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Achieving high throughput in input-queued switches has been found to be difficult,
especially when traffic is nonuniform in the sense that different inputs have very
different cell generation rates+ We show that for general arrival processes, 100%
throughput can be achieved with a simple algorithm that is very easy to implement+

We consider a switch in which in each time slot, at most one cell may be
transmitted from each input, and at most one cell may be received at each output+
Cells that are destined for outputj arrive at inputi according to a stationary and
ergodic process, and arrivals are queued at the input+The problem is to decide which
inputs are to transmit to which outputs in each time slot in order to maximize through-
put+ Necessary conditions for stability are that the total arrival rate to each input
must be less than 1, and the total arrival rate destined to each output must be less
than 1+We propose a simple scheduling algorithm and show that with this algorithm
the necessary conditions for stability are also sufficient+

1. INTRODUCTION

In input-queued switches for such networks asATM networks, cells of a fixed length
are to be switched from one of several inputs to one of several outputs+ In each time
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slot, at most one cell can be transmitted from each input and at most one cell can be
received by each output+ It has been shown that if each input has a single queue and
the queues are served according to the FIFO discipline, the throughput is only about
58% when traffic is independent and uniform@16# + Part of the reason for this is the
HOL ~head-of-line! blocking that occurs when there is only one queue at each input+
In this case, a later cell destined for a different output can be blocked by the HOL cell
if the HOL cell is destined for an output that is already receiving a cell from a
different input+Many scheduling algorithms have been proposed that maintain sep-
arate virtual queues for each output at each input by permitting the server to access
all buffer positions, not just the first@3,15,22–26# +Simulations have shown that such
heuristic algorithms perform well when traffic is independent and uniform, but they
do not perform as well for nonuniform traffic@22,23# +These heuristics are generally
based on approximating the maximum size matching in each time slot; that is, they
try to maximize the number of input–output connections that have nonzero queues
and therefore maximize the number of cells switched in each time slot+ It is possible
to achieve maximal throughput on the output links when cells are queued at the
outputs, but this requires a faster switch that can transmit multiple cells from each
input and to each output in each time slot+

Until the recent article by McKeown et al+ @21# , it was unknown whether it was
possible to guarantee 100% throughput for input-queued switches, even with sepa-
rate queues for each output at each input+ They showed, using a quadratic Lyapunov
function, that 100% throughput for nonuniform~as well as uniform! traffic is, in
fact, achievable with separate queues by using a maximum weight bipartite-matching
algorithm, where the weights are the queue lengths+ By 100% throughput, we mean
that the system is stable as long as the aggregate arrival rate at each input and for
each output is less than the capacity of the switch for each input and each output,
which is 1+As McKeown et al+ note, their result is theoretical because their algorithm
is not practical for implementation+ It requires anO~ PN3 log PN! computational cost in
each time slot, where PN is the maximum ofM ~the number of inputs! andN ~the
number of outputs!+Also, they assumed that at most one arrival occurs at each input
in each time slot, so an input to the switch cannot be shared by multiple users+
Moreover, their proof requires that the arrivals form mutually independent Bernoulli
processes+ They also show that a simpler maximum size matching algorithm is not
stable in general+

We show, for arbitrary marginally stationary and ergodic arrival processes, that
when arrival rates are known, 100% throughput can be achieved with a static time
division multiplexing scheme that requires anO~MN1 uN4! computation to be per-
formed only once, and off-line, where uN is the minimum ofM andN+ If arrival rates
are unknown, we show that an adaptive version of this scheme, where such compu-
tations are performed periodically, also achieves 100% throughput+ The results hold
under very mild statistical assumptions on the arrival processes+ We only assume
that they are marginally stationary and ergodic+ They may be mutually dependent+

The solutions we propose are related to the TDM~time division multiplexing!
switching literature~e+g+, @12,13# , and references therein, and@5,7#! + These refer-
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ences deal, however,with a deterministic setup, in which a fixed and known amount
of traffic is to be sent from each given input to each given output; the problem is then
to minimize the time it takes to finish the transmission from all input to all output
ports+ In solving our stochastic problem, we shall use some ideas from related de-
terministic problems@9# +

Our scheme can be inexpensively modified to improve its performance by mak-
ing it more responsive to the current load,without sacrificing its stability properties+

2. THE MODEL

Before presenting the results, we define the model under consideration+We analyze
anM 3 N switch withM inputs andN outputs+We assume that there are separate
input queues for each output, so we do not have HOL blocking+More precisely, each
input is associated withN queues, one for each output+ We denote by queueij the
queue for cells arriving to inputi and destined for outputj+ We consider a slotted
queueing model in which in each time slot, at most one cell can be transmitted from
each of theM inputs, and at most one cell can be received by each of theN outputs+

For all 1# i # M and 1# j # N, let Aij ~n! be the number of cells that arrive at
queueij in time slotn+We assume that for each pairij , the arrival process$Aij %n is
stationary and ergodic~cf+ @4# ! with ratel ij ~i+e+, the average number of cells arriv-
ing in each time slot!+ The arrival processes~for different pairsij ! may be mutually
dependent+

Let

m~l! :5 maxH max
1#i#M

(
j51

N

l ij ; max
1#j#N

(
i51

M

l ij J
be the maximum of the total arrival rates for any input and any output, wherel 5
~l ij ! is the matrix of arrival rates+ Because in each time slot, at most one cell can be
transmitted from each of theM inputs, and at most one cell can be received by each
of the N outputs in the switch, it is easy to see that a sufficient condition for the
switch to be saturated~i+e+, one of the queues grows infinitely! is m~l! . 1+

We will present scheduling algorithms for which the switch is stable under the
conditionm~l! , 1+ Stability here means the convergence in probability of queue
lengths to finite random variables+We shall consider both the case when input rates
l ij are known to the scheduler and the case when they are unknown+

3. STATIC SCHEDULING

We first suppose that the input rates, l ij , 1# i # M, 1# j # N, are known+We will
develop a time-division multiplexing scheme so that each queueij receives an ef-
fective service rate that is greater thanl ij ; that is, over a cycle of lengthCslots, input
i will be “connected” to outputj for tij time slots withµij :5 tij 0C . l ij for all i and
j+During these slots, cells from inputi will be transmitted to outputj as long as queue
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ij is nonempty+ If queueij is empty during one of itstij slots, nothing will be trans-
mitted from queuei or to queuej during that slot+

Once we show that it is possible to construct such a cyclic schedule, then it
immediately follows that the system will be stable because we have essentially de-
coupled ourM 3 N queues into individual queues, each with a service rate greater
than its arrival rate+ Indeed, using Loynes’ scheme@4,20# , one can show that the
stochastic process describing the number of cells at any queueij at the beginning of
the cycles converges in probability to a random variable that is finite with probabil-
ity 1+ Observe that using renovation theory@2,6# , one can show a slightly stronger
result: For each pairij , i 5 1, + + + ,M, j 5 1, + + + ,N, the queue length process, $Qij ~n!;
n 5 1,2, + + + %, couples with a stationary ergodic regime within a time that is almost
surely finite,whereQij ~n! is the number of cells waiting to be transmitted from input
i to output j in time slotn+ ~The stationarity and ergodicity are with respect to a
C-step shift, whereC is some integer; see@2, Sect+ 6# +!

Let PN 5 max~M,N!, let e 5 e~l! 5 ~12 m~l!!0 PN, and consider the most sig-
nificant digit of e; that is, let k 5 k~l!, be such that 1010k # e , 1010k21+ Let d 5
d~l! 51010k11 and letC510d+ For eachl ij , let µij be obtained by roundingl ij up
to the nearest multiple ofd and then addingd+ Finally, let tij 5 Cµij +

For example, supposeN 5 M 5 2 andl ij 5 0+48 for i 51, 2 andj 51,2+ Then,
m~l! 5 0+96, e 5 0+02, k5 2, d 5 0+001, C51000,µij 5 0+481, andtij 5 481, for i 5
1, 2 andj 51,2+ ~A cycle of 1000 slots takes less than half a millisecond to transmit
on the AN2 system of Digital’s Systems Research Center@3# +! Note that for alli and
j, l ij , µij and

OC :5 maxH max
1#i#M

(
j51

N

tij ; max
1#j#N

(
i51

M

tij J , C+

The latter follows because

Tµ :5 maxH max
1#i#M

(
j51

N

µij ; max
1#j#N

(
i51

M

µij J # m~l! 1 2 PNd , m~l! 1 PNe 5 1+ (1)

Now, we must construct a schedule for “connecting” each inputi with each
output j for tij time slots during each cycle of lengthC+ The constraints on our
schedule are that while inputi is connected to outputj, input i can be connected to no
other output and outputj can be connected to no other input+ Thus, our scheduling
problem reduces to minimizing the makespan~the time it takes to complete all pro-
cessing! for a preemptive open shop+This is a classical machine-scheduling problem
in which there areM jobs andN machines, the processing time of jobi on machine
j is tij , jobs may be processed by machines in any order and may be preempted at any
time, a job can be processed by at most one machine at a time, and a machine can
process at most one job at a time+ This problem can be solved in polynomial time,
and the optimal makespan equalsOC @9# + In @10# , an algorithm of time complexity
O~MN1 uN4! was provided for this problem,where uN5min$M,N%+Examination of
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the algorithm@17# shows that when processing times are integer-valued, preemption
will only occur at integer times, so the solution conforms to our slotted system+

The makespan result for the open-shop problem is similar to the Slepian–
Duguid theorem for the nonblocking rearrangeability of switches in circuit-switched
networks@12# +Anderson et al+ use this approach for bandwidth allocation for CBR
~constant bit rate! traffic @3# + Also, many algorithms have been developed in the
TDM switching literature for finding optimal assignments of time slots to achieve a
makespan, or frame length, of OC given thetij ’s ~e+g+, @5,13#! + In @7# , a parallel algo-
rithm was developed+ One of the major concerns in the TDM switching literature is
to minimize the number of switching modes among solutions achieving minimum
makespan+

Because the minimal makespan is of lengthOC, in each cycle of lengthC we
implement the schedule obtained by solving the open-shop scheduling problem
for the first OC time slots, and we idle the switch for the remainingC 2 OC time
slots+ Of course, we would do even better by not idling and letting our cycle
length equal OC, but the longer cycle will be useful for the next section+ This policy
is easily implementable and will be stable as long asm~l! , 1 ~i+e+, we can
achieve 100% throughput!+

Theorem 3.1: Assume that the arrival process$Aij %n is stationary and ergodic for
each pair of~i, j !, 1# i # M, 1# j # N+ If the arrival rates are known and if m~l! ,
1, then the switch is stable under the above-described static scheduling policy+

The solution to the open-shop scheduling problem can be implemented in
many ways, so we can choose a solution to minimize cell delays, for example+
Indeed, the solution to the scheduling problem will give us a set of pairs~pk,sk!,
k 5 1,2, + + + , wherepk is a permutation of$1,2, + + + , PN% specifying the connection
between inputs and outputs@i+e+, input i is connected to outputpk~i !# andsk is the
total number of slots where such a connection is used in a cycle+ Note that there
are PN 2 uN dummy inputs or outputs+ It is clear that the number of such pairs in the
scheduling solution is bounded above byPN!+ Actually, in the solution of@10# , the
number of preemptions is bounded above byO~ uN3! and so is the number of such
pairs+ In the TDM switching literature, this number is bounded above byO~MN!
in many proposed algorithms+

A trivial implementation of the solution is to make connections according
p1,p2, + + + for timess1,s2, + + + successively+ Consider our earlier example withN 5
M 5 2 andl ij 5 0+48 for i 51, 2 andj 51,2, sotij 5 481, for i 51, 2 andj 51,2+ The
~trivial! solution to the open-shop scheduling problem tells us that inputi should be
connected to outputi @p1~i ! 5 i # , i 51,2, for s1 5 481 time slots, and inputi should
be connected to outputj, i 51,2, j 5 2,1@p2~1! 5 2 andp2~2! 51# for s2 5 481 time
slots, within a cycle of 1000 time slots+ This solution gives two switching modes in
the cycle and minimizes the number of switching modes+ On the other hand, to
minimize the delay, it is better to alternate the connections~the two permutations! in
each time slot, assuming that the number of arrivals in each slot is independent and
identically distributed+
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Consider a generalN 3 N switch with i+i+d+ and uniform arrivals~so all arrival
ratesl ij are identical!+ Let g1, + + + ,gN be the permutations on~1,2, + + + ,N! such that
gk~i ! 5 @~i 1 k2 2! modN# 11+ It can be shown, using the techniques of@18# , that
in order to minimize mean cell delay, one can implement the cyclic scheduling
policy which makes connectiongkat all time slotsnN1k,n50,1,2, + + + , k51,2, + + + ,N+
Indeed, such an implementation results in a cyclic service for all the output queues
associated with any of the inputs+

For nonuniform arrivals, the optimization problem for minimizing delay is more
complicated+ In general,we should serve the input queues in the most “regular” way+
For example, for the 23 2 switch, a good implementation can be obtained by ap-
plying techniques in the scheduling literature on optimal “splitting”@1,8,11,19# + For
general switches, a reasonable policy is the “Golden ratio” policy@14# +Consider the
following example which is adapted from@14# + SupposeM 5 N 5 3, l11 5 l22 5
l335 1

2
_ 2 e, l125 l235 l315 3

8
_ 2 e, andl135 l215 l325 1

4
_ 2 e,with « . 0+ Then,

we can implement a cycle of length eight slots withg15 ~1,2,3!, s154, g25 ~2,3,1!,
s2 5 3, andg3 5 ~3,1,2!, s3 51, and the golden ratio schedule for each cycle of eight
slots would beg1g2g1g3g2g1g2g1+

We can also improve our algorithm by combining it with existing heuristics,
without sacrificing the stability property of our approach+ Suppose for a given time
slot, some of the scheduled connections have empty queues; that is, there exist in-
putsi1, i2, + + + iK ,K # uN, such that there are no cells to transmit fromik top~ik! for k5
1, + + + ,K+ Then, we can apply a heuristic to dynamically schedule thoseK inputs and
outputs+ Because this reallocation only removes a connection scheduled by our al-
gorithm when there is nothing to transmit, the effective service rate for each queue
is the same as it was in the original algorithm, so the system will still be stable when
m~l! , 1+

4. ADAPTIVE SCHEDULING

Now, let us suppose that the arrival rates are unknown+ Let Aij ~0, t! be the number of
arrivals from inputi destined to outputj ~i+e+, the number of arrivals to queueij ! that
have occurred by timet, and let Zl ij ~t! :5 Aij ~0, t!0t be the estimated arrival rate for
queueij at timet+ Let Zlt 5 ~l ij ~t!! be the matrix of empirical arrival rates at timet+
We assume that the estimate is updated infinitely often so thatZlt converges tol with
probability 1~w+p+1!+ In particular,

t0 :5 inf $t: m~ Zlt ! , 1%

is finite w+p+1+We assume that for each pairij , the arrival point processAij ~0, t! is
stationary and ergodic+ The processes corresponding to differentij may again be
mutually dependent+

Consider the following adaptive scheme:

1+ Use an arbitrary scheduling policy beforet0 ~e+g+, the uniform scheduling
policy g of the last section or one of the existing heuristics!+
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2+ Sett :5 t0, n 5 1+
3+ Computed~ Zl t ! andC~ Zlt ! as in the previous section+ Also, computeµij ~ Zlt !

in a way that is similar to that of the previous section: round up to the nearest
multiple of d and addtwiced+ Settij 5 Cµij +

4+ Use the scheduling policy described in the previous section@with respect to
tij ~ Zlt !# during the nextC~ Zlt !slots+

5+ ~a! If for all pairs ij , Zl ij ~t1nC~ Zlt !! # Zl ij ~t!1d~ Zlt !, then setn :5 n11 and
repeat step 4+

~b! Else if m~ Zlt1nC~ Zlt !
! $ 1, use an arbitrary scheduling policy until time

t0 :5 inf $s . t 1 nC~ Zl t ! :m~ Zls! , 1%, and go to step 2+
~c! If for some pairij , Zl ij ~t 1 nC~ Zlt !! . Zl ij ~t! 1 d~ Zlt ! but m~ Zlt1nC~ Zlt !

! #
1, then sett :5 t 1 nC~ Zlt ! andn 5 1, and go to step 3+

We now show that the above algorithm is stable wheneverm~l! , 1+ Because
Zlt converges tol w+p+1, it follows that there exists some~random! time T which is

finite w+p+1 and such that for allt $ T, m~ Zl t ! , 1, and for all pairsij ,

6 Zl ij ~t! 2 Zl ij ~T !6 , d~ ZlT !+ (2)

Hence, after a timeT that is finite w+p+1, steps 5~b! and 5~c! are never per-
formed, and a fixed periodic schedule corresponding toZlT with m~ ZlT! , 1 is used+
Becauseµij $ Zl ij ~T ! 1 2d~ ZlT!, step 2 implies that from timeT onward,

µij $ l ij 1 d~ ZlT ! . l ij +

Moreover, the last inequality of~1! still holds:

Tµ :5 maxH max
1#i#M

(
j51

N

µij ; max
1#j#N

(
i51

M

µij J # m~l! 1 3 PNd , m~l! 1 PNe 5 1+

The discussion from the previous section then implies that the system is stable: For
eachi andj, there is a coupling convergence of the process of the number ofij cells
in the system to a stationary ergodic process; that is, for every pairij , the queue
length process, $Qij ~n!; n 5 1,2, + + + %, couples with, or becomes identical to, a sta-
tionary ergodic regime within a time which is almost surely finite+ To conclude, we
obtain the following+

Theorem 4.1: Assume that the arrival process$Aij %n is stationary and ergodic for
each pair ij, 1 # i # M, 1 # j # N+ If m~l! , 1, then the switch is stable under the
adaptive scheduling policy defined earlier+
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