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Abstract—Consider a town with N competing sources of
content where each one wishes to disseminate its own content
and thus to make its content available to as many destination
users as possible. A content here may stand for information about
somoe cultural event or the list of hotels in town or the wheather
report. The dissemination to the potential destination is done
through a fleet of M mobile relays. The rate of dissemination
of content of a given source to its potential destinations depends
on how many relays have a copy of the content. We therefore
focus on the problem of competition over the access to relays.
Each source has to trade between the access costs and and the
availability of his content in the relays. As access cost we consider
here the transmission power used by the source. The power
used determines the coverage of the transmission and thus the
probability of reaching some relay. We model the competition
using stochastic game approaches and then obtain the structure
of the equilibrium strategies.

I. INTRODUCTION

Consider a town with N competing sources of content each
one wishing to disseminate its own content and thus to make
its content available to as many destination users as possible.
The dissemination to the potential destination is done through
a fleet of M mobile relays. The competition in the access
manifests through the following assumption
• A mobile relay stores no more than one copy of content.

Therefore, the sources compete over the limited amount
of distributed memory in the system.

• Alternatively, each one of the destinations is interested
just in one content, and it will be satisfied by the first
one it receives. If the relay has contents from several
sources, then it is the first one received that will be the
first (and thus the only one) that the destination will take.
For example, if a list of items (an item corresponds to a
content) is proposed, then the first received is the first to
be visible (e.g. the first in a pile). The sources therefore
compete over the limited visibility in the presentation of
the content.

As an example, if the content corresponds to a list of open
restaurants, or the list of hotels in town, then any content that
is sent and contains these information may be sufficient for a
tourist that comes to town.

The rate of dissemination of content of a given source to
its potential destinations depends on how many relays have a

copy of that content. To reach more relays, the source needs to
transmit at a higher power. We study in this paper the tradeoff
between costly transmission power and the access to relays,
and study the impact of the competition on this tradeoff.

Related work.

When modeled as a stochastic game, the model obtained
is close to one that describes competition over popularity in
recommendation lists in social networks. We have studied
such problems in [4], [3]. In those problems, however, the
costs turn out to be linear in the state, which allows one to
reduce the complexity of the problem and to obtain some
characteristics of the equilibrium policies. In our problem
formulation, however, the transmission rates obtained from
having a content available at x relays turns out to be related to
some exponential function of x. This suggests the use of risk
sensitive type cost criterion, which is related to multiplicative
dynamic programming, see [2] for such a formulation. In
contrast to [2], however, there is another component of the cost
which is additive in time, that of cost for transmission power.
We cannot use therefore the risk sensitive type multiplicative
dynamic programming. We thus take here another path that
allows us to solve the stochastic game using a cost that is a
combination of an exponential term and an additive term. We
rely on a dynamic programming formulation for obtaining best
response strategies that is due to [8].

II. MODEL AND PROBLEM FORMULATION

We first model the communications between the source and
the relays, and then between the relay and the destinations.
We then describe the stochastic game model.

A. Modeling the communications between the sources and the
relays.

We consider N sources and M mobile relays. The trans-
mission between a source and a relay may occur when they
are within some range of each other. This range is determined
by the transmission power which is controlled by the source.
Each relay j is within transmission range of each source i
during some sequence of times which we call the ij contact
process. The intensity of the contact processes is controlled
by the source through power control decisions. Indeed, by



increasing its transmission power, the covered area of a given
relay increases. This implies that the intensity of the ij contact
process increases.

B. Modeling the communications between the relays and
destinations.

Relay i is in range of each of the destination useres that are
interested in its contents at times that form a Poisson process
with rate ηi. We assume that when such a destination user
seeks for content type i (i.e. content originating from source
i) then it needs it within some time Ti. We define the ith type
failure probability as the probability that an end user mobile
searching for type i content does not obtain it within time Ti.
The goal of the ith player (i.e. the ith source) is to minimize
this probability.

C. Stochastic game

System state. The system state is the product of the state
of of each player. The state of player i is given by an integer
corresponds to the number of relays that have content type i. It
is non-negative. The sum of xi over all players i is bounded
by M , the total number of relays. We shall denote by M
the set of states in which the bound is actually achieved. M
corresonds to the set of states in which each destination has
already some content. We shall denote the state space of a
player i by Xi. For a vector x, we shall define |x| to be
the sum of the absolute values of its entries. By ei we shall
understand the identity vector whose ith entry equals 1 and
all others are zero.

Actions. Each source i has a finite set Ai of available
transmission power levels. When transmitting at the jth power
level, then the rate of the contact process with any relay j
is λia

j
i , where aji ≥ 1 are some constants. The action aji

corresponds to accelerating the the rate of the contact process
(between source i and any one of the relays) by a factor of aji .
Ai contains a1

i = 1, which corresponds to transmitting at the
lowest available power. Let ai denote the action corresponding
to the largest transmission power of source i. We denote by
A the product of the action spaces Ai, i = 1, ...N . We shall
assume further that at any state in M the action 0 is also
available, i.e. not to transmit at all.

Transition probabilities. We present the transition proba-
bility of the time discretized stochastic game obtained after
standard uniformization [9]. The uniformization is based on
adding fictitious transitions at each state so that the total rate
of transitions (which we call λ below) is the same in all states
and under all actions. (Adding fictitious transitions at a given
state means to add transitions from that state to itself in a
way that does not change the probability distribution of the
stochastic processes describing the states and actions.) Then
one considers the state and action processes right after a real or
a fictitious transition occurs. We denote by σn, n = 1, 2, 3, ...
these instants. The transition probabilities are obtained as
follows. Define λ = M

∑N
i=1 λiai. The transition probabilities

for the state of source i are given by

P ix,a,x+1 := (M − |x|)aiλi
λ

for x ∈ {0, ...,M − 1}, and

P ix,a,x := 1− P ix,a,x+1.

Thus the overall state transition probabilities are given by

Px,a,z =

(M − |x|)aiλi

λ for z = x + ei,
x ∈ X \M,

1− 1
λ

[
N∑
i=1

(M − |x|)aiλi

]
for z = x,x ∈ X.

(1)

History. A history ht at time t is the set of actions taken
by all players at time s for all s < t, as well as the set of
previous and current states.

Policies. A (behavioral) policy ui for player i is a sequence
uit, t = 0, 1, 2, ... where uit is a map from the set of histories
available at time t, to probability measures over Ai. A policy
ui for player i is a sequence of decision rules uit, where each
decision rule is a function of the form uit(a|ht) that assigns a
probability for player i to choose at time t an action a having
observed a history ht. A multi-policy or multi-strategy u =
{u1, ..., uN ) is a vector of policies, where the ith component
of the vector corresponds to the policy of player i. (It is well
known in stochastic games that there is no loss of generality
by restricting to behavioral policies, see [5]).

We are in particular interested in some simpler subclasses
of policies. These include
• Markov policies: the dependence on the whole history

is only through the current state and the current time.
We let with some abuse of notation uit(a|x) denote the
probability under ui that player i chooses at time t action
a if the state at that time is given by x.

• Stationary policies: the dependence on the whole history
is only through the current state. We definee with some
abuse of notation ui(a|x) to be the probability under ui

that player i chooses action a if the current state is x.
Any given multi-policy u and initial distribution β over the
states at time 0 define a probability space on which the stochas-
tic process of states and actions {Xi(t), Ai(t)}, i = 1, ..., N
is defined. We denote the corresponding probability measure
by Pu

β and the corresponding expectation by Eu
β . When the

innitial distribution β is concentrated on a single state x then
we will write, with some abuse of notation, Pu

x instead of Pu
β .

We denote by u(−i) the set of policies for all players other
than i.

The cost. We model in this paper tradeoffs faced by each
player between two performance measures: its transmission
energy and the expiration probability, which we define below.



Let τ be the hitting time of the set M. Then the energy
cost given by

Gi = E

[∫ τ

0

gi(Ai(t))dt

]
.

gi(a) corresponds to the energy cost for source i needed to
accelerate the rate of its contact process by the constant factor
a.

Consider a mobile user that arrives to town and wants
to receive content i. At a given time t, conditioned on the
number Xi(t) of relays that have the content i at that time,
the contact process between relays that have the content and
the user is a Poisson process with parameter ηiXi(t). Hence,
the number of such contacts during the interval [t, t+ Ti) for
some fixed Ti is a Poisson random variable with parameter
ηi
∫ t+Ti

t
Xi(s)ds. Thus the probability that the mobile does

not receive the content within time interval Ti conditionned
on the whole process X(t), t ≥ 0 is given by the

Pf (i, t) = E

[
exp

(
−ηi

∫ t+Ti

t

X(s)ds

)∣∣∣∣∣X(t), t ≥ 0

]
(2)

We shall be interested in the expected value of this perfor-
mance measure as t becomes large. More precisely, we define

Pf (i) := lim
t→∞

Euβ
[
Pf (i, t)

]
(3)

Xi(t) is non-decreasing in t and thus reaches some (random)
limit which we denote by x̄i. It reaches this limit at time
τ which is finite with probability 1 for any initial state
distribution and any policy. Thus for any policy u, Pf (i, t)
is increasing in t. By the monotone convergence Theorem,
this implies that

Pf (i) = E [exp(−ηixiTi)] (4)

We call Pf (i) the expiration probability of player i.
This probability depends on the initial state distribution and

on the multi-policy u used, so we often include these in the
notation, and write Pf (i;β,u).

Gi(β,u) = E

[
τ∑
n=0

gi(Ai(n))

]
(5)

and
Pf (i;β,u) = Euβ [ri(Xi(τ))]

where ri(x) := exp(−ηiTix).

Problem formulations. The problem can be formulated in
the following form:
• P1: Each player i minimizes (over his policies ui) some

linear combination between energy costs and the expira-
tion probability

Ci(β,u) := Gi(β,u) + γiPf (i;β, u), (6)

More precisely, for a given initial distribution β over the
state at time 0, we consider the N players game of finding
a multi-policy u∗ such that for each player i,

Ci(β,u
∗) = min

ui

Ci(β, [ui,u
∗(−i)])

where [ui,u
∗(−i)] is the multi-policy where player i uses

ui and each players j 6= i uses policy u∗j .
Note: the linear combination in (6) may be interpreted as

some Lagrange multiplier corresponding to the Lagrangian
that one obtains if one considers instead of problem P1 another
problem: a constrained optimization problem which is faced
by each player. A a player minimizes the expected energy cost
only, but it has a constraint on the failure probability.

III. DYNAMIC PROGRAMMING FORMULATION AND MAIN
RESULT

We establish in this section the existence of an equilibrium
within stationary policies. We further show how to compute
the equilibrium within an M step recursion scheme.

We first note that for all absorbing states, i.e. for all x ∈M,
at any equilibrium there is no energy cost and the expiration
probability is given by Pf (i;x) = exp(−ηiTixi).

For the rest of the states, define

δj(v,x) = v(x + ej)− v(x).

δj is a function defined over V ×X where V the set of real
functions of the state.

Define for each player i, x ∈ X \M, a ∈ A and v ∈ R|X|:

J i(v,x,a) = ci(ai) +

N∑
j=1

P jx,a,x+ejδj(v,x).

For x ∈ X \M, v(x) + J i(v,x,a) is the total cost for player
i if at time 0 the system is at state x, player j takes action aj
(where aj is the jth component of the action vector a) and
the utility to go for player i from the next transition onwards
is v(y) if the state after the next transition is y.

Let u be a mixed stationary multi-policy. We extend the
above definition to mixed policies. Define with some abuse of
notation

ci(u) =
∑
a∈Ai

ci(a)u(a)

and

P ixi,u,xi+ei =
∑
a1∈A1

∑
a2∈A2

...
∑

aN∈AN

( N∏
j=1

uj(aj |xj)
)
P ixj ,a,xi+1.

We then define for x /∈M:

J i(v,x,u) = ci(ui) +

N∑
j=1

P jx,u,x+ejδj(v,x).

We are interested in the fixed point of the following set of N
equations:

0 = min
u∈∆(Ai)

J i(vi,x, [u,u(−i)]) (7)



Here, ∆(Ai) stands for the set of probability measures over
the set Ai.

Theorem 1. Consider problem P1. Then
(i) The fixed point equation (7) has a solution v∗.
(ii) The exists a stationary Nash equilibrium for problem P1
obtained as follows. Let v∗ be a fixed point of (7). Any mixed
stationary multi-policy u that does not transmit at states x ∈
M and that achieves the argmin of (7) for all i is a mixed
stationary Nash equilibrium.

Proof. (7) describes a set of N dynamic programming
equations, where the ith one corresponds to the best response
for player i when the other use the stationary policies uj , j 6= i.

A similar proof is already available for the discounted cost
criterion [7], [10], and under some additional assumptions, in
the case of the average reward problem (see e.g. [6]). The
proof in our case follows the same steps. The only step that
is not direct is the continuity of the performance measures in
the stationary policies.

We first note that this Markov game is absorbing: it has
an absorbing set that is reached under any multi-policy with
probability 1 and the expected time to hit the set is uniformly
bounded over all policies. (For more details, see discussion in
the Concluding Section.) The required continuity then follows
known results (see e.g. [1]).

Remark 1. The structure of our problem implies that a direct
M -step recursion can be used to obtain the solution of the
fixed point equation. Indeed, for any j = 0, 1, 2, ...,M − 1 we
defineMj to be the set of states x ∈ X for which

∑N
k=1 xk =

j. The backward recuresion goes from m = M down to m =
0. At step j, (7) is solved for all states inMj . The right hand
side of (7) can be interpreted as the ith row in a N player
matrix game. In (7), the value and an equilibrium for a state
x ∈Mj are given in terms of the value at the N states x+ej ,
j = 1, ..., N , which are obtained at the previous step of the
recursion.

IV. CONCLUDING COMMENTS

We have formulated a problem of competition between
content sources as a stochastic game model. Our goal has been
to present a framework for studying tradeoffs between energy
cost and expiration probabilities.

The first cost is additive in time. We call it a ”risk neutral”
cost. The second cost has the form of the expectation of an
exponential function of the state. In a previous work [2], we
studied a similar tradeoff, but instead of representing energy
spending as a cost, we modeled the remaining available energy
in the mobile’s battery as part of the state of the system.
Thus the cost for transmitting at a higher power is related
to the fact that the battery becomes empty sooner. In [2]
we showed that one can transform that cost into one with
the form of an expectation of the exponential of an integral
cost. This form had previously been studied in the literature
and is called a risk sensitive cost [11]. In this paper we
have avoided to use this transformation since we already
have another component of the cost which is risk neutral, in
contrast with the situation in [2]. Solving the case of such
mixed costs is a challenging problem that we have not been
able to solve yet. Our formulation in this paper allows us to
compute the stationary equilibrium using a recursive procedure
which is based on an additive dynamic programming approach.
In contrast, in [2], the risk sensitive cost gave rise to a
multiplicative type dynamic programming approach.
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