a function that depends upon the state of the network, which in turn depends upon the
routing decisions. In this manner, the amount of flow to route on the network becomes a variable whose
value is set optimally, simultaneously with the routes, as a function of the network characteristics and the
demand function. This is referred to as theelastic demandequilibrium model; for references, see[58,35]
and references therein. Another example of that approach can be found in[59].
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An important feature in all of the above references is that costs are given in terms of the sum of link
costs; that is, route costs are additive functions of the constituent links’ costs. This assumption simplifies
considerably the resolution of the routing and flow control-routing models by allowing the use of highly
efficient shortest-path algorithms to solve the subproblems. Indeed, when interactions across users or
applications are held fixed, the resulting routing and flow control-routing problems can be expressed as
pure shortest path problems.
There are models, however, in which this additivity of the route costs is not an acceptable assumption.

For example, in cases where the basic building blocks of the overall utilities are not link delays (or link
costs), but instead the ratio between overall throughput (or some power of it) to overall delay. This is the
well knownpower criterion, and it has been frequently used in flow control problems and in games, see
[182–186]. In the non-cooperative context, some variant of the power criterion has been used in[60],
in which the utility is related to the sum of powers over the links. The part of the utility in[60] that
corresponds to the delay is given by the sum of all link capacities minus all link flows, multiplied by some
entropy function.While this utility does not directly reflect the actual expected delay, it has the advantage
of giving rise to computable Nash equilibria in the case of parallel links for the combined flow-routing
game.
In [56] the actual power criterion is considered, i.e. the ratio between (some increasing function of) the

total throughput of a user and the average delay experienced by traffic of that user. The equilibrium for
the flow-routing game is obtained for the limiting case as the number of users becomes very large. The
limit is obtained explicitly; there are cases, however, where two equilibria are obtained.

4.2. Dynamic models

Several non-cooperative flow control models have been proposed and analyzed in a dynamic context.
Important references are[13,14], which consider a network with a general topology where each source
has a window end-to-end flow control. The available information for a user is thus the number of packets
within the network not yet acknowledged. Each user wishes tomaximize the throughput for her or his own
flow, and also would like her delay to be bounded by some given value. Thus each user faces a constrained
optimizationproblem.Theequilibriumobtained isdecentralizedsinceeachuserhasonly local information
on her own unacknowledged packets. Hsiao and Lazar[13] obtained threshold equilibrium policies for
this problem using the product form of the network as well as the Northon’s equivalence approach that
allowsone to reduceanetwork to anequivalent single queue.The threshold policy is thenobtained through
coupled linear programming problems. The existence of an equilibrium is established in[14]. A more
general theoretical framework for equilibria with constraints in stochastic games is proposed in[106].
In [5], rate-based flow control is considered in which each user can dynamically vary her or his

transmission rate. The available information is assumed to be the queue length (or equivalently, the delay)
at the bottleneck queue. The total available bandwidth to all controlled sources at this node is assumed to
be the node capacity minus the bandwidth used by higher priority traffic. Typical performance measures
are throughput, to be maximized, and overflow, to be minimized. Note that we may lose in throughput
if the queue is empty, and lose packets if it is full. A good trade-off between these can be obtained by
setting an appropriate target queue length and trying to track it.
Another possible performancemeasuremay be related to howwell the input rate of a connection tracks

its share of the available bandwidth. By considering an immediate cost per user, the problem is cast into
the framework of linear quadratic dynamic games. One such cost is obtained by taking a weighted sum of
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two objectives: the square of the difference between the queue size and its target value, and the square of
the difference between the input rate of a connection and its available bandwidth. In[5], an equilibrium
policy is shown to exist and to be unique; moreover it is explicitly computed along with the resulting
performance measures.
Another type of dynamic flow control (combined with routing) is considered in[99]. The players have

to ship a given amount of flow within a certain period, and can decide dynamically at what rate to ship at
each instant. A dynamic mixed equilibrium is computed, wheremixedrefers to the combination of both
infinitesimal, as in the Wardrop paradigm, and “large” users, the latter being modeled through the Nash
setting. In the transportation context, many other dynamic routing models have been developed, most
using the Wardrop equilibrium context. One textbook on the subject is[107].

5. Uniqueness of the equilibrium

The two first questions that arise in networking games are those of the existence and the uniqueness of
equilibria. We focus in this section on the uniqueness problem as the existence is usually much easier to
establish using standard fixed point theorems. For example, in[34] the existence of equilibria in routing
games is established for general cost functions and general topology, whereas its uniqueness is obtained
for very special cases.
The uniqueness of an equilibrium is quite a desirable property, if we wish to predict what will be the

networkbehavior.This is particularly important in the context of networkadministrationandmanagement,
where we are interested in optimally setting the network design parameters, taking into account their
impact on the performance in equilibrium.
For routing games in networks, in the context of the Wardrop assumption of an infinite population

of users, the uniqueness of the equilibrium[1] has long been known in some weak sense. Indeed, since
the model can, in its simplest setting, be cast as a single convex optimization problem, optimization
theory tells that when the objective is strictly convex and the feasible region convex, the solution exists
and is unique. Even when the underlying Wardrop equilibrium model is more complex, for example,
modeling multiple user classes, so that the equivalent convex optimization transformation no longer
applies, variational inequality theory still tells us that the solution is unique when the cost mapping is
globally strongly monotone. Unfortunately, that latter assumption is rarely satisfied for general multi-
class problems. Indeed, it is no longer sufficient in the multi-class case for each class’ delay function to
be increasing (or each users’ utility to be decreasing); rather it is necessary for theoverall delay vector
or utility vector to be strongly monotone (a formal definition will be given in Eq. (13)) which is a much
stronger assumption, and one related to the diagonal dominance of the Jacobian matrix of the delay or
utility function mapping.
The uniqueness of Wardrop equilibrium holds in a weak sense: it is thetotal link utilization that is

unique, rather than the flow of each user on each link. Only in special cases is the flow on each path also
uniquely determined, such as is the case for the stochasticWardrop equilibriummodel, see first paragraph
of p. 64 in [35]. Uniqueness of the Wardrop equilibrium was shown to hold for particular multi-class
networks (i.e. networks in which there are several classes of users and the delay in a node or a link may
depend on the class) in[19,27].
As shown in[88,89], the setting of Wardrop turns out to be a potential game. The uniqueness of

equilibrium in potential games was established in[108]; further, the equilibrium is shown to be unique
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not only for Nash equilibria but also in the larger class of correlated equilibria. Note however, that in[108]
only models with finitely many users were considered, and thus it does not directly cover the framework
of Wardrop.
Uniqueness ofWardrop-type equilibrium has been obtained in some other related problems. Cominetti

andCorrea[109]considered a transportation networkwith an origin, a destination andnbus lines between
them. They analyze thismodel with an infinite population of users and hence are interested in theWardrop
equilibrium. In their model, a bus line is characterized by two parameters, its in-vehicle travel time and its
frequency. Passengers choose not a single route, but rather a set of lines, and board the first available bus
in that set. Due to congestion, the decision of each passenger depends upon the decisions of the other pas-
sengers. Under general assumptions, the authors obtain the existence and uniqueness of the equilibrium.
As mentioned above, realistic models for which we have uniqueness of the equilibrium are quite

unusual. In fact, a simple counter-example of a network with four nodes is given in[34], and a two-node
two-class Wardrop network example is discussed in[110]. It is thus not surprising that much effort has
been given to understand the conditions under which there is uniqueness of the equilibrium.
A quite powerful tool for establishing uniqueness is the framework of[81] who introduced the concept

of DSC (diagonal strict concavity); this is a weak version of concavity which is defined for a multi-user
setting each with its own utility. DSC states that the weighted utility function gradient, given by the vector
whose elements aregi = �i�J i(u, x)/�ui , for some vector� >0, satisfies

(û − ū)T [g(û, �) − g(ū, �)] >0, (13)

which is the strict monotonicity of the scaled mappingg. Note that ifJ i did not depend oni then (13)
would imply the standard notion of concavity ofJ i . The diagonal dominance of the Jacobian, or matrix of
partial gradients, ofg is a sufficient condition for the strictmonotonicity ofg.Aswementioned previously,
this condition typically does not hold in routing games. However, there are a few cases in which it has
been shown to hold: (i) the problem of two users routing into two parallel queues for which the DSC
conditions are shown in[34] to hold in the case of light traffic, and (ii) a network with general topology
with certain polynomial costs[17].
In the absence of other general tools for establishing uniqueness, and in view of counterexamples that

show that there are cases in which it fails, the study of uniqueness has become a complex case-by-case
study. For some topologies, uniqueness has been obtained for quite general cost functions; notably, for
the case of parallel links[34] and for topologies arising from distributed computing with communication
lines, see[39] and references therein. Uniqueness has also been established for symmetric users[34].
Another interesting result related to uniqueness is the following. Assume that there are two equilibria

with each having the following property: a user sends positive flow over some link if and only if all other
users also send positive flow over that link. Then the two equilibria coincide. This has been established
in [34] and further extended in[19].
Although the study of equilibria is more involved in the case of a finite number of users than in the

infinite, Wardrop, setting, the uniqueness results obtained (in all of the above references) for the finite
case arestrongerthan for the infinite case. In particular, the uniqueness is in the sense of the amount of
flow that is sent by each user through each path, rather than in terms of the total link utilization.
Finally, some recent uniqueness results have been established in[21], for a general topology, and in

[41], for some particular topology, for the mixed equilibrium case, that is the setting of both Nash and
Wardrop equilibrium paradigms jointly coexisting on a network.
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6. Convergence to the equilibrium

The equilibrium has a meaning in practice only if one can assume that it is actually reached from
non-equilibria states, since there is no reason to expect a system to be initially at equilibrium. Several
approaches have been proposed in the literature to obtain convergence. Some rely on update policies that
have centralized characteristics (in terms of synchronization between the order of update); an example is
the round robin update order. Other approaches establish convergence under asynchronous best response
mechanisms. It appears that the latter are more appropriate for describing a real decentralized non-
cooperative system.
Rosen[81], who considered the case of a finite number of players, established the convergence of

a dynamic scheme in which the policies are updated continuously (in time) by all users so as to move
in the direction of the gradient of the performance measure. In the case of a unique Nash equilibrium,
this scheme is shown to converge to that equilibrium. In the case of multiple equilibria, this procedure
converges to one of the equilibria, and it is possible to predict to which equilibrium it will converge. As
already mentioned, the conditions under which Rosen’s setting holds in networks are quite restrictive.
An alternative approach for the dynamic convergence of greedy policies to an equilibrium (even in the

absence of a unique equilibrium) is in the class of submodular games and supermodular games[111,112].
In [22], the authors study a load balancing problem where it is shown that, depending on the parameters,
the costs are either submodular or supermodular. In both cases greedy algorithms are shown to converge to
the unique equilibrium. Examples of convergence in both a submodular setting as well as in supermodular
games (and their combination) in simple queuing problems are presented in[112].
We note that, in the field of transportation equilibrium, supermodularity is not the concept used for

proving uniqueness or convergence. Rather, monotonicity and its variants are the preferred concepts.
While the two notions are related, it may be possible to develop stronger results by making use of one or
theother, in particular through theuseof someweaker formsofmonotonicity suchaspseudo-monotonicity
or nested monotonicity[113,110]. See[35] for a comprehensive description of the basic definitions and
[114] for a more advanced compendium of the role of and forms of monotonicity.
In [115], Shenker considers a non-cooperative model with a single server (exponential) and several

sources (the users, who are Poisson). The utility of a user is a function of the amount of service received
and the queue length (i.e. congestion). The author concludes that no service discipline can guarantee
optimal efficiency, and that a service discipline calledFair Shareguarantees fairness, uniqueness of Nash
equilibrium and robust convergence.
For routing gameswith an infinite population of players, it has been shown that greedy updates converge

for quite general costs and for general topology; this was shown in fact for the larger class of potential
games[88,89].
In [18] a very simple case of convergence is considered: that ofn users routing to two parallel links.

The link costs considered are linear. Both random (asynchronous) greedy as well as round-robin policies
are shown to converge to the equilibrium. However, it is also shown that if more than three players
update simultaneously their routing strategies, then this results in diverging oscillations. To avoid such
oscillations in the case of simultaneous updates, one has to use relaxation, or smoothing, i.e. each user
should apply at each update some linear combination between the previous strategy and the best response
one.
Greedy updates have been shown in[22] to converge in a simple setting of distributed computing: a

network represented by three nodes and three links (two sources of arrival of tasks, and one destination
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node; the links between sources and destination represent computers, whereas the links between the
sources represent a communication line).
We also mention here the paper[116], that considers the problem of how to split a file between several

computers; the decisions are taken in a distributed way by the computers themselves (this involves
processing and communication delays). Although there is one global objective that is optimized, this
problem has some interesting features of a game (or a team) problem since decisions are distributed. The
algorithms compared belong to the class of resource-directive approaches, where at each iteration the
marginal value of the resource is computed using the current allocation, by each computer in parallel,
then an exchange of this computed value is made between all the computers.

7. Braess paradox, pricing, and Stackelberg Equilibrium

7.1. The Braess paradox

The service providers or the network administrator may often be faced with decisions related to up-
grading of the network. For example, where should one add capacity?Where should one add new links?
A frequently used heuristic approach for upgrading a network is throughbottleneck analysis, where

a system bottleneck is defined as “a resource or service facility whose capacity seriously limits the
performance of the entire system” (see p. 13 of[117]). Bottleneck analysis consists of adding capacity
to identified bottlenecks until they cease to be bottlenecks. In a non-cooperative framework, however,
this heuristic approach may have devastating effects; adding capacity to a link (and in particular, to a
bottleneck link) may cause delays of all users to increase; in an economic context in which users pay
the service provider, this may further cause a decrease in the revenues of the provider. This problem was
identified by Braess[118] in the transportation context, and has become known as theBraess paradox.
See also[119,120]. The Braess paradox has been studied as well in the context of queuing networks
[20,23–25,121].
In the latter references both queuing delay as well as rejection probabilities were considered as perfor-

mance measures. The impact of the Braess paradox on the bottleneck link in a queuing context as well as
the paradoxical impact on the service provider have been studied in[59]. In all the above references, the
paradoxical behavior occurs inmodels in which the number of users is infinitely large and the equilibrium
concept is that of Wardrop equilibrium, see[1].
It has been shown, however, in[29,32], that the problem may occur also in models involving a finite

number of players (e.g. service providers) for which the Nash framework is used. The Braess paradox
has further been identified and studied in the context of distributed computing[39,40,122]where arrivals
of jobs may be routed and performed on different processors. Interestingly, in those applications, the
paradox often does not occur in the context of Wardrop equilibria; see[39].
In [123] (see also[38]), it was shown that the decrease in performance due to the Braess paradox can

be arbitrarily larger than the best possible network performance, but the authors showed also that the
performance decrease is no more than that which occurs if twice as much traffic is routed. The result
was extended and elaborated upon in more recent papers by the same authors. In[124], a comment on
the results of[123] was made in which it is shown that if TCP or other congestion control is used, rather
than agents choosing their own transmission rates, then the Braess phenomenon is reduced considerably.
Indeed, this conclusion can be reached intuitively by considering (as is well known in the study of
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transportation equilibria) that the system optimal equilibrium model (in which the sum of all delays are
minimized) does not exhibit the Braess paradox; congestion control serves to force transmission rates to
such a system optimal operating point.
An updated list of references on the Braess paradox is kept in Braess’ home page athttp://homepage.

ruhr-uni-bochum.de/Dietrich.Braess/#paradox.

7.2. Architecting equilibria and network upgrade

The Braess paradox illustrates that the network designer, the service provider, or, more generally,
whoever is responsible for setting the network topology and link capacities, should take into consideration
the reaction of (non-cooperative) users to her or his decisions. Some guidelines for upgrading networks
in light of this have been proposed in[125,126,29,31,32], so as to avoid the Braess paradox, or so as
to obtain a better performance. Another approach to dealing with the Braess paradox is to answer the
question of which link in a network should be upgraded; see, for example,[59] who computes the gradient
of the performance with respect to link capacities.
A more ambitious aim is to drive the equilibrium to a socially optimal solution. In[29] this is carried

out under the assumption that a central manager of the network has some small amount of his or her own
flow to be shipped in the network. It is then shown that the manager’s routing decision concerning his
own flow can be taken in a way so that the equilibrium corresponding to the remaining flows attain a
socially optimal solution.

7.3. Pricing

An alternative approach to obtaining efficient operating solutions is through pricing.
A naive approach for pricing could be to compute an optimal policy for the network as a whole

and simply impose a high fine on any user that deviates from it. This approach would require, however,
centralized computation and signaling that would be difficult to implement. Therefore, research on pricing
schemes in recent years has focused on methods to charge locally (at each link or node) for the resources
used, under the assumption that such local data are easy to measure and impose.
It is well known, in the setting of Wardrop equilibria, that adding a fee equivalent to themarginal

costof the delay function to the user delay on each link renders the solution of the Wardrop equilibrium
problem equal to that of the system optimal problem. A similar approach was taken in[127,128] in
telecommunications, using the context of Wardrop-type equilibria. Similarly, it was shown in[129], in
the context of a finite number of users, that if the price at each link is chosen to be proportional to the
congestion level at the link, then efficient equilibria are obtained.
The next few references seek a vector of prices that achieves an objective similar to that of the system

optimal solution, described above for Wardrop equilibria.
Orda and Shimkin[130] study the case of many selfish users, each one wishing to ship her traffic

through some service class. It is then assumed that the intent of the service provider is to have a unique
allocation of each traffic type to one of the service classes; such an allocation is called thenominal flow
allocation.Pricing is used to induce users to choose the service class which is adapted to their needs
(QoS) and moreover which corresponds to the intent of the network service provider. Orda and Shimkin
establish a necessary and sufficient condition for the existence of prices such that the user-optimal flow
allocation is unique and coincides with the nominal flow allocation.

http://homepage.ruhr-uni-bochum.de/Dietrich.Braess/paradox
http://homepage.ruhr-uni-bochum.de/Dietrich.Braess/paradox
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Low and Lapsley[131] consider a model whereS sources share a network. Each source (i.e. user)
s has a path and a utility function; the sources chooses its transmission rate in order to maximize its
own utility. The goal is to propose a set of prices that induces the maximization of the global util-
ity. Again, this is similar in spirit to the idea ofmarginal cost pricingdiscussed above with respect
to Wardrop equilibrium and also similar to the model of[132]. In [133], it is shown that the link
prices of schemes such as those proposed in[132,131] are in general not unique in networks. The
theoretical justification for this result and an example are provided in which particular prices may
be easily obtained, and those prices appropriately defined can be unique. In[134], certain choices
of pricing objectives in this context, such as revenue-maximizing prices are presented and
analyzed.
Low [135] considers a single node with an allocation scheme that provides each user with a fixed

minimum and a random extra amount of bandwidth and buffer capacity; the network then sets prices on
the resources. Two models are proposed: in the first one, each user has an initial allocation and seeks a
new allocation maximizing his own utility under the constraint that the new allocation’s price is the same
as the initial allocation’s price; in the second one, the above constraint is absent. It is shown, for the first
model, that at equilibrium all users have positive variable allocation in bandwidth and buffer capacity.
For the second model, some properties of the equilibrium are exhibited.
A related problem is studied by Chen and Park[136]. They assume that a routing is given and the

network provides service classes at each switch; with each service class is associated a price. Users have
to choose a service class in order to satisfy (at the lowest price) their QoS requirement. In this context,
the authors propose an architecture for non-cooperative multi-class QoS provision.
Pricing has also been used as a tool for obtaining efficient equilibria when demand is controlled, rather

than in pure routing, in[137–139]. With the rapid growth of the Internet and its evolution from a heavily
subsidized network to a commercial enterprise, much attention has been given to pricing the demand, see
for example,[140–145,104].
Pricing schemes for attaining efficient equilibria, where both demand and routing are controlled, have

been considered in[59,146].
Pricing is used in another context in[143], where the authors model an ATM network using a mi-

croeconomic paradigm. The network offers bandwidth and buffers for rent. The users have to ask, and
pay, for the amount of these resources that can provide them the QoS they require. The authors assume
that each user knows a bound on the burstiness of her or his connection and also knows the minimum
bandwidth� required for the connection. The authors propose an algorithm that converges to a unique,
optimal allocation and service provisioning procedure that prevents cell loss.
Some other references on pricing in networks are[147–164].

7.4. Hierarchical, or Stackelberg, equilibrium in telecommunications

One further step in the interaction between the manager (who represents the network designer or
operator) and the users, is to assume that the former is interested not just in attaining an efficient equilibria
for the latter, but may have her own objectives (such as maximizing revenue).
In the telecommunication context, this framework has been studied in[165,30,33,59,50,183–185].
When the equilibrium problem involves a constrained routing, or control-routing, problem, the user

level solution of the hierarchical, or Stackelberg, equilibrium problem cannot be expressed analytically
in closed form. In that case, the optimization of the network manager’s problem is implicit and further



E. Altman et al. / Computers & Operations Research 33 (2006) 286–311 303

nonconvex; in other words, it does not posses a unique optimum, and its algorithmic solution is quite
time consuming.
A different approach was proposed in[166] for transportation networks and studied within the context

of internet-type networks in[134]. The idea is to solve a resource allocation, or routing, problem in which
link capacity constraints are Lagrangian relaxed, for a unique optimal solution. The uniqueness of the
optimal routing holds under conditions discussed above. Then, taking prices to be the Lagrangemultiplier
values, those prices are optimized from the point of view of the network manager. This pair of coupled
problems has a unique solution when the equilibrium routing problem does, and can be computed in time
proportional to solving the original routing problem.

8. Cooperative games and resource sharing

Questions of how to share common resources, or how to share the cost of constructing a network,
typically fall into the realm of cooperative games; see e.g.[167–172].
In [46,50]the problem of bandwidth sharing between different users is considered. A general network

topology is studied, and the question is how much bandwidth, or extra capacity, should be allocated by
the network to each user at each link. These papers propose the Nash Bargaining concept[173,174]for
assigning this capacity. This concept is characterized by the following properties: (1) it is Pareto-optimal,
(2) it is scale invariant, i.e. the bargaining solution is unchanged if the performance objectives are linearly
scaled, (3) the solution is not affected by enlarging the domain if agreement can be found on a restricted
domain, and (4) the bargaining point is symmetric, i.e. does not depend on the specific labels: users with
the same lower bounds and objectives receive the same share. It is shown that this sharing of the bandwidth
has the proportional fairness property introduced in[175], and is unique. Pricing was also considered in
[50]; the proposed scheme is such that a user is never charged more than her or his declared budget but
could be charged less if the amount of congestion in the network links used by the connection is low.
The idea of using the Nash bargaining solution in the context of telecommunication networks was first

presented in the context of flow control in[184]. The Nash bargaining concept has been recently used in
[47] for pricing purposes, where the solution concept is used to identify a pricing strategy in which the
two players are the service provider and the set of all users. In[47], only simple network topologies are
considered. However, the analysis in[47] considers also the case of several user priorities which models
the possibility for the service provider to offer different qualities of services at different prices. Another
application of the Nash bargaining concept in networking can be found in[176].
The third property of the Nash bargaining solution has received criticism since it implies that a player

does not care how much other players have given up. (This is related to the fact that the Nash bargaining
concept takes into account required lower bounds but not how far the solution is from any upper bound.)
Two alternative notions of fair sharing have thus been introduced with properties 1, 2 and 4 of the Nash
bargaining solution, but with a variation of the third property, namely, the modified Thomson solution
and the Raffia–Kalai–Smorodinsky solution. A unified treatment of the Nash solution as well as of these
two has been introduced in[177] for two players and extended in[178] for the multi-person case. These
concepts have been applied to Internet pricing in[179].
Another concept in cooperative games for sharing resources is theAumann–Shapley pricing, which has

desirable properties such as Pareto optimality. Haviv[48] proposes this approach to allocating congestion
costs in a single node under various queuing disciplines.
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Finally, we cite recent work in non-cooperative resource allocation which uses marginal cost and
Shapley values without the assumption that choices will be in equilibrium. Instead, it is assumed that
sometimes equilibrium will not be reachable, so authors have looked into ensuring that users always
choose efficient allocations by making those choices dominant irrespective of other users’ choices. This
has been referred to asstrategy proofor incentive-compatiblemechanisms. See, for example,[180,181].

9. Synthesis and conclusions

As stated in the introduction, numerous results have been invented and reinvented in different com-
munities, under different names, and with varying degrees of generality. This survey attempts to provide
some synthesis across communities of some of these results. Certainly, more synthesis andunification
would be a positive stimulus to this branch of science.
Examplesof similarmodelsand results acrosscommunities include, amongothers, theareasof potential

and congestion games in game theory and the traffic equilibrium model of transportation science. While
the former field has made great strides in generalizing this form of a game, the form of the potential,
and developing the sophisticated notion of supermodularity to study it, the latter field has generalized
rather in a different sense, eliminating the potential and tending toward variational inequalities, and hence
the notion of monotonicity (and its variants) for its analysis. It seems desirable to merge some of these
complementary developments and apply them as well to the communications arena.
In terms of stochastics, telecommunication applications and game theory have included random vari-

ables in their models in quite a different way from applications in transportation. In the former cases,
random arrival rates or usage levels are modeled through exponential or other distributions and expected
values are generally used or derived in such a way that often limits the size of the networks that can be
handled. In the transportation literature, stochastic models based on the logit (Weibull), in particular, and
also probit (Gaussian) distributions have been extended to the network setting and exact and approxi-
mate algorithms devised, even for large-scale networks. This appears to be a promising avenue for future
development in the telecommunications arena.
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