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Abstract

The global Internet has enabled a massive access of internauts to content. At the
same time it allowed individuals to use the Internet in order to distribute content. When
individuals pass through a conotent provider to distribute contents, they can benefit from
many tools that the content provider has in order to accelerate the dessiminaton of the
content. These include cashing as well as recommendation systems. The content provider
gives preferencial treatment to individuals who pay for advertisement. In this paper we
study competition between several contents, each characterized by some given potential
popularity. We answer the question of when is it worthwhile to invest in adveretisement
as a function of the potential popularity of a content as well as its competing contents,
who are faced with a similar question. We formulate the problem as a stochastic game
with a finite state and action space and obtain the structure of the equilibria policy
under a linear structure of the dissemination utility as well as on the advertisement costs.
We then consider open loop control (no state information) and solve the game using a
transformation into a differential game with a compact state space.

1 Introduction

We consider in this paper competition between individuals who create contents and wish to
propagate the content using some content provider. We assume that an individual can pay
the content provider to receive a preferential treatment to his content and have its rate of
propagation increased.

As an example, observe Fig 1 that shows the computer screen that I had when watching
a video clip on music by Piazzola using Youtube. One can observe three types of advertise-
ments. There is an advertisement for some company whose name is EFS, annd is seen at the
bottom of the large dark rectangle which is the screen that shows the video. If one wishes to
watch the video then the dark rectangle will occupy the whole computer screen and then this
advertisement will be the only one you would see. There is a second advertisement at the top
right part of the screen - for courses in Piano Jazz. The firt two advertisements just men-
tioined are not advertisements for content (but they consist a sufficiently important income
for youtube so that it can make profits from the free se vice of displaying video clips). Then
to the right we see the first five video clips in a recommendation list provided by google. The
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first in the list has a tag ”Ad”. It is a video clip that received a priority in the recommendation
list. The remaining clips in the recommendation list did not have to pay anything.

When some content makes it to the first ones in the list then it gets a higher visibility
than the others and therefore the speed of propagation is expected to increase.

Figure 1: Publicity in Youtube

We consider a competition between several contents, each having possibly another level
of potential popularity (or in other words, another rate of propagation.) Depending on the
popularity level of the contents, on the potential size of the interested audience as well as the
number of past downloads of each of the contents, each individual may decide whether or not
to purchase a higher priority. We formulate this decision problem as a stochastic game with
a finite state and action spaces. The solution of the problem allows us to provide guidelines
for individual’s advertisement strategies.

We formulate the problem as a continuoous time Markov game. We then use uniformiza-
tion in order to transform the problem into an equivalent discrete time Markov game. In the
case of linear costs we manage to reduce considerably the dimension of the state space and
obtain a characterization of the equilibrium policy.

The structure of the paper is the following. The next section provides the problem state-
ment and the stochastic game model. It is introduced as a continuous time Markov game.
We transform it in Section 3 into a discrete time finite state and action stochastic game. We
obtain the structure of the equilibrium in Section 4. In section 5 we transform the problem
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into a deterministic equivalent dynamic game and show how to reduce its dimensionality.
We then solve in Section 6 the problem with infinite horizon criterion. We end with a short
concluding section.

2 Model and statement of the problem

Assume that there are N competing contents (say some softwares that are sold over the
Internet). There are M potential common destinations. We assume that a destination wishes
to acquire one of these contents and will purchase the one at the first possisble opportunity.

We assume that opportunities for purchasing a content n arrive at destination m according
to a Poisson process with parameter λn starting at time t = 0. Hence if at time t = 0
destination m wishes to purchase the content n, it will have to wait some time which is
exponentially distributed with some parameter λi.

The value of λi may differ from one content to another. The difference is partly due to
the fact that different contents may have different popularity.

We assume that the owner of a content n can accelerate the propagation speed of the
propagation of the content in two ways: First, it can increase λi by some advertisement
effort.

Secondly, we allow for content i to be available for a subset of xi(0) destination at time
0 (without waiting for a purchase opportunity). This again can be achieved using some
advertisement effort. Here are some examples. When selling books, it is often possible to
command a book even before it appears. Advertisements of movies, concerts, theatre and
other cultural events, as well as sport events often begins quite before the opening and one
can then purchase tickets way before the premier.

We next model the problem as a continuous time Markov game.

• State space. Let xi(t) be the number of destinations that have content i at time
t. It is a continuous time Markov chain with a finite state space X = {(x1, ..., xN ) ∈
Nm,

∑N
i=1 xi ≤M}.

• Action Space. Let Ai be a finite set of actions available to the owner of content type
i. a ∈ Ai is a possible value of the amount of acceleration of λi. Let A be the product
action space of Ai, i = 1, ...N .
a ≥ 1. The action a = 1 is the one that does not use any acceleration. Let a1 be the
smallest action not including a and let ā denote the largest action.

• The transition intensity. Let |n| :=
∑N
i=1 ni. Given that the state at that time is n

and the action of players is a ∈ A, the transition intensity is given by

Q(n + ei|n) = λiai(M − |n|).

where ei is the unit vector whose ith component equals 1 and the rest are zero. Indeed,
at state n, the number of destinations that do not yet have any content is given by
M−|n|. the time till the first one of these receives the content of type i is the minimum
of M − |n| independent exponential random variables each with parameter λiai. It is
thus an exponential random variable with parameter λiai(M − |n|).
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• Policies. A pure stationary policy for player i is a map from X to Ai. Let ∆(Ai) be
the set of probability measures over Ai. A mixed stationary policy is a map from X to
∆(Ai). Choose some horizon T . A Markov policy for player i is a measurable function
wi that assigns for each t ∈ [0, T ] and each state x a mixed action wit(x). For a given
initial state x and a given Markov policy w, there exists a unique probability measure
Pwx which defines the state and action random processes X(t), A(t). Multi-policies are
defined as vectors of policies, one for each player.

• The utility. Let ci(ai) denote the cost for player i for using action ai.

of choosing action ai. Since ai has the interpretation of the factor by which the player
wishes to accelerate the dissemination, ci(ai) is increasing in its argument and when
there is no acceleration (ai = a = 1) the cost is zero. The utility is assumed to be
a weighted sum of a payoff that is the expectation of some increasing function gi of
the number of destinations that have the content at time T , and some disutility that
describes the total advertisement cost:

Ui(T ) = E[gi(Xi(T ))]− E
[∫ T

0
ci(Ai(t))dt

]
= E

[∫ T

0
−ci(Ai(t))dt+ dgi(Xi(t))

]

(Note that Xi(t) is monotone so that the integral is well defined).

Remark 1. We were initially only interested in a linear dissemination utility of the form
gi(xi) = xi. For this choice of dissemination utility it turns out that the problem can be
considerably simplified, and a state aggregation is possible as we show later on. In order to
understand the reason that allows us to aggregate the state, we address the problem with a
general dissemination utility. We shall show in what step linearity is needed to obtain the
simplification. We shall identify furthere simplfications for the case of linear acceleration cost
of the form ci(ai) = γi(ai − 1).

Let M denote the set of states at which
∑M
i=1 xi = M , i.e. all states at which all desti-

nations have purchessed the content. Every state in the set M is an absorbing state. The
stochastic game is absorbing, and under any policy w, the time to absorbption is finite Pw a.s.
It is moreover, stochastically smaller than the one under the policy 0 in which no player ever
accelerates. All states other than M are transient. Once M is reached, no player has any
incentive to ever accelerate; we may assume without loss of generality that only a is available
for states in M. The utility for each player i can then also be written as

Ui(T ) = E

[∫ min(T,σ)

0
−ci(Ai(t))dt+ dXi(t)

]

where σ is the hitting time of the set M. The Markov game has thus a structure of an
absorbing Markov Decision Process (MDP), see [1, chap 7].

When considering the game within a finite horizon then we shall restrict our search of
equilibrium to the Markovian multi-policies. For the infinite horizon prolem, we shall restrict
to stationary mixed multi-policies and find equilibria within this class.

Indeed, for a finite horizon, if we obtain an equilibrium within Markov policies then at
equilibrium, each player is faced with an absorbing MDP for which there exists an optimal
Markov policy. Thus no player can benefit by using any other more general policy (see [1]).
A similar argument shows that for infinite horizon, we can restrict to stationary policies.
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3 Uniformization

We consider the game in which the past and present state as well as the past actions are
known to all players. We use the standard uniformization approach [6] to transform the
decision problem into a discrete time Markov game.

Introduce the following discrete time Markov Game. The state and action spaces are the
same. The transition probabilities are defined as follows. Define λ = M

∑
i λiai.

Pxaz =

{
(M − |x|)aiλiλ for z = x + ei,x ∈ X \M
1− (M − |x|)

∑
i
aiλi
λ for z = x,x ∈ X

(1)

Define
δj(v,x) = v(x + ej)− v(x).

Define for each player i, x ∈ X \M, a ∈ A and v ∈ RX:

J i(v,x,a) = −ci(ai) +
(M − |x|)

λ

N∑
j=1

ajλj(ζi(xi)1{j = i}+ δj(v,x))

and set J i(v,x,a) = 0 for x ∈ M. J i(v,x,a) + v(x) is the total expected utility for player i
if at time 0 the system is at state x, player j takes action aj (where aj is the jth component
of the action vector a) and the utility to go for player i from the next transition onwords is
v(y) if the state after the next transition is y.

Let u be a mixed stationary multi-policy. With some abuse of notation we define for each
player i and for each x ∈ X \M,

J i(v,x,u) = −
∑
a∈Ai

ui(a|x)ci(a)+
(M − |x|)

λ

N∑
j=1

 ∑
a∈Aj

uj(a|x)a

λj(ζi(Xi(t))1{j = i}+δj(v,x)
)

and set J i(v,x,u) = 0 for x ∈M.
We introduced the following set of (coupled) dynamic programming equations that char-

acterize the equilibrium:
0 = max

u∈∆(Ai)
J i(vi,x,u) (2)

Theorem 1. (i) The fixed point equation (2) has a solution v∗.
(ii) Let v∗ be such a fixed point. Any mixed stationary multi-policy u such that achieves the
argmax of (2) for all i is a mixed stationary Nash equilibrium.

Proof. A similar proof is already avaiable for the discounted cost criterion, and under
some additional assumptions, in the case of the average reward problem (see e.g. [3, 8, 2]
which extend [7] to non-zero sum stochastic games). The proof in our case follows the same
steps. The only step that is not direct is the continuity of the performance measures in the
stationary policies.

We first note that this Markov game is absorbing: it has an absorbing set that is reached
under any policy with probability 1 and the expected time to hit the set is uniformly bounded
over all policies. (For more details, see discussion in the Concluding Section.) The required
continuity then follows known results (see e.g. [1]).
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4 The game on an aggregated state space

In the next subsection we shall go back to the original linear structure of the utilities. We
begin by considering that dissemination utility is linear with the form gi(xi) = xi.

We then consider that also the acceleration costs ci are linear and have the form ci(ai) =
γi(ai − 1) for some constants γi > 0.

4.1 Linear dissemination utilities

We present a surprisingly simple structure of the equilibrium policy for the case of linear
dissemination utility. We show that one can transform the stochastic game into an equivalent
one which has the same action space but a much simpler state space: it is one dimensional
and is given by the set X = {0, 1, ...,M}.

Define X = {0, 1, ...,M} to be the class of aggragated states. An aggregated state i ∈ X
corresponds to the set of states x ∈ X such that |x| = i. An aggregated state thus counts the
total number of destinations that have some content. Taking the summation in (1) we get
the following transition probabilities for the aggregated Markov game:

Pxaz =

 (M − x)

∑N

i=1
aiλi

λ for z = x+ 1, x ∈ X \ {M}

1− (M − x)

∑N

i=1
aiλi

λ for z = x, x ∈ X
(3)

The aggregated state process has the Markov property: the dependence of the next aggregated
state on the history is only through the current aggregated state and actions. However, the
dissemination instantaneous utility, ζi(xi) cannot be written as a function of the aggregated
utility.

We shall consider in this section the original dissemination utility gi(xi) = xi. We thus
get ζi(xi) = 1. Hence when using the equivalent instantaneous dissemination utility, it is no
more a function of the state. We thus get a Markov game formulation with a considerably
reduced complexity. Any equilibrium in this new stochastic game is also an equilibrium in
the original one. (Indeed, this follows from Theorem 6.3 in [1]).

4.2 Computing the equilibrium

Now that we reduced the state space to M + 1 states only (of which state M is absorbing) it
remains to compute for each of these states the randomized action of each user at equillibrium

Fix some stationary policy u. Let X(t) =
∑N
i=1Xi(t). Define for m = 0, ...,M − 1 the

total expected reward from the moment that X(t) = m till it reaches m + 1 by Umi (u). We
note that the time until X(t) jumps from m to m+ 1 is an exponentially distributed random
variable with parameter

θm(a) = (M −m)
N∑
j=1

ajλj

The probability that the transition to j + 1 occurred due to player i is given by

pi =
aiλi∑N
j=1 ajλj
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Hence

Umi (a) =
ci(ai)

θm
+ pi(a) =

ci(ai) + (M −m)aiλi

(M −m)
∑N
j=1 ajλj

We conclude that a stationary mixed equilibrium can be obtained as follows:

Theorem 2. Consider the case of linear dissemination utility. Denote by u∗(m) an equilib-
rium multi-strategy in the mth matrix game, m = 0, ...,M − 1, in which the utility of player
i is given by Umi (a). Then the mixed stationary policy for which each player i chooses an
action a with probability u∗(a|m) whenever the state satisfies |m| = m, is an equilibrium for
the original problem.

4.3 Linear acceleration costs

Assume next that for some i, ci(ai) = γi(ai − 1) for some constants γi. Define ∆i(m) =
−γi + (M −m)λi. Then

Umi (a) =
ai(−γi + (M −m)) + γi

(M −m)
∑N
j=1 ajλj

=
1

λi(M −m)

(−γi + (M −m)λi) aiλi + γiλi∑N
j=1 λjaj

=
1

λi(M −m)

(
−γi + (M −m)λi −

∆m
i∑N

j=1 λjaj

)
where

∆m
i = (−γi + (M −m)λi)

∑
j 6=i

λjaj − γiλi

Then for any action of players j 6= i, the following holds. If ∆i(m) > 0 then Umi (a) is
maximized at āi. Otherwise it is maximized at a = 1.

Since ∆i(m) is increasing in m, then if ∆i(m) > 0 for some m then ∆i(j) > 0 for all
j > m. Thus if ∆i(m) > 0 then for all j ≥ m, the utility of player i is maximized at ai = āi.

We conclude that if for some i, ci(ai) = γiai, then at equilibrium, player i has a threshold
policy Li: it uses ā at all states above Li and a = 1 otherwise. Li is given by the smallest
integer greater than or equal to ρi, where ρi is the solution of 0 = −γi + (M −m)λi and is
thus given by

ρi = M − γi
λi

(4)

In particular, if ρi ≤ 0 then at all states the equilibrium policy uses the largest acceleration
available, āi, and if ρi > M then the equilibrium policy for player i always uses no acceleration.

5 The case of no state informatioin

We shall assume below that the players

• do not observe the state.

• either know the initial state or know its distribution or its expectation. All players are
assumed to have the same information on the expected value of X0.
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We shall therefore restrict to the subset of Markov policies that depend on time and on
the available information on the initial state, but not on the state at time t > 0. We denote
the set of such policies for player i by Wi.

We show next that the stochastic game is equivalent to a differential game.
We assume that all players know the policies used by other players as well as the value of

xi(0), i = 1, ..., N .
Fix a policy w ∈W. Let xi(t) := E[Xi(t)] and x(t) :=

∑N
i=1 xi(t). Then

ẋi(t) = λiw
i
t(M − x(t)) (5)

The utility of player i is given by Ui(T,w, z) where

Ui(t, w, z) = xi(t)−
∫ t

0
ci(w

i
s)ds

where x(0) = z. We thus obtained a differential game. Note that although w ∈ W does
not have knowledge of the realization of the state trajectory, we can allow wit to depend on
x(t) since each player can compute it from the knowledge of the policies used and from the
knowledge of the expected initial states.

This is an N -dimensionnal differential game. We shall next transform it into an equivalent
one-dimensional problem where y(t) = M − x(t) is the state.

Indeed, we show that both the dynamics as well as the utilities can be written directly in
terms of the state trajectory y(t). Taking the summation over i in (5), we get,

ẏ(t) = −ẋ(t) = −ηty(t) (6)

where ηt =
∑N
i=1 λiw

i
t, y(0) = M −

∑N
i=1 xi(0).

Moreover, the utility can be written as Ui(T,w, z) where

Ui(t, w, z) = xi(0) +

∫ t

0
[−c(wis) + ẋi(s)]ds = xi(0) +

∫ t

0
r(ws, ys)ds

where
r(ai, y) = −c(ai) + λiaiy.

It is indeed a function of the trajectories of yt and at only; note that xi(0) are constants that
are not affected by the decisions of the players. The last equality was obtained by substituting
(6).

Remark 2. (i) The solution of (6) is

y(t) = (M − x(0))

(
1− exp

(
−
∫ t

0
η(s)ds

))
Thus xi(t) is the solution of

ẋi = witλiy(t) (7)

(ii) Under any policy,

y(t) ≤ (M − x(0)) exp

(
−t

N∑
i=1

λi

)
. (8)

8



6 Infinite horizon with no information

We consider the total cost problem (i.e. the game obtained for an infinite horizon). At
equilibrium, the utility for each player i should be the value of the best response policy against
the others’ policies. The value for player i is known to be the unique viscosity solution of the
following provided that it is piecewise differentiable.

0 = sup
ai∈∆(Ai)

J i(a, y)

where

J i(a, y) =

ri(ai, y)− v̇i(y)y
N∑
j=1

λjaj


We shall compute explicitly the equilibrium below.

Assume that on some neighbourhood of y, the sup is achieved by some vector b. Then

v̇i(y) =
ri(bi, y)

y
∑N
j=1 λjbj

=
−c(bi) + λibiy

y
∑N
j=1 λjbj

=
−c(bi)

y
∑N
j=1 λjbj

+
λibi∑N
j=1 λjbj

Thus

vi(y) = vi(s)− (log(y)− log(s))
c(bi)∑N
j=1 λjbj

+
λibi(y − s)∑N

j=1 λjbj

We also have

J i([ai,b
−i], y) = ri(ai, y)− ri(bi, y)

∑
j 6=i λjb

j + λiai∑N
j=1 λjbj

An action maximises this expression (over ai) if and only if it maximizes

ri(ai, y)∑
j 6=i λjbj + λiai

− ri(bi, y)∑N
j=1 λjbj

which is equivalent to maximizing

V ([ai,b
−i], y) :=

ri(ai, y)∑
j 6=i λjbj + λiai

This implies the following.

Theorem 3. Consider N -player matrix games where the utility of player i is given by

V
i
(a, y) =

ri(ai, y)∑N
j=1 λjaj

.

y is a parameter taking values in [0,M ]. Let u(y) denote a mixed equilibrium in the matrix
game y. Then u is a stationary equilibrium in the original game.
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We obtained the same form of optimal policy as in the discrete case with state information,
except that the parameter y is now an interval rather than the finite set {0, ...,M − 1}.

Assume that ci(ai) = γi(ai − 1) for some positive constant γi. Then the maximizer ai is
independent of b−i. It is given by a for y < γi/(λi). and by the maximal element of Ai if the
converse inequality holds.

We conclude the following.

• At equilibrium, each player i accelerates the λi by the largest possible ai as long as
x < ρi and does not accelerate for x > ρi. ρi is the same as the one derived in the
discrete case, see (4).

• Assume that γi is the same for all i. Then the owner of a more popular content (i.e.
with a larger λi) will advertize over a larger set (interval) of states

7 Concluding comments

We comment on the relation between the differential game and the original stochastic game.
Every set in M is also absorbing in the differential game. However, it is never reached from
any other state. However, starting at any state not in M, the distance to M converges to
zero exponentially fast (and uniformly) as it follows from (8).

Although the differential game that we solved is different than the original discrete one
(they differ in the information available), it was seen to have a similar structure of equilibria
in the case of linear dissemination utility. One can show in fact that the differential game is a
fluid limit for the discrete game with a proper scaling of the state space and of the rates λi’s.

A question often raised is of estimating the loss in performance due to the non-cooperation.
We note that under both the discrete model as well as continuous one studied in this paper,
the total number of copies of contents in the system is M when the game ends. So any policy
does equally well in terms of the total dessimation utility. The globally optimal policy is then
the one that does not spend any effort (and thus any cost) on acceleration.

Note that the possibility for a state aggregation that appears (both in the global opti-
mization as well as in the game setting) is related to the linearity of the dissemination utility.
The latter implise that the cost to go depended on the current state vector only through the
sum of its components. The same property turns out to hold in the global optimization if
the dissemination utility is any linear function of the global state (not just the sum of its
components).

This work is a first step for us in understanding competition issues between content
producers over the Internet, that take into account the evolution of the demand to the content
as a function of the number of destinations that it already reached. We model the fact that
as the game goes on, it becomes more and more difficult to further disseminate the content
due to the competition over a common set of destinations. This is due to the fact that once
a destination receives some content, it will not be interested in any other competing content
(i.e. content produced by a competing source). This feature is related to problems of pricing
of perishable or of seasonal goods in which one also has to take into consideration the fact
that if a good is not sold now, it will be harder to sell it later, see [4] and references therein.
We note that there is already a rich literature on advertizing over the Internet, that do not
take into consideration the above dynamic aspect of the demand (e.g. [5]) but who focus on
other important modelling issues.
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There are many other aspects of the problem that we did not take into account and that
will be modeled in the future. This includes

• coupling between various social networks: indeed, one way of accelerating the dissemi-
nation in the Internet of, say, some movie, would be to to advertize it using Twitter and
Facebook. Coupling can occur by using the ”sharing” option which allows to migrate a
content from one social network to another.

• Spatial considerations: our contamination problem was assumed to be homogeneous.
Indeed, we assumed that the time till a destination has an opportunity to receive a
content has a distribution athat is the same for all destinations. In practice however,
there may be differences in the distribution of the time at which different destinations
may get to know about the content. In particular, it may be a function of the location
of the source.
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