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Achieving high throughput in input-queued switches has been found to be difficult
especially when traffic is nonuniform in the sense that different inputs have very
different cell generation rate§Ve show that for general arrival process&80%
throughput can be achieved with a simple algorithm that is very easy to implement

We consider a switch in which in each time slat most one cell may be
transmitted from each inpuand at most one cell may be received at each output
Cells that are destined for outpuarrive at inputi according to a stationary and
ergodic processind arrivals are queued at the inpthe problem is to decide which
inputs are to transmit to which outputs in each time slot in order to maximize through-
put Necessary conditions for stability are that the total arrival rate to each input
must be less than, And the total arrival rate destined to each output must be less
than 1 We propose a simple scheduling algorithm and show that with this algorithm
the necessary conditions for stability are also sufficient

1. INTRODUCTION

Ininput-queued switches for such networks as ATM netwarkBs of a fixed length
are to be switched from one of several inputs to one of several outpugach time

*This work was done while this author was visiting INRIA
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slot, at most one cell can be transmitted from each input and at most one cell can be
received by each output has been shown that if each input has a single queue and
the queues are served according to the FIFO discipimethroughput is only about
58% when traffic is independent and unifofd®6]. Part of the reason for this is the
HOL (head-of-ling blocking that occurs when there is only one queue at each.input
Inthis casea later cell destined for a different output can be blocked by the HOL cell
if the HOL cell is destined for an output that is already receiving a cell from a
different input Many scheduling algorithms have been proposed that maintain sep-
arate virtual queues for each output at each input by permitting the server to access
all buffer positionsnot just the firs{3,15,22—-2§. Simulations have shown that such
heuristic algorithms perform well when traffic is independent and unifuhthey
do not perform as well for nonuniform traffi22,23]. These heuristics are generally
based on approximating the maximum size matching in each timgtlsédtis they
try to maximize the number of input—output connections that have nonzero queues
and therefore maximize the number of cells switched in each timdslopossible
to achieve maximal throughput on the output links when cells are queued at the
outputs but this requires a faster switch that can transmit multiple cells from each
input and to each output in each time slot

Until the recent article by McKeown et.dR1], it was unknown whether it was
possible to guarantee 100% throughput for input-queued switeliea with sepa-
rate queues for each output at each infpaey showedusing a quadratic Lyapunov
function that 100% throughput for nonunifor@as well as uniformtraffic is, in
fact, achievable with separate queues by using a maximum weight bipartite-matching
algorithm where the weights are the queue lengBy 100% throughpytwe mean
that the system is stable as long as the aggregate arrival rate at each input and for
each output is less than the capacity of the switch for each input and each, output
which is 1 As McKeown et alnote their resultis theoretical because their algorithm
is not practical forimplementatioft requires arD(N*log N) computational costin
each time slgtwhereN is the maximum oM (the number of inputsandN (the
number of outputs Also, they assumed that at most one arrival occurs at each input
in each time slgtso an input to the switch cannot be shared by multiple users
Moreovertheir proof requires that the arrivals form mutually independent Bernoulli
processesThey also show that a simpler maximum size matching algorithm is not
stable in general

We showfor arbitrary marginally stationary and ergodic arrival procestbes
when arrival rates are knowt00% throughput can be achieved with a static time
division multiplexing scheme that requires@MN + N#) computation to be per-
formed only onceand off-ling whereN is the minimum oM andN. If arrival rates
are unknownwe show that an adaptive version of this schewigere such compu-
tations are performed periodicalblso achieves 100% throughpuihe results hold
under very mild statistical assumptions on the arrival proces¥esonly assume
that they are marginally stationary and ergodibey may be mutually dependent

The solutions we propose are related to the TRidhe division multiplexing
switching literaturge.g., [12,13], and references thereiand[5,7]). These refer-
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ences deahoweveywith a deterministic setupn which a fixed and known amount
of traffic is to be sent from each given input to each given outimetproblem is then
to minimize the time it takes to finish the transmission from all input to all output
ports In solving our stochastic problerwve shall use some ideas from related de-
terministic problemg$9].

Our scheme can be inexpensively modified to improve its performance by mak-
ing it more responsive to the current lgadthout sacrificing its stability properties

2. THE MODEL

Before presenting the resultse define the model under consideratigve analyze
anM X N switch withM inputs andN outputs We assume that there are separate
input queues for each outpsb we do not have HOL blockindylore preciselyeach
input is associated withl queuesone for each outputVe denote by queuig the
queue for cells arriving to inputand destined for outpyt We consider a slotted
gueueing model in which in each time slat most one cell can be transmitted from
each of theM inputs and at most one cell can be received by each oNtbetputs

Forall1=i=M and 1=j = N, let A;(n) be the number of cells that arrive at
queueij in time slotn. We assume that for each pdirthe arrival procesgA; }, is
stationary and ergodicf. [4]) with rate); (i.e., the average number of cells arriv-
ing in each time slgt The arrival processdg$or different pairsj ) may be mutually
dependent

Let

N M
m(A) := maxy max Aji ; max Aij
(A) {1<i<r\/|j_§:1 17 1<j=N le ”}

be the maximum of the total arrival rates for any input and any outplre\ =
(Aj) is the matrix of arrival rate8ecause in each time s|@it most one cell can be
transmitted from each of thd inputs and at most one cell can be received by each
of the N outputs in the switchit is easy to see that a sufficient condition for the
switch to be saturate(.e., one of the queues grows infinitelis m(A) > 1.

We will present scheduling algorithms for which the switch is stable under the
conditionm(A) < 1. Stability here means the convergence in probability of queue
lengths to finite random variabled/e shall consider both the case when input rates
Ajj are known to the scheduler and the case when they are unknown

3. STATIC SCHEDULING

We first suppose that the input rafag, 1=i =M, 1=] = N, are knownWe will
develop a time-division multiplexing scheme so that each qijetgzeives an ef-
fective service rate thatis greater thgn that is over a cycle of lengtk slots input
i will be “connected” to outpuit for t; time slots withy;; := t; /C > A;; for all i and
j. During these slotgells from input will be transmitted to outpytas long as queue
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ij is nonemptylf queueij is empty during one of it§; slots nothing will be trans-
mitted from queue or to queug during that slot

Once we show that it is possible to construct such a cyclic schethda it
immediately follows that the system will be stable because we have essentially de-
coupled ouM X N queues into individual queugsach with a service rate greater
than its arrival ratelndeed using Loynes’ schemp4,20], one can show that the
stochastic process describing the number of cells at any duatthe beginning of
the cycles converges in probability to a random variable that is finite with probabil-
ity 1. Observe that using renovation thed&6], one can show a slightly stronger
result For each paiij, i =1,...,M,j =1,...,N, the queue length procgd®); (n);
n=12,...}, couples with a stationary ergodic regime within a time that is almost
surely finitg whereQj (n) is the number of cells waiting to be transmitted from input
i to outputj in time slotn. (The stationarity and ergodicity are with respect to a
C-step shiff whereC is some integersee[ 2, Sect 6].)

Let N = max(M,N), lete = e(A) = (1 — m(A))/N, and consider the most sig-
nificant digit of €; that is let k = k(A), be such that 110% = € < 1/10%° % Let s =
8(1) =1/10"* and letC = 1/5. For eachh;;, let p; be obtained by rounding; up
to the nearest multiple @f and then adding. Finally, lett; = Cyy;.

For examplesupposeN = M = 2 andA;; = 0.48 fori =1, 2 andj = 1,2. Then
m(A) =0.96,¢ =0.02, k= 2,6 =0.001, C=100Q p; = 0.481, andt; = 481 fori =
1,2 andj = 1,2. (A cycle of 1000 slots takes less than half a millisecond to transmit
on the AN2 system of Digital's Systems Research Cdi®&gy Note that for ali and
J, Aj < and

N M
C:=maxi max > t.;max » t: < C.
1=i=M 2:1 2 SiEN Z:l U

The latter follows because

N M
fi= max{ max >, {;; max > pij} =m(A) +2Ns <m(A) + Ne=1. (1)
1=i=M i=1 1=j=N{=;

Now, we must construct a schedule for “connecting” each irpuith each
outputj for t; time slots during each cycle of length The constraints on our
schedule are that while inpiis connected to outpiitinputi can be connected to no
other output and outpytcan be connected to no other inptihus our scheduling
problem reduces to minimizing the makesytre time it takes to complete all pro-
cessingfor a preemptive open shophis is a classical machine-scheduling problem
in which there aréM jobs andN machinesthe processing time of jobon machine
j ist;j, jobs may be processed by machines in any order and may be preempted at any
time, a job can be processed by at most one machine at a éintka machine can
process at most one job at a tinfénis problem can be solved in polynomial time
and the optimal makespan equ&l$9]. In [10], an algorithm of time complexity
O(MN + N#) was provided for this problemwhereN = min{M, N}. Examination of
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the algorithn{17] shows that when processing times are integer-vajegmption
will only occur at integer timesso the solution conforms to our slotted system

The makespan result for the open-shop problem is similar to the Slepian—
Duguid theorem for the nonblocking rearrangeability of switches in circuit-switched
networks[12]. Anderson et aluse this approach for bandwidth allocation for CBR
(constant bit ratetraffic [3]. Also, many algorithms have been developed in the
TDM switching literature for finding optimal assignments of time slots to achieve a
makespanor frame lengthof C given thet;’s (e.q., [5,13]). In [7], a parallel algo-
rithm was developedOne of the major concerns in the TDM switching literature is
to minimize the number of switching modes among solutions achieving minimum
makespan

Because the minimal makespan is of len@hin each cycle of lengtiC we
implement the schedule obtained by solving the open-shop scheduling problem
for the first C time slots and we idle the switch for the remainir@ — C time
slots Of course we would do even better by not idling and letting our cycle
length equal, but the longer cycle will be useful for the next sectidiis policy
is easily implementable and will be stable as longnas\) < 1 (i.e., we can
achieve 100% throughput

Tueorem 3.1: Assume that the awal process A}, is stationary and ergodic for
eachpairof(i,j),1=i=M, 1=j = N.If the arrival rates are known and if () <
1, then the switch is stable under the akalescribed static scheduling policy

The solution to the open-shop scheduling problem can be implemented in
many ways so we can choose a solution to minimize cell deJdgs example
Indeed the solution to the scheduling problem will give us a set of péirg s,
k=12,..., wherem, is a permutation of1,2,..., N} specifying the connection
between inputs and outputse., inputi is connected to output,(i)] ands, is the
total number of slots where such a connection is used in a chdes that there
areN — N dummy inputs or outputst is clear that the number of such pairs in the
scheduling solution is bounded above iy Actually, in the solution of10], the
number of preemptions is bounded above@iN?) and so is the number of such
pairs In the TDM switching literaturgthis number is bounded above B(MN)
in many proposed algorithms

A trivial implementation of the solution is to make connections according
T, To,... fOr timess,, s,,... successivelyConsider our earlier example with =
M =2andA; =048 fori=1 2 andj =12, sot; =481 fori=1,2andj =12 The
(trivial) solution to the open-shop scheduling problem tells us that inghuduld be
connected to outpuf (i) =i], i =1,2, for s, = 481 time slotsand input should
be connected to outpjuti = 1,2, j = 2,1[7,(1) = 2 andw,(2) = 1] for s, = 481 time
slots within a cycle of 1000 time slotg his solution gives two switching modes in
the cycle and minimizes the number of switching modes the other hando
minimize the delayit is better to alternate the connectidiise two permutations
each time slgtassuming that the number of arrivals in each slot is independent and
identically distributed
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Consider a generd X N switch with ii.d. and uniform arrivalgso all arrival
ratesA; are identical. Let y,,...,yn be the permutations ofi,2,...,N) such that
v(i) =[(i + k—2) modN] + 1. It can be shownusing the techniques ¢18], that
in order to minimize mean cell delagne can implement the cyclic scheduling
policy which makes connectionp atalltime slots\IN+k,n=0,12,...,k=12,...,N.
Indeed such an implementation results in a cyclic service for all the output queues
associated with any of the inputs

For nonuniform arrivalghe optimization problem for minimizing delay is more
complicatedIn generalwe should serve the input queues in the most “regular”. way
For examplefor the 2X 2 switch a good implementation can be obtained by ap-
plying techniques in the scheduling literature on optimal “splittifig8,11,19]. For
general switches reasonable policy is the “Golden ratio” polich4]. Consider the
following example which is adapted froji4]. SupposeM = N =3, A1 = Ay =
A3z=3— € A1p=A3=A31= 5 —€,andA13= Ay = Az = 3 — €, With & > 0. Then
we can implement a cycle of length eight slots with= (1,2,3), 51 = 4, vy, = (2,3,1),

s, = 3, andy; = (3,1,2), s; = 1, and the golden ratio schedule for each cycle of eight
slots would bey;y2y1Y3y2Y1Y2Y1-

We can also improve our algorithm by combining it with existing heuristics
without sacrificing the stability property of our approa8uppose for a given time
slot, some of the scheduled connections have empty quéugsis there exist in-
putsiy, iy, ...ix, K=N, such that there are no cells to transmit frigito 77 (i) for k=
1,...,K. Then we can apply a heuristic to dynamically schedule tHéseputs and
outputs Because this reallocation only removes a connection scheduled by our al-
gorithm when there is nothing to transthe effective service rate for each queue
is the same as it was in the original algoritsn the system will still be stable when
m(A) < 1.

4. ADAPTIVE SCHEDULING

Now, let us suppose that the arrival rates are unkndwebA;; (0, t) be the number of
arrivals from inpui destined to outpyt(i.e., the number of arrivals to queuje that
have occurred by timg and IetXij (t) == A;; (0, 1)/t be the estimated arrival rate for
queusdj at timet. Let A, = (A;; (1)) be the matrix of empirical arrival rates at tirhe
We assume that the estimate is updated infinitely often so\ffe@mverges ta with
probability 1(w.p.1). In particular

to:= inf{t: m(1,) < 1}

is finite w.p.1. We assume that for each pdgirthe arrival point procesa;; (0, t) is
stationary and ergodidhe processes corresponding to differgnihay again be
mutually dependent

Consider the following adaptive scheme

1. Use an arbitrary scheduling policy befdkg(e.g., the uniform scheduling
policy v of the last section or one of the existing heuristics
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N

Sett:=ty,n=1

3. Computed(4,) andC(A,) as in the previous sectioAlso, computei; ()
in away thatis similar to that of the previous sectioyund up to the nearest
multiple of 6 and addwices. Sett; = Cyy;.

4. Use the scheduling policy described in the previous setigth respect to
t; (A,)] during the nexC(A,)slots

5. (@) Ifforall pairsij, A; (t+NnC(A,)) < A; () + 6(A,), thenseh:=n+1and
repeat step 4

(b) Else if m(Xan(;‘t)) =1, use an arbitrary scheduling policy until time
to := inf{s >t + nC(A,):m(As) < 1}, and go to step .2

(c) If for some pairij, A;j (t + nC(A)) > A (t) + 8(A) butm(Aesncisy) =

1, then set :=t + nC(A;) andn =1, and go to step.3

. We now show that the above algorithm is stable whenewer) < 1. Because
A converges to. w.p.1, it follows that thgre exists someandom time T which is
finite w.p.1 and such that for atl= T, m(A,) < 1, and for all pairsj,

|/A\ij (t)— }\ij (T)] < 8(Ar). (2)

Hence after a timeT that is finite wp.1, steps 5p) and 5(C)A are never per-
formed and al‘ixed periodiAc schedule corresponding favith m(A;) < 1is used
Becausey; = A;(T) + 26(A+), step 2 implies that from tim& onward

Hj = A'J + 6(}\T) > /\” .

Moreover the last inequality of1) still holds:
N M _ _
= max{ max >, Wj; max >, pij} =m()) +3Ns < m(A) + Ne =1.
1=i=M =1 1=j=N{=>;

The discussion from the previous section then implies that the system is: $table
eachi andj, there is a coupling convergence of the process of the numbgcelis
in the system to a stationary ergodic procehbsat is for every pairij, the queue
length process|Q;(n); n=12,...}, couples with or becomes identical j@ sta-
tionary ergodic regime within a time which is almost surely finite concludewe
obtain the following

THEOREM 4.1: Assume that the awal process A;j }, is stationary and ergodic for
eachpairijl=i=M,1=j=N.If m()) <1 then the switch is stable under the
adaptve scheduling policy defined earlier
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