
Fairness in MIMD Congestion Control Algorithms
E. Altman K. E. Avrachenkov B. J. Prabhu

INRIA Sophia Antipolis
2004 route des lucioles, 06902 Sophia Antipolis, France.
Email: {altman, k.avrachenkov, bprabhu}@sophia.inria.fr

Abstract— The Mulitplicative Increase Multiplicative Decrease
(MIMD) congestion control algorithm in the form of Scalable
TCP has been proposed for high speed networks. We study
fairness among sessions sharing a common bottleneck link,
where one or more sessions use the MIMD algorithm. Losses,
or congestion signals, occur when the capacity is reached but
could also be initiated before that. Both synchronous as well as
asynchronous losses are considered. In the asynchronous case,
only one session suffers a loss at a loss instant. Two models
are then considered to determine which source looses a packet:
a rate dependent model in which the packet loss probability of
a session is proportional to its rate at the congestion instant,
and the independent loss rate model. We first study how two
MIMD sessions share the capacity in the presence of general
combinations of synchronous and asynchronous losses. We show
that, in the presence of rate dependent losses, the capacity is fairly
shared whereas rate independent losses provide high unfairness.
We then study inter protocol fairness: how the capacity is shared
in the presence of synchronous losses among sessions some
of which use additive increase multiplicative decrease (AIMD)
protocols whereas the others use MIMD protocols.

I. INTRODUCTION

In the Internet, data transfer protocols use various conges-
tion control algorithms to achieve rate control. Until now the
AIMD algorithm was found to provide satisfactory perfor-
mance. However, in high speed networks , the additive increase
in the sender’s rate may lead to inefficient link utilization
[1]. To overcome this drawback in high speed networks,
the MIMD algorithm has been proposed as an alternative
to the AIMD algorithm (e.g., [2], [3]). Therefore, in the
future, situations may arise when sessions using these two
algorithms would compete for the same network resource. The
share of the capacity obtained by each of these sessions will
depend on the various parameters specific to the algorithms.
The sharing of a resource gives rise to the question of how
fairly is this resource shared among the sessions. Fairness
issues have been addressed in several previous works. In [4],
the authors considered a class of rate control algorithms in
the presence of synchronous control signals. They showed
that the AIMD algorithm converged to fairness whereas the
MIMD algorithm did not converge. In [5], the author studied
the MIMD algorithm under a more realistic assumption of
rate dependent losses and argued that MIMD algorithm also
converges to fairness. In [6] the convergence to fairness of
the different flavours of TCP was studied both analytically
and using simulations. The monotonic convergence to fairness
for algorithms in rate-based TCP-friendly applications was
studied in [7]. In [8], the authors remarked that for sessions

with different round trip times (RTT), Scalable TCP (which
uses MIMD algorithm) is extremely unfair. They proposed a
new algorithm which improved the efficiency as well as the
fairness.

Most of the congestion control algorithms rely on binary
feedback (i.e., presence or absence of congestion) from the
network to adapt the sending rate and reduce congestion.
The presence of congestion in the network is signalled by
either dropping or marking packets. Congestion signals occur
not only when the link capacity is achieved but could also
be initiated before that. For example, a congestion signal
is sent as a consequence of a packet drop when the link
buffer is full (i.e., when the capacity is achieved), or when
a router using AQM schemes such as RED or ECN decides to
respectively drop or mark a packet (i.e., a congestion signal
is initiated before the capacity is achieved). In the rest of the
paper, we shall use the terms losses and congestion signals
interchangeably. The term losses does not only refer to packet
drops. It is used to describe a decrease in the sending rate as
a result of a congestion signal which could be either due to
a packet drop or due to a packet mark. Losses are said to be
synchronous when all the sessions sharing the link suffer a loss
at the same time instant. In the asynchronous case, only one
session suffers a loss. We use two models to determine which
of the sources receives the congestion signal: (1) the rate
dependent loss model in which the loss probability of a session
is proportional to its rate at the congestion instant [9], and (2)
the independent loss rate model, in which probability with
which a congestion signal is sent to a session is independent
of the session’s rate.

The rest of the paper is organised as follows. In Section
II we present a brief overview of the model and mention
the contribution of this work. In the first part of this paper
(Sections III and IV), we study how two MIMD sessions (with
either the same RTT or with different RTTs) share the capacity
in the presence of general combinations of synchronous and
asynchronous losses. We show that, in the presence of rate
dependent losses, the capacity is fairly shared between the two
sessions whereas rate independent asynchronous losses result
in high unfairness even when sessions are symmetric. In the
second part of this paper (Section V and VI), we consider a
heterogenous scenario with synchronous losses only. We study
how the capacity is shared among several sessions, each of
which uses either the AIMD or the MIMD algorithm. We show
that the AIMD session obtains a share which is independent
of the link capacity, and that the rest of the capacity is utilized

by the MIMD session. Finally, we present the conclusions in
Section VII.

II. OVERVIEW

We use the following notation. A function from R to R will
be denoted using sans serif font, such as x(). For example, x(t)
denotes a function defined for all real values of t. A function
from Z to R will be denoted using italic fonts as x(). Usually,
x(n) would be the value of x(t) at the nth sampling instant. A
vector a will denote a row vector. Its transpose will be denoted
by a′. Also, we use the term session to mean an instance of
a given algorithm. The term user will be emplyed to describe
someone who initiates one or more instances (i.e., sessions)
of the same algorithm.

The following model is mainly based on the model in [4].
Consider two flows which share a link of capacity C. Let
x(t) ≡ (x1(t), x2(t)) be the rate vector at time t, where x1(t)
and x2(t) denote the instantaneous rates of session 1 and
of session 2, respectively. The set of feasible rate vectors,
{(x1, x2)|x1 +x2 ≤ C; x1, x2 ≥ 0} is shown in Fig. 1. The line

x2

x1

Fair
ne

ss
lin

e

Efficiency line

Fig. 1. The rate allocation vector

x1(t)+x2(t) = C is called the efficiency line. On this line the
available capacity is fully utilized. The line x1(t) = x2(t) is
called the fairness line. On this line both the sessions obtain
the same rates, and hence the bandwidth sharing is said to
be fair. The sessions react to control signals by adapting their
rates in the following way.

x(n+ 1) =
{
bIx(n) + aI , for an increase signal,
bDx(n) + aD, for a decrease signal,

where aI , bI , aD and bD are constants and the sampling
is done just after the reception of control signals. In TCP
Reno, for example, arrival of ACKs can be considered as
increase signals, and arrival of duplicated ACKs or a time-
out is considered to be a decrease signal. In [4] it has been
argued that for convergence to the fairness line, the increase
algorithm has to be multiplicative and additive (i.e., aI > 0
and bI ≥ 1) and the decrease algorithm has to be multiplicative
(bD < 1 and aD = 0). The authors assume that the control
signals are synchronous for both the sessions. That is, both the
sessions receive control signals at the same instant and both of

them either increase, or decrease their rates simultaneously1.
Indeed, under these two assumptions, the rate vector for the
MIMD algorithm stays on a line joining the origin to the
initial rate vector, and hence does not converge to fairness. In
[5], the author argues that under a more realistic assumption
of rate dependent congestion signals, the MIMD algorithm
also converges to the fairness line. In the first part of the
paper, we first show that, for sessions with the same RTT, the
MIMD algorithm converges to fairness when the congestion
signals are asynchronous and rate dependent. We obtain the
expressions for the long term fairness index, the rate of
convergence to the steady state distribution and the mean time
to achieve fairness. In [8] it was argued that for sessions
with different RTTs, Scalable TCP (or, the MIMD algorithm)
is extremely unfair. We show that, even for sessions with
different RTTs, a certain degree of fairness can be achieved
by introducing sufficient number of rate dependent losses. We
then show, through simulations, that the results obtained for
two sessions also hold for n sessions.

In the second part of this paper, we consider several sessions
sharing a common link on which losses are due to buffer
overflow and are, therefore, synchronous. In [6] such a sce-
nario was considered for sessions using the AIMD algorithm
only. In [7], fairness and packet-loss scalability analysis and
simulations for session using more general binomial algo-
rithms was provided . In [8], fairness issues were considered
for high-speed networks. The RTT-fairness was compared for
different proposals of TCP in high-speed networks. Here,
too, the fairness was studied among sessions using the same
algorithm. However, we consider a heterogeneous scenario
where different sessions may use different algorithms. This
type of scenarios may be of interest in the future when, for
example, sessions using Scalable TCP and standard TCP will
share the same link. We analyze the equilibrium throughput
and the window size of the sessions and compare them with
simulations.

As was pointed out in [7], the window-based notation can be
converted to a rate-based notation using the relation x(n) =
w(n)MTU

RTT , where w(n) is the window at the nth sampling
instant, M is the packet size in bits, and RTT is the round
trip time in seconds. We shall use the rate-based notation in
the first part of the paper, and the window-based notation in
the second part of the paper.

III. FAIRNESS IN MIMD SESSIONS (EQUAL RTTS)

We consider two sessions which share a link of capacity C.
At time t, the rates obtained by the two sessions are denoted
by x(t) ≡ (x1(t), x2(t)). At each control instant, the controller
sends a control signal to each source. This control signal either
informs on no congestion (a 0 signal) or of congestion (a 1
signal). In the absence of congestion, the sources increase their

1These assumptions are validated in [10] by simulations for the AIMD
versions of TCP, with approximately the same RTTs, and we validate them
later for the MIMD and the AIMD versions of TCP (see, e.g., Fig. 5 and its
discussion).

TABLE I

REACTION TO CONTROL SIGNALS

control vector x1(tj+) x2(tj+)

(0, 0) x1(tj) x2(tj)
(0, 1) x1(tj) β · x(tj) } async. cong. signal
(1, 0) β · x1(tj) x2(tj)
(1, 1) β · x1(tj) β · x2(tj) sync. cong. signal

rate exponentially, i.e.,

xk(t+ τ) = ατ/τ0 · xk(t), k = 1, 2,

where τ0 is the time constant (for example, the RTT) for
the sessions, and α > 1 is the increase factor. The above
formulation is a continuous time equivalent of a multiplicative
algorithm in which, for every RTT without congestion signals,
the sender multiplies the window by a factor of α. This can be
seen by substituting t = nτ0. We assume that the two sources
receive the control signals at the same instant. However, unlike
the model in [4], the two sources can receive different control
signals. That is, a congestion signal need not be sent to both
the sources at the same instant. Hence, the congestion signals
could be asynchronous. Let β < 1 be the decrease factor. Let
the jth control signal be received at time tj . Then, the four
possibilities for the rate vector, x(tj+), just after tj , are given
in Table I.

The source continues with the increase algorithm on the
reception of 0 signal. On the other hand, when a source
receives a 1 signal, it instantaneously reduces its rate. We
assume that whenever the link capacity is attained then either
a synchronous or an asynchronous loss occurs. Furthermore,
asynchronous losses may also occur before attaining the
capacity.

A. Instantaneous throughput ratio process

We now study the instantaneous throughput ratio process. It
is shown to be a Markov process with a countable state space;
we shall show that this process could be stable or unstable
depending on the asynchronous loss process.

In Figure 2(a), we show the geometric interpretation of the
response to the different control signals. Let θ(t) be the slope
of the line joining the origin and the current vector, x(t). That
is,

θ(t) =
x2(t)
x1(t)

.

If there are no congestion signals in the interval (t, t+τ) then
the rate vector at time (t+τ) will be ατ/τ0(x1(t), x2(t)). This
vector also lies along the line with slope θ(t). If a (1, 1) signal
was generated at t, then the vector after the response, x(t+),
is β(x1(t−), x2(t−)). This vector also lies along the line with
slope θ(t). Therefore, the rate vector remains along a line
with the same slope as long as the control vector is either
(0, 0) or (1, 1), or there are no control signals. However, it
can be seen that the rate vector moves to the line with slope
θ(t)/β when a control signal of (1, 0) is generated. Similarly,
the rate vector moves to the line with slope θ(t) · β when a

slope =

slope =

(0,1)

(1,0) slope =

1

2

x

x

θβ
θ

θ/β

(a) Rate vector, x

β−(i+1)

= 1, i = 0

(i−1)

(i+1)

λ

λ

λ

λ
λ

λ

−(i−1)
λ β

β

β

−i

i
β

β

1

2

x

x

(b) State space, S, of x

Fig. 2. Geometric interpretation.

control vector of (0, 1) is generated. Therefore, if there were
only synchronous congestion signals (i.e., (1,1) signals) then
θ(t) = θ(0) for all t, and any initial unfair sharing would
remain forever. Therefore, if MIMD protocols are used then
it is essential to provide a stream of asynchronous congestion
signals using, for example, some queue management scheme.

Let tn denote the time instant when the nth control signal
arrives. Let θ(n) = θ(tn+) be the slope of the rate vector
sampled just after the nth control signal. From Fig. 2(a), it can
be seen that, given an initial slope of θ(0), the slope of the line
along which the rate vector lies just after the nth control signal
can be written as θ(n) = θ(0)βi for some i ∈ Z, where Z is
the set of all integers. For any given initial slope, θ(0), we can
find a unique λ ∈ (β1/2, β−1/2) and j ∈ Z such that θ(0) can
be expressed in terms of λ as θ(0) = λβj . For convenience,
we will define θn in terms of λ. The state space of θ(n) is a
countably infinite state space defined by

S = {λβi,∀i ∈ Z}.
A geometric interpretation of S is shown in Fig. 2(b). The
line λ = 1, i = 0 is the fairness line. The continuous time
increase and instantaneous decrease of the algorithm allows
us to obtain the above formulation.

In the rest of this section, we assume that λ = 1. This
assumption is equivalent to saying that the initial vector has
a slope of βj for some j ∈ Z. If λ is not equal to 1 then,
by any combination of control signals, the instantaneous rate

vector can only get close to the fairness line by getting to λ.
The rate vector cannot, however, be on the fairness line.

Let {s(t) ∈ Z} be the process which indicates that the rate
vector at time t lies on a line with slope βs(t). We embed this
process at instants of arrival of the control signals. Then, the
sampled process s(n) = s(tn+). We will show that s(n) is a
Markov chain, and it is stable or unstable depending upon the
asynchronous loss process.

B. Rate dependent loss model

Next, we consider the rate dependent loss model in which
the loss probability of a session is proportional to the session’s
rate at the congestion instant. In particular, if at the nth control
instant a congestion signal is sent, then we assume that the
probability of loss for session k is given by xk(n)

x1(n)+x2(n) .
Proposition 3.1: {sn, n ≥ 0}, is a discrete state-space

Markov chain with transition probabilities given by

sn+1|(sn = i) =

i+ 1 w.p. ε β|i|

1+β|i| ,

i− 1 w.p. ε 1
1+β|i| , i > 0,

i w.p. 1 − ε,

sn+1|(sn = 0) =

+1 w.p. ε/2,
−1 w.p. ε/2, i = 0,
0 w.p. 1 − ε,

(1)

sn+1|(sn = i) =

i− 1 w.p. ε β|i|

1+β|i| ,

i+ 1 w.p. ε 1
1+β|i| , i < 0.

i w.p. 1 − ε,

Remark 3.1: The probability of asynchronous loss at each
control instant is ε. The asynchronous loss could be due to
buffer overflow, some queue management scheme, or packet
loss because of an erroneous transmission channel. In the
absence of asynchronous losses (i.e., when there are only
increase signals and synchronous losses), the instantaneous
throughput ratio remains the same. Also, we model the instan-
taneous throughput ratio, and not the instantaneous through-
puts themselves. Therefore, the capacity of the link does not
appear in the calculations.

We are interested in finding the steady state distribution of
the Markov chain, and the mean first passage time to the state
i = 0 starting from a random state. The state i = 0 corresponds
to the fairness line. Therefore, the mean first passage time from
a random state to the state i = 0 gives an indication of the
mean time before the rate vector reaches the fairness line. In
general, the first passage time to state i = 0 gives the first
passage time to λ. If λ �= 1, sn cannot be on the fairness
line, and so the above performance measure corresponds to
first passage time to the state closest to the fairness line for
this particular process.

The fairness index at the nth control instant, Fn, is defined
as follows

Fn =
1
2

(x1(n) + x2(n))2

x1(n)2 + x2(n)2
.

We can write Fn in terms of βi as follows

Fn =
1
2

∞∑
i=−∞

P (sn = i)
(1 + βi)2

1 + β2i
.

The long term fairness index, F∞, can be obtained by taking
the limit n → ∞. We assume that the process sn converges
to its stationary limit, s∞.2 Then, F∞ can also be expressed
as

F∞ =
1
2

+
∞∑

i=−∞
P (s∞ = i)

βi

1 + β2i
. (2)

Stability. The existence of the limiting distribution, s∞, can
be ensured by proving that the Markov chain s is positive
recurrent. A Markov chain is positive recurrent if it satisfies
the Foster’s criterion [11] which is stated below.

Theorem 3.1 (Foster): An irreducible Markov chain s, on
a countable state Z, is ergodic if and only if there exists a
positive function f(α), α ∈ Z, a number µ > 0 and a finite
set A such that

E[f(sn+1) − f(sn)|sn = i] ≤ −µ, i /∈ A, (3a)

E[f(sn+1)|sn = i] <∞, i ∈ A. (3b)

Let f(i) = |i|, i ∈ Z and A = {0}. Let ∆fi be define as
∆fi := E[f(sn+1) − f(sn)|sn = i]. First, we show that
condition (3a) is satisfied. For i �= 0, from (1), we have

∆fi = ε
β|i|

1 + β|i| (|i| + 1) + ε

(
1 − β|i|

1 + β|i|

)
(|i| − 1)

+(1 − ε)|i| − |i|
= ε

(
2

β|i|

1 + β|i| − 1
)

≤ −ε
(

1 − 2
β

1 + β

)
.

which is strictly negative for any β ∈ [0, 1). Therefore,
condition (3a) is satisfied. To check for (3b), for i = 0 we
have

E[f(sn+1)|sn = i] =
ε

2
| − 1| + ε

2
|1| = ε <∞.

Therefore, the Markov chain s satisfies the conditions of
Theorem 3.1 and, hence, is positive recurrent.

C. The independent loss rate model

If the session to which a congestion signal is sent is inde-
pendent of the rates then the transition probabilities become

sn+1|(sn = i) =

i− 1 w.p. ε
2 ,

i+ 1 w.p. ε
2 , ∀i.

i w.p. 1 − ε,
(4)

We show that this results in instability. The Markov chain s is
symmetric on Z and, therefore, is null recurrent. Since s is null

2We establish this later. In cases that the Markov chain is null recurrent
(Subsection III-C) we shall understand the steady state distribution to corre-
spond to the compactification of the state space in which −∞ and ∞ are
added to the state space and each will have a stationary probability of 0.5.

recurrent, and the discrete state space has two accumulation
points, (C, 0) and (0, C), on the line x1 + x2 = C, the
probability of being in any small vicinity of each point is 1

2 .
The mean time to go from one extreme to another will be
∞ and, therefore, one connection will get the whole capacity.
This suggests that rate independent losses are not sufficient to
improve the fairness whereas rate dependent losses can indeed
provide a fair share of the capacity.

In the rest of this section, we thus focus on the rate
dependent loss model.

D. Steady state distribution

The Markov chain s is positive recurrent, and, therefore,
the steady state distribution P (s∞ = i) exists. Since sn is
symmetric about the state 0, we can consider a Markov chain,
{yn, n ≥ 0}, on the state space {0, 1, 2, ...}, in order to obtain
the steady state distribution of s. The transition probabilities
at the nth control instant for this random walk are given by

yn+1|(yn = i) =

i+ 1 w.p. εqi,
i− 1 w.p. ε(1 − qi),
i w.p. 1 − ε,

i > 0,

yn+1|(yn = i) =
{
i+ 1 w.p. ε,
i w.p. 1 − ε,

i = 0,

where qi = βi

1+βi . Let y∞ denote the steady state process to
which yn converges. Let pi denote the probability of y∞ being
in state i. Then

Proposition 3.2:

pi = p0

i−1∏
j=0

qj
1 − qj+1

. (5)

p0 can be obtained from the equation
∑∞

i=0 pi = 1.
Proof: Let pn = 0, ∀n < 0. The balance equation for

this walk can be written as

pi = (1 − ε)pi + εqi−1pi−1 + ε(1 − qi+1)pi+1

= qi−1pi−1 + (1 − qi+1)pi+1 (6)

These are the balance equations for a birth-death process with
state dependent transition probabilities. The solution for this
type of process is known to be of the form in (5) [12].
From (5), pi is given by

pi = p0β
i(i−1)/2(1 + βi).

Since βi → 0 as i→ ∞, the tail of pi can be seen to decrease
as βi2 which is a very fast decrease. In particular, this means
that the process is around the fairness line most of the time.

The steady state distribution of s∞ can be obtained from
the following relations

P (s∞ = i) =
{

1
2P (y∞ = |i|), for i �= 0,
P (y∞ = |i|), for i = 0.

The long term fairness index, F∞, can be computed numeri-
cally using (2) and (5). In Table II we give the fairness index
for different value of β.

TABLE II

FAIRNESS INDEX FOR DIFFERENT VALUES OF β .

β 0.95 0.875 0.75 0.6 0.5 0.1

F∞ 0.987 0.97 0.942 0.91 0.88 0.777

E. Convergence to steady state distribution

The second largest eigenvalue of a matrix gives the rate
of convergence to the steady state distribution. Therefore,
we can get an indication of the rate of convergence of the
Markov chain y by looking at the eigenvalues of its transition
probability matrix, P . P can be written as

P =

0 1 2 . . .

0 1 − ε ε 0 . . .
1 ε(1 − q1) 1 − ε εq1 . . .
2 0 ε(1 − q2) 1 − ε . . .
...

...
...

...
. . .

. (7)

Let ζi denote the ith eigenvalue of P such that ζi ≥ ζj for
i < j, and ζ = 1. We can obtain the following lower bound
on ζi.

Proposition 3.3: For i > 0, 1 − ε ≤ ζi < 1.
Proof: Since yn is irreducible, the multiplicity of eigen-

values at 1 is 1. Therefore, ζi < 1 for i > 0.
We can rewrite P as

P = (1 − ε)I + εA. (8)

where I is the identity matrix and A is a transition matrix of a
pure birth-death process with up transition probability qi and
down transition probability 1−qi. A is a stochastic matrix and,
therefore, all its eigenvalues belong to the interval [0, 1]. Let
µi be the ith eigenvalue of A and let vi be the corresponding
left eigenvector. Then, from (8) we get

viP = (1 − ε)vi + εviA = ((1 − ε) + εµi)vi.

Therefore, vi is also the left eigenvector of P , and the
corresponding eigenvalue is (1 − ε) + εµi. Since µi ≥ 0, we
get the inequality ζi ≥ 1 − ε.
Therefore, 1−ε gives a lower bound on the rate of convergence
of the Markov chain to the steady state.

F. Mean first passage time

In this section we compute the mean first passage time to
the state 0 starting from a random state. This gives us an
estimate of the first time the rate vector reaches the fairness
line starting from a given initial random state. The Markov
chain s is a birth-death process which is symmetric about the
state 0. If the initial state is positive, the Markov chain will stay
in the set of positive states before visiting state 0. Similarly, if
the initial state is negative, the Markov chain will stay in the
set of negative states before visiting state 0. Therefore, we can
obtain the mean first passage time to state 0 for s by obtaining
the mean first passage time to state 0 for y.

Let p = (p0 p1 . . .) be the steady state probability vector of
P , the transition probability matrix of y, as given by (7). Its ith

component, pi, is given by Eqn. (5). Let m = (m1 m2 . . .)
denote the mean first passage time vector with mj , j ≥ 1
denoting the mean first passage time to the state 0 starting
from state j.

Proposition 3.4: mi, i ≥ 2 can be obtained from the fol-
lowing recursion: m0 = 0,

m1 =
1
ε

1 − p0

p0
, (9)

mi+1 =
εmi − ε 1

1+βimi−1 − 1

ε βi

1+βi

. (10)

Proof: Let P1 be the transition probability matrix con-
ditioned on y not being in state 0. We can rewrite P as

P =

(0 ...

0 1 − ε a
... b P1

)
, (11)

where the vector a is given as a =
(
ε 0 . . .

)
and the

vector b is defined as b =
(

1 − β 0 . . .
)′

.
The vector m satisfies the equation [13]

(I − P1)m′ = 1′, (12)

where 1 is vector of ones. Since P1 is a tridiagonal matrix,
we can rewrite (12) as

mi+1 =
εmi − ε 1

1+βimi−1 − 1

ε βi

1+βi

, i ≥ 2, (13)

with the definition m0 = 0.
Let the vector r be defined as r =

(
p1 p2 . . .

)
. Since

p is the steady state probability vector of P , we have pP = p.
Equivalently, using (11),

(p0 r)
(

1 − ε a
b P1

)
= (p0 r). (14)

Solving for r, we obtain

r(I − P1) = p0 · a.
Multiplying the above equation by m′, and substituting for
(I − P1) ·m′ from (12), we obtain

r · 1′ = p0 · a ·m′.

Substituting r · 1′ = 1 − p0 in the above equation, we obtain

1 − p0

p0
= a ·m′.

The vector a has ε in its first column and 0 elsewhere.
Therefore, the above equation reduces to (9). From (13) and
(9) we can now obtain the recursion in (13).
We note that the steady state probabilities are independent of ε
whereas the mean first passage times are inversely proportional
to ε.

IV. FAIRNESS IN MIMD SESSIONS (UNEQUAL RTTS)

In this section we assume that the two sessions have
different time constants. Let τ1 and τ2 be the time constants
of session 1 and of session 2, respectively. The rate evolution
for session i in the absence of control signals can be written
as

xi(t+ τ) = xi(t)ατ/τi , i = 1, 2.

We now make the following transformation

z(t) = log
[
x2(t)
x1(t)

]
. (15)

We consider again both synchronous losses as well as asyn-
chronous ones. In the absence of asynchronous losses, the
evolution of z(t) becomes

z(t+ τ) = z(t) + γτ, (16)

where γ = log[α]
(

1
τ2

− 1
τ1

)
. If a control signal arrives at t,

then z(t+) can be written as

z(t+) =

z(t), signal is either (0, 0) or (1, 1),
z(t) + log[β], signal is (0,1),
z(t) − log[β], signal is (1,0).

(17)
The evolution in time of z is shown in Figure 3. Here we

{

z(t)

slope =

time

 z0

log[β]

na

γ

Fig. 3. Evolution in time of z(t). τ2 < τ1.

assume that γ is positive, i.e., τ2 < τ1. From (16) and (17), it
can be seen that, if there were only synchronous signals (i.e.,
only (0,0) and (1,1) signals) then there would be a drift in time
towards +∞. This suggests that the rate for session 1 would
approach 0. Similarly, if γ were to be negative, i.e., τ2 > τ1,
there would be a drift towards −∞ suggesting that the rate
for session 2 would approach 0. It can also be seen that if the
slope were to be 0, i.e., τ1 were to be equal to τ2, the dotted
lines would be parallel to the time axis. In this case z(t) would
remain constant in the absence of asynchronous losses which
was also observed in the previous section. We conclude that
some buffer management scheme that creates rate dependent
losses is necessary in order to have some fairness.

We therefore assume in the sequel that some buffer man-
agement scheme occasionally creates rate dependent losses.
Let {an, n ≥ 0} denote the time between the nth and the
(n+ 1)th asynchronous congestion signals. The process an is

assumed to be i.i.d. Let zn = z(tn) be the process embedded
just before the arrival of an asynchronous control signal. Using
an argument similar to one in section III, the probability
that session i receives the nth such signal can be written as

1
exp(zn)+1 for session 1, and exp(zn)

exp(zn)+1 for session 2.
Proposition 4.1: The process {zn, n ≥ 0} is a Markov

chain with state space R, and it follows the recursive equation

zn+1 = zn + γan + cn, (18)

where cn is defined as

cn =

{ − log[β] w.p. 1
exp(zn)+1 ,

+ log[β] w.p. exp(zn)
exp(zn)+1 .

A. Stability

We now analyze the Markov chain zn and obtain a sufficient
condition for it to be positive recurrent, i.e., a condition under
which the process z(t) does not have a drift towards ∞ as
t→ ∞. Let un = γan, and let U(·) and υ be the distribution
function and the mean, respectively, of un. We assume that
the density function, dU(·)

du , of u is a non-increasing function.
Let b = − log[β]. The number b is positive since β is less than
unity.

Proposition 4.2: The Markov chain z defined by (18) is
positive recurrent if

υ < b. (19)
Proof: To show the positive recurrence of the Markov

chain we use the following theorem from [14].
Theorem 4.1 ([14]): For some “small”3 set W ∈ B(R),

some constant h < ∞, µ > 0, and an extended real-valued
function V : R → [0,∞], z is stable if

∆V (x) :=
∫

R

P (x, dy)V (y)− V (x) ≤ −µ+ h1W (x), (20)

where P (x, ·) is the one-step transition function of z.
To check for the drift condition of this theorem, we consider

V (y) = |y|, and the set W = [−b, b]. The LHS of (20)
becomes

∆V (x) + |x| =
∫

y∈R

1
1 + ex

|y|dU(y − (x+ b))

+
∫

y∈R

ex

1 + ex
|y|dU(y − (x− b))

=
∫ ∞

y=(x+b)

1
1 + ex

|y|dU(y − (x+ b))

+
∫ ∞

y=(x−b)

ex

1 + ex
|y|dU(y − (x− b))

3 A set W is called a “small” set if there exists a measure φ, φ(R) > 0,
such that

P (x,A) ≥ φ(A), x ∈ C,A ∈ B(R).

≤
∫ ∞

0

1
1 + ex

(|y| + |x+ b|)dU(y))

+
∫ ∞

0

ex

1 + ex
(|y| + |x− b|)dU(y)

∆V (x) + |x| ≤ υ +
∫ ∞

0

1
1 + ex

|x+ b|dU(y)

+
∫ ∞

0

ex

1 + ex
|x− b|dU(y). (21)

For x ∈W , (21) can be rewritten as

∆V (x) + |x| ≤ υ +
∫ ∞

0

1
1 + ex

(|x| + |b|)dU(y)

+
∫ ∞

0

ex

1 + ex
(|x| + |b|)dU(y)

∆V (x) ≤ υ + b <∞.

For x ∈W c, (21) can be rewritten as

∆V (x) + |x| ≤ υ +
∫ ∞

0

1
1 + e|x|

(|x| + b)dU(y)

+
∫ ∞

0

e|x|

1 + e|x|
(|x| − b)dU(y)

∆V (x) ≤ υ +
1 − e|x|

1 + e|x|
b.

Let x∗ be the value of x for which

∆V (x) ≤ υ +
1 − ex

1 + ex
b = −µ.

Then, x∗ = log b+υ+µ
b−(υ+µ) . For b > υ + µ, there exits a x∗ ∈ R

for which the ∆V (x) ≤ −µ. If x∗ is less than b then the drift
condition is satisfied for the W = [−b, b]. However, if x∗ is
greater than b then we can consider the set W = [−b, x∗].
Hence, for W = [−b,max(b, x∗)], the drift condition (20) is
satisfied. It follows from Lemma 4.1 that W is indeed a small
set.

Lemma 4.1: For any d such that −b ≤ d < ∞, the set
W = [−b, d] is a “small” set.

Proof: For x ∈W ,

P (x,A) =
1

1 + ex

∫
y∈A

dU(y − (x+ b))

+
ex

1 + ex

∫
y∈A

dU(y − (x− b))

≥ ex

1 + ex

∫
y∈A

dU(y + b− x). (22)

Since dU(u)
du was assumed to be a non increasing function in

u,
∫

y∈A
dU(y+ b− x) is non decreasing function in x. Also,

exp(x)
1+exp(x) is an increasing function in x. Since x ≥ −b, we can
rewrite (22) as

P (x,A) ≥ e−b

1 + e−b

∫
y∈A

dU(y + 2b)

≥ φ(A), (23)

where φ(A) := exp(−b)
1+exp(−b)

∫
y∈A

dU(y + 2b). Since there exists

a measure φ such that P (x,A) ≥ φ(A), x ∈W,A ∈ B(R),
a closed and bounded set W = [−b, d] is a small set.
Since W is a “small set” when b > υ, from Theorem 4.1 we
can conclude that, for b > υ, the Markov chain z is positive
recurrent.
We note that b > υ is a sufficient condition for positive
recurrence. Let 1

ω be the mean time between losses. Then
1
ω = υ

γ . From Prop. 4.2, for z to be positive recurrent

ω >
γ

b
. (24)

Therefore, to achieve some fairness, the arrival rate of the
losses process has to be greater than γ

b .

B. Simulation results

In this subsection we present the results of simulations. Our
objective is to verify the analytical result obtained in Prop. 4.1
which noted that sufficient number of asynchronous losses
are required so that sessions with different RTTs can share
the capacity fairly. In the simulation scenario, nine Scalable
TCP sessions shared a link of 200Mbps. Sessions 1,2 and
3 had a RTT of 50ms. Sessions 4,5 and 6 had a RTT of
90ms, and sessions 7,8 and 9 had a RTT of 140ms. The
simulations were performed using ns-2(version 2.26)[15]. In
Fig. 4, the window size is plotted as a function of time for
different values of ε (i.e., packet drop probability). We note
that ε = 0 corresponds to only congestion losses which are
seen to be not always synchronous. Therefore, in Fig. 4(a)
there are asynchronous as well as synchronous losses even
though ε = 0. However, during periods of synchronous losses
(which have been pointed out in the figure) there is short-term
unfairness. Even though there are asynchrounous losses due
to congestion, the window sizes of the sessions with larger
RTTs go to 0. We now induce further asynchronous losses by
dropping each packet with probability ε �= 0. In Figs. 4(b)
and 4(c) there is a marked improvement in the throughput
obtained by sessions with larger RTTs as the loss probability
is increased. For small loss probability, there is still some
unfairness between sessions with different RTTs. However, for
sessions with RTT of 50ms, there is no short-term unfairness
as was observed when there were no induced asynchronous
losses. For a larger loss probability (i.e., ε = 0.0003), sessions
share the capacity fairly. This confirms the analytical result
which stated that the fairness in MIMD sessions with different
RTTs can be achieved by introducing sufficient asynchronous
losses. Let η1, η2 and η3 be the total throughput of sessions

TABLE III

THROUGHPUT FOR EACH RTT CLASS AND OVERALL EFFICIENCY

ε η1(Mbps) η2(Mbps) η3(Mbps) (η1 + η2 + η3)/C

0 178 2.8 1 0.91
0.00015 148 25.5 7.14 0.905
0.0003 101 48 28.4 0.89

with RTT of 50ms, 90ms and 140ms, respectively. In Table III,

 0

 100

 200

 300

 400

 500

 600

 700

 0 50 100 150 200

W
in

d
o
w

 s
iz

e

Time(s)

RTT2

RTT3

synchronized losses

MIMD1
MIMD2
MIMD3
MIMD4
MIMD5
MIMD6
MIMD7
MIMD8
MIMD9

(a) ε = 0.

 0

 100

 200

 300

 400

 500

 600

 700

 0 50 100 150 200 250 300

W
in

d
o
w

 s
iz

e

Time(s)

RTT2

RTT3

MIMD1
MIMD2
MIMD3
MIMD4
MIMD5
MIMD6
MIMD7
MIMD8
MIMD9

(b) ε = 0.00015.

 0

 100

 200

 300

 400

 500

 600

 0 50 100 150 200 250 300

W
in

d
o
w

 s
iz

e

Time(s)

MIMD1
MIMD2
MIMD3
MIMD4
MIMD5
MIMD6
MIMD7
MIMD8
MIMD9

(c) ε = 0.0003.

Fig. 4. Window evolution MIMD sessions. RTT1 = 50ms. RTT2 = 90ms.
RTT3 = 140ms.

the values of throughput and the overall efficiency are given.
We note that, for ε = 0.0003, the ratio of the throughputs of
two different classes, ηi/ηj , are almost in proportion of the
respective RTTs. Therefore, we can say that a certain degree
of fairness has been acheived at the cost of marginal decrease
in efficiency.

V. INTER PROTOCOL FAIRNESS (SAME RTT)

In the second part of this paper, we study the fairness issue
when sessions using two different congestion control algo-
rithms share a common link, and the losses are synchronous.
Recently Scalable TCP, which uses the MIMD algorithm, has
been proposed as an enhancement for TCP in high-speed
networks. Situations may, therefore, arise in which a user
with Scalable TCP shares a link with a user with standard
TCP. Specifically, we study the equilibrium behaviour of the

window size, and the throughput obtained by a session of each
algorithm at equilibrium in the presence of synchronous losses
only. We also look at conditions under which a user of one
algorithm can obtain a better throughput than a user of the
other algorithm. Previous work (e.g., [6], [8]) mainly studied
the behaviour of sessions using the same algorithm.

In this section, we assume that each session has the same
RTT, τ . As mentioned in Section II, window-based notation
is equivalent to rate-based notation. In the rest of this paper,
we use the window-based notation since we are interested in
obtaining the equilibrium window sizes for the sessions.

A. System Model

Consider l sessions which share a link of capacity C bits/s.
Each session transmits data using packets of size M bits.
Let Λ be the bandwidth-delay product (BDP) of the network.
We assume that each session has the same RTT, τ , and that
the RTT is mainly determined by the propagation delay and,
hence, can be considered to be a constant.

Let x(t) = (x1(t) x2(t) . . . xl(t)) denote the vector of
window sizes of the k sessions at time t. A synchronous loss
(i.e., a loss for each session) is assumed to occur at time t if

l∑
i=1

xi(t) > Λ. (25)

The above condition is equivalent to saying that a synchronous
loss occurs when the total number of outstanding packets in the
network exceeds the total number of packets that the network
can handle.

Without loss of generality, let sessions 1, 2, ..., k use the
MIMD congestion control algorithm and the rest of the l− k
sessions use the AIMD congestion control algorithm. In the
absence of losses, the two algorithms increase the window in
the following way

xi(t+ ∆) =
{

x(t)α∆/τ
m , 1 ≤ i ≤ k,

x(t) + αa
∆
τ , k + 1 ≤ i ≤ l,

(26)

where αm and αa are the increase parameters of the MIMD
and the AIMD algorithm, respectively. For example, αm =
1.01 for Scalable TCP, and αa = 1 for standard TCP. Let
tn denote the time instant when the nth congestion signal is
received. We note that a congestion signal is generated when
a synchronous loss occurs. In response to a congestion signal
the two algorithms decrease the window in the following way.

xi(t+n) =
{
βmx(tn), 1 ≤ i ≤ k,
βax(tn), k + 1 ≤ i ≤ l,

where βm and βa are the decrease parameters of the MIMD
and the AIMD algorithm, respectively. For example, βm =
0.875 for Scalable TCP, and βa = 0.5 for standard TCP.

Let x(n) denote the window-size vector embedded just after
the nth congestion signal is received, i.e, x(n) = x(tn+). Let
δn denote the time between two congestion signals. Since all
the sessions are assumed to receive congestion signals at the

same instant, we can write the following recursive equation
for x(n).

xi(n+ 1) =
{
βmxi(n)αδn/τ

m , 1 ≤ i ≤ k,

βa

(
xi(n) + αa

δn

τ

)
, k + 1 ≤ i ≤ l.

(27)

B. Bandwidth Sharing

The transient behaviour of the window sizes can be obtained
by solving (27) alongwith (25). Given the initial window
vector x(0), the time to the first loss t1 and, hence, x(1)
can be computed. This way we can recursively compute
x(n). This allows us to obtain the behaviour of the window-
size vector and the loss instants before the equilibrium is
reached. At equilibrium, δn and x(n) will converge to their
steady state values denoted by δ∗ and ψ, respectively. We are
interested in finding the window size, ψi, of each session at
equilibrium. Then, ψi together with δ∗ will allow us to obtain
the throughput for session i. At equilibrium x(n) would be
identical to x(n+1), x(n+2), and so on. Therefore, for each
session i, we can obtain ψi from (27) as follows.

ψi =
{
βmψiα

δ∗/τ
m , 1 ≤ i ≤ k,

βa(ψi + αaδ
∗/τ), k + 1 ≤ i ≤ l.

(28)

The l equations in (28) are fixed point solutions of the
corresponding equations in (27). We now have n+1 variables
in ψi, 1 ≤ i ≤ n and δ∗, and n equations. The final equation
can be obtained by noting that a loss occurs when condition
(25) is satisfied. Therefore, the (n+1)th equation is given by

k∑
i=1

ψi

βm
+

l∑
i=k+1

ψi

βa
= Λ. (29)

We note that from any one of the first k equations in (28) we
can obtain the value of δ∗. The variables ψi, 1 ≤ i ≤ k cannot
be uniquely determined from these k equations. They will
depend on the window vector just after the first synchronous
loss. This result is equivalent to the result obtained in [4] where
the rate vector of symmetric MIMD sessions was dependent
on the initial rate vector. However, the equilibrium window
size of the AIMD sessions can be uniquely determined from
(28). Therefore,

δ∗ = τ
log[1/βm]
logαm

, (30)

ψi = αa
βa

1 − βa

log[1/βm]
logαm

, k + 1 ≤ i ≤ l. (31)

From (29) we can, however, obtain the sum of the equilibrium
window sizes of the MIMD sessions.

k∑
i=1

ψi = βmΛ − βm

βa

l∑
j=k+1

ψj . (32)

In order to compute the throughput, ηi, for session i, we divide
the time interval δ∗ in slots of length τ . We note that, just after
a loss instant, the window size of session i is ψi. In between
two loss instants, the window size of each session increases
using the algorithm given in (26). Also, in every RTT (i.e., in

every slot), session i transfers packets equivalent to its present
window size. Therefore, in between two loss instants, the total
number of packets that are transferred by session i can be
obtained by summing the window sizes during the δ∗/τ RTTs.
As before, we can obtain the throughput ηi for each AIMD
session whereas we can obtain the total throughput, ηm, for
all the MIMD sessions.

ηm =
M

δ∗

k∑
i=1

ψi
α
� δ∗

τ �+1
m − 1
αm − 1

, (33)

ηi =
Mαa

τ

(
ψi + αa

	 δ∗
τ
 + 1

2

)
, k + 1 ≤ i ≤ l.(34)

We note that the throughput expressions are approximate
since the number of packets transferred in an RTT is an integer
whereas ψi can take non-integer values. Also, the number of
packets transferred in the RTT in which a loss occurs may not
be equal to 	ψi
.

We can make the following observations from equations
(30)-(34). The equilibrium value of the time between two loss
instants, δ∗, is independent of the parameters of the AIMD
algorithm. It is determined by the RTT, τ , and the parameters
of the MIMD algorithm only. The equilibrium window size of
the AIMD sessions depends only on the increase and decrease
parameters of the two algorithms. Also, the AIMD sessions
have the same equilibrium window behaviour and, hence,
obtain the same throughput. The rest of the capacity is utilized
by the MIMD sessions.
Simulations: We now compare these observations with sim-
ulations performed using ns-2 (version 2.26). Unless stated
otherwise, the simulation had the same set of parameters. The
MIMD sessions used Scalable TCP, and the AIMD sessions
used TCP New Reno. The packet size, M , for each session
was set to 1040 bytes (1000 bytes of data + 40 bytes of
header). The propagation delay, σ, was taken to be 100ms.
The increase and decrease parameters for the two algorithms
were set to αm = 1.01, αa = 1.0, βm = 0.75, and βa = 0.5.
Since the ψi for AIMD increases with decrease in βm, we set
βm to a value smaller than its recommended value so that the
AIMD sessions also obtain a certain throughput. From Figs.
5(a) (3 MIMD sessions and 3 AIMD sessions) and 5(b)(6
MIMD sessions and 6 AIMD sessions), we note that the AIMD
sessions indeed converge to the same equilibrium window size
whereas the equilibrium window size of an MIMD session
depends on its window just before the first synchronous loss.
The ψi for AIMD sessions remains the same even though the
link capacity is increased from 200Mbps to 300Mbps and the
total number of sessions is increased from six to twelve. Let
ηa and ψa denote the throughput and the equilibrium window
size, respectively, of any one of the AIMD sessions. In Table
IV, the analytical and simulation values of δ∗, ηm, ηa, and ψa

are given. The simulation values are given within parentheses.
As predicted in the analysis, the equilibrium window size and
the throughput of the AIMD sessions remains unchanged even
when the capacity is increase from 200Mbps to 300Mbps, and
the total number of sessions is increased from six to twelve.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 50 100 150 200

W
in

do
w

 s
iz

e

Time(s)

AIMD

AIMD flows
MIMD flows

(a) C = 200Mbps. l = 6. k = 3.

 0

 200

 400

 600

 800

 1000

 1200

 0 50 100 150 200

W
in

do
w

 s
iz

e
(p

ac
ke

ts
)

Time (s)

AIMD

AIMD flows
MIMD flows

(b) C = 300Mbps. l = 12. k = 6.

Fig. 5. Window evolution of sessions.

TABLE IV

SEVERAL MIMD AND SEVERAL AIMD SESSIONS.

Link Speed δ ηm ηa ψa

(Mbps) (s) (Mbps) (Mbps) (packets)

l = 6
200 2.83 (3) 164(151) 3.5(3.4) 29 (27)

k = 3
l = 12

300 2.83 (3) 238.6(218) 3.5(3.4) 29 (27)
k = 6

C. Throughput Comparison

We now study the scenario where one MIMD user and
AIMD user share the same link. We note that each user can
initiate several sessions of the same algorithm. We obtain the
condition under which the AIMD user can a obtain better
throughput than the MIMD user.

First, we consider the case in which each user initiates only
one session. In such a scenario, the window size and the
throughput of each session is obtained from (31)-(33) with
l = 2 and k = 1. From (33) and (34), as Λ → ∞ (i.e.,
C → ∞), the ratio of the throughputs, η2/η1, goes to 0.
This suggests that in high-speed networks, the MIMD user
will get most of the capacity. On the other hand, if the BDP
of the network is small, the MIMD user will obtain a lower
throughput compared to the AIMD session.

Proposition 5.1: Let Λl denote the threshold BDP below
which an AIMD session will get a better throughput compared
to an MIMD session. The threshold value, Λl, is given by

Λl = ψ2

(
αaδ

∗

2τ

(
δ∗

τ
+ 1
)
κ+

1
βa

)
, (35)

where κ = (αm − 1)/(αm − βm).
Proof: The above relation can be obtained using the

inequality η1 ≤ η2 together with (32).

The value of Λl depends only on the increase and decrease
parameters of the two algorithms. Table V gives the values of
Λl for different βm with αm = 1.01 and αa = 1.

TABLE V

Λl FOR DIFFERENT VALUES OF βm .

βm 0.875 0.75 0.5

Λl 47.34 106.6 282.73

In Fig. 6(a), the window evolution is plotted for the two
sessions for C = 13Mbps and βm = 0.5. The BDP, Λ,
is less than the Λl. The AIMD algorithm obtains a better
throughput in this case. In the next set of simulations, we

 0

 50

 100

 150

 200

 250

 0 50 100 150 200 250 300 350 400

W
in

do
w

 s
iz

e

Time(s)

AIMD
MIMD

(a) C = 13Mbps. βm = 0.5. τ = 140ms.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 20 40 60 80 100 120 140 160

W
in

do
w

 s
iz

e

Time(s)

AIMD
MIMD

(b) C = 10Mbps. βm = 0.875. τ = 140ms.

Fig. 6. Window evolution for one MIMD session and one AIMD session.

set βm to its recommended value of 0.875. In Fig. 6(b),
the corresponding window evolution is plotted. The effect of
increasing βm is to reduce the share of the AIMD session. In
Table VI, a comparison of the values obtained from analysis
and simulations is presented. A good match is observed
between the analysis and simulations.

From (34), it was observed that the throughput obtained
by each AIMD session remains constant whereas the total
throughput of the MIMD sessions increases with increase
in capacity. An AIMD user may want to obtain throughputs
similar to a MIMD user. In this case, the AIMD user may open
several sessions in order to improve its observed throughput.
Since each AIMD session gets the same throughput inde-
pendent of the number of AIMD sessions (assuming there is
sufficient capacity), an AIMD user can improve its observed
throughput by opening multiple sessions.

Proposition 5.2: The smallest number of sessions, ν, with
which an AIMD user will obtain a better global throughput

TABLE VI

ONE MIMD AND ONE AIMD SESSION. τ = 140MS.

β Capacity η1 η2 ψ1 ψ2

(Mbps) (Mbps) (Mbps) (packets) (packets)

3 2.22 (2.36) 0.6 (0.52) 66.2 (70.7) 13.41 (11)
0.875 5 4.05 (4.1) 0.75 (0.71) 96.82 (98) 13.41 (12)

10 8.86 (8.74) 0.92 (0.86) 173.39 (173) 13.41 (12)
13 4.73 (5.19) 4.92 (5.64) 69.09 (67) 69.6 (69)

0.5 15 6.08 (6.62) 5.04 (5.65) 86.59 (84) 69.6 (68)
30 16.64 (16.95) 5.47 (5.86) 217.83 (211) 69.6 (69)

compared to single MIMD user is given by

ν =
⌈
βm

h · κ
(

Λ − ψa

βa

)⌉
, (36)

where h = ψaαa

∑� δ∗
τ �

j=0 j, ψa is the equilibrium window of
any one of the AIMD sessions and is defined in (31), and κ
is as defined in (35).
The number of sessions, ν, depends only on Λ and the increase
and decrease parameters of the two algorithms. Table VII gives
the value of ν for different values of Λ for βm = 0.875.

TABLE VII

ν FOR DIFFERENT VALUES OF Λ.

βm = 0.875
Λ 100 500 1000 10000 50000
ν 3 18 37 372 1863

βm = 0.5
Λ 100 500 1000 10000 50000
ν 1 3 7 71 358

Similar to the AIMD user, a MIMD user may also try to
improve its observed throughput by opening several sessions.
Since, from (34), the AIMD user will get a throughput
independent of the number of MIMD sessions, the observed
throughput of an MIMD user will not improve by opening
several sessions. This result is in contrast to the result obtained
in (36) where we noted that an AIMD user can improve its
observed throughput by opening several sessions.

VI. INTER PROTOCOL FAIRNESS (DIFFERENT RTTS)

In this section we study the effect of different RTT for each
session on the equilibrium window behaviour. The notation
used and the scenario is the same as in Sec. V. We assume
that there exists a BDP, Λ, such that there is a synchronous
loss when condition (25) is satisfied. Let τi be the RTT of
session i. Then, we can rewrite (28) as follows.

ψi = βmψiα
δ∗/τi
m , 1 ≤ i ≤ k, (37)

ψi = βa(ψi + αaδ
∗/τi), k + 1 ≤ i ≤ l. (38)

The expressions for throughput are as follows.

ηi =

M
δ∗ψi

∑� δ∗
τi

�
j=0 αj

m, 1 ≤ i ≤ k,

M
δ∗ψiαa

∑� δ∗
τi

�
j=0 j, k + 1 ≤ i ≤ l.

(39)

For (37) to be consistent δ∗ has to be equal to
log[1/βm]
log[αm] min1≤i≤k τi. Therefore, among the MIMD sessions,

only the session with the least RTT will have an equilibrium

window size different from 0. The equilibrium window of the
other MIMD sessions will go to 0. We can, therefore, consider
the case where there is only one MIMD session and several
AIMD sessions.

For k = 1, from (37) and (38), we obtain

δ∗ = τ1
log[1/βm]
logαm

,

ψi = αa
βa

1 − βa

log[1/βa]
logαa

τ1
τi
, 2 ≤ i ≤ l,

ψ1 = βmΛ − βm

βa

∑
i=2

lψi.

The inter-loss time depends entirely on the parameters and
the RTT of the MIMD session. The effect of different RTTs
for the AIMD sessions is to scale ψi by a factor of τ1/τi.
Therefore, an AIMD session with lower RTT can obtain a
better throughput.

A. Several MIMD

If there are l MIMD sessions with different RTTs sharing
a link, then the session with the smallest RTT will get all the
capacity and the windows for other sessions will go to 0. For
l equal to 2, this result was also mentioned in [8]. However,
if the sessions have the liberty to choose their increase and
decrease parameters then each session can obtain some share
of the capacity. Let αmi and βmi be the increase parameter
and the decrease parameter, respectively, of the ith MIMD
session.

Proposition 6.1: l sessions with different RTTs will have a
behaviour similar to l sessions with the same RTT if

τi
log[1/βmi]
log[αmi]

= σ (a constant). (40)

The inter-loss time, δ∗, will then be equal to σ.
Proof: For this value of δ∗, (37) is consistent. Therefore,

an equilibrium solution exists. Let x(0) is the initial window
vector. The time to the first synchronous loss, t1, can be
computed using the condition

∑l
i=0 xi(0)αt1/τi

mi = Λ. We
can now compute xi(1) = βmixi(0)αt1/τi

mi . The next loss
will occur after a time δ∗. This can be verified by noting
that

∑l
i=0

xi(1)
βmi

= Λ, and t2 = δ∗ given by (40) satisfies∑l
i=0 xi(1)αt2/τ

m = Λ. From this we obtain t2 = δ∗. Since
tn is the equilibrium value of the inter-loss time, xi(1) will
also be the equilibrium value of ψi. Now, the system will be
similar to the same RTT case where the equilibrium window
vector is the same as the window vector just after the first
synchronous loss.
Proposition 6.1 gives a condition on setting the increase and
decrease parameters of the MIMD algorithm as a function the
RTT in order not to be extremely unfair.

VII. CONCLUSIONS

In the first part of the paper, we studied the fairness
in sessions using MIMD congestion control algorithm. For
sessions with the same RTT, it was observed that there
was extreme unfairness when the asynchronous losses were

rate independent. It was shown that fair sharing could be
achieved by introducing a stream of rate dependent losses.
For sessions with different RTTs, it was observed that the
arrival rate of these rate dependent losses had to be greater
than a certain minimum rate in order to achieve fairness.
Therefore, in networks with sessions using MIMD algorithms,
a stream of rate dependent losses, using, for example, some
buffer management scheme, would be necessary to ensure fair
sharing. In the second part of the paper, we studied capacity
sharing between MIMD sessions and AIMD sessions. For a
given set of parameters, it was noted that the throughput of an
AIMD session was independent of the BDP, and that the rest of
the capacity was utilized by the MIMD sessions. In networks
with BDP less than a threshold value, it was observed that one
AIMD session obtained a better throughput than one MIMD
session. It was also observed that an AIMD user could open
multiple sessions in order to improve its observed throughput
whereas for the MIMD user the throughput was invariant to
the number of sessions it opened.

ACKOWLEDGEMENTS

This work was partially supported by the EURO NGI
Network of Excellence, and by the Indo–French Center for
Promotion of Advanced Research (IFCPAR/CEFIPRA) under
research contract number 2900–IT.

REFERENCES

[1] S. Floyd. HighSpeed TCP for Large Congestion Windows. RFC 3649,
Experimental, December 2003.

[2] T. Kelly. Scalable TCP: Improving Performance in Highspeed Wide
Area Networks. Computer Comm. Review, 33(2):83–91, April 2003.

[3] G. Vinnicombe. On the Stability of Networks Operating TCP-like
Congestion Control. In Proceedings of the IFAC World Congress, 2002.

[4] D. Chiu and R. Jain. Analysis of the Increase/Decrease Algorithms for
Congestion Avoidance in Computer Networks. Journal of Computer
Networks and ISDN, 17(1):1–14, 1989.

[5] S. Gorinsky. Feedback Modeling in Internet Congestion Control. In
Proceedings of the NEW2AN, February 2004. Also see a techincal report
at http://www.arl.wustl.edu/∼gorinsky/ TR2002-39.ps.

[6] G. Hasegawa, M. Murata, and H. Miyahara. Fairness and Stability of
congestion control mechanisms of TCP. Telecommunication Systems,
November 2000.

[7] D. Loguinov and H. Radha. End-to-End Rate-Based Congestion Control:
Convergence Properties and Scalability Analysis. IEEE/ACM Transac-
tions on Networking, 11(4), August 2003.

[8] L. Xu, K. Harfoush, and I. Rhee. Binary Increase Congestion Control
(BIC) for Fast Long-Distance Network. In Proceedings of the IEEE
INFOCOM, March 2004.

[9] A. Budhiraja, F. Hernndez-Campos, V.G. Kulkarni, and F. D. Smith.
Stochastic Differential Equation for TCP Window Size: Analysis and
Experimental Validation. Prob. in the Engg. and Informational Sciences,
18:111–140, 2004.

[10] O. Ait-Hellal, E. Altman, D. Elouadghiri, M. Erramdani, and N. Mikou.
Performance of TCP/IP: the case of two Controlled Sources. In
Proceedings of the ICCC, pages 469–477, 1997.

[11] G. Fayolle, V.A. Malyshev, and M.V. Menshikov. Topics in the Con-
structive Theory of Countable Markov Chains. Cambridge University
Press, 1995.

[12] L. Kleinrock. Queueing Systems Volume I: Theory. Wiley & sons, 1975.
[13] J.G. Kemeny, J.L. Snell, and A.W. Knapp. Denumerable Markov Chains.

Springer-Verlag, New York, 2nd edition, 1976.
[14] S.P. Meyn and R. Tweedie. Markov Chains and Stochastic Stability.

Springer, London, 1993.
[15] S. McCanne and S. Floyd. ns: Network Simulator. Available at

http://www.isi.edu/nsnam/ns/.

