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Modern communication networks evolve towards integration of guaranteed-
performance and best-effort service types. The co-existence of these two service
types offers substantial benefits, such as resource sharing between service classes,
and the ability of the user to select an appropriate service class according to its in-
dividual requirements and preferences. Notwithstanding, such interaction gives rise
to more complicated system behavior and related performance issues, which need
to be explored and understood in order to allow efficient network operation.

In this paper we examine potential congestion phenomena, which arise due to the
combined effect of bandwidth sharing and user migration between service classes.
‘We propose a simplified fluid model for session flow, consisting of two coupled queues
with state-dependent flows, which captures the essential ingredients of service-class
interaction. Our analysis shows that the system might exhibit bistable behavior,
in the sense that transient congestion may stir the system from a stable and effi-
cient operating point to an inefficient and congested one. We identify conditions
which give rise to bistability, and propose a call admission control scheme which
prevents the system from getting trapped in a congested-type equilibrium, while
not interfering with normal system operation.

Keywords: Integrated services, Broadband Networks, Best-effort service, Guaranteed
performance service, Resource Allocation, Call Admission Control.

1. Introduction

Broadband networks are designed to offer several service categories. For
example, in ATM networks [1], real time traffic would typically use CBR (Con-
stant Bit Rate) and rt-VBR (real-time Variable Bit Rate) services, whereas non-
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real-time traffic would use the nrt-VBR (non-real-time Variable Bit Rate), ABR
(Available Bit Rate), UBR (Unspecified Bit Rate) or ABT (ATM Block Transfer)
services. Such trends are being experienced also with IP technology, towards the
support of QoS flows and provision of various service guarantees (see, e.g., [2,4,8]).

We classify such services into two basic categories. In the first, which we
call guaranteed performance, a fixed amount of bandwidth is reserved for the
whole duration of the session. In particular, the allocated bandwidth does not
change according to the congestion state of the system. In the second, which we
call best effort, the bandwidth allocation may change dynamically according to
both the momentary session requirements and the current bandwidth availability
in the network. For example, the CBR service in ATM networks belongs to the
guaranteed performance category, while the ABR service belongs to the best effort
category.

The main goal of this paper is to point out some basic performance issues that
result from the co-existence of and interaction between best effort and guaranteed
performance services, and to suggest an appropriate model within which these is-
sues may be analyzed. In particular, we explore the consequences of dynamic
resource allocation and flow migration. Employing dynamic resource allocation
allows to efficiently share network resources, mainly bandwidth and buffer space,
between the two service classes. While there are various possibilities for imple-
menting such allocations, they typically share a common property: resources that
are not used for guaranteed performance traffic may be (momentarily) used by
best effort traffic. Flow migration relates to the option of best effort clients to
turn to guaranteed performance service when the former is congested and does
not supply satisfactory performance, and vice versa. For example, for non real
time traffic in ATM, one might prefer nrt-VBR instead of ABR when the number
of ABR connections becomes large.

We formulate a simplified fluid flow model, which incorporates the essen-
tial ingredients of bandwidth sharing and flow migration. A macroscopic view of
network performance is adopted, such that all users in a given service class are
subject to similar congestion conditions. The loads at the two types of service
classes are represented through a pair of coupled differential equations, which al-
low to characterize the steady-state operating points of the system. Our analysis
reveals that multiple and persistent equilibria may exist. Specifically, the system
might stir from a non-congested to a congested equilibrium due to transient con-
gestion, which results in an unfavorable and persistent change in the distribution
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of resources between service classes. We obtain conditions for the stable operation
of the network, and identify the cases where multiple equilibria exist. For such
cases, we propose and validate a call admission control scheme that prevents the
system from getting trapped in a congested-type equilibrium.

Our model is described in Section 2, and equilibrium analysis is presented in
Section 3. Section 4 describes the proposed admission control mechanism. Finally,
Section 5 presents concluding remarks.

2. The model

We consider a communication network which offers two types of service
classes, namely guaranteed performance and best effort. Guaranteed performance
is maintained by reserving appropriate network resources for the entire session
duration, according to the service guarantees negotiated initially. The users, i.e.,
incoming sessions, are free to choose the service class according to their service
requirements and preferences. We note that the term “session" here should be in-
terpreted broadly, and according to the application at hand; e.g., it may indicate
a TCP session, a voice conversation, or an e-commerce transaction.

A continuous-time fluid approximation is used to model the system. The
number of sessions in each service class (or the workload associated with these
sessions) is represented by a continuous variable. This model can be considered
as an approximation of a stochastic environment in which the arrival and service
processes, as well as the session length, are described by their averages. For a
rigorous treatment of fluid approximations for state-dependent queues see [6] and
references therein.

The model comprises of the following elements:
1. Guaranteed-Performance (GP) service class:
(a) z(t) denotes the number of sessions at time ¢ in service class GP.

(b) Agp denotes the rate of external (new) sessions arriving to GP, and is
assumed to be constant.

(c) GP service rate: Each session which is admitted to GP service is allo-
cated a fixed amount of network resources, so that its service rate is not
degraded by congestion. Let ufl denote the average duration of a GP
session. Then the service rate in GP, expressed in sessions per second, is

Hap(t) = pa(t).
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GP admission control: The number of sessions z(¢) in GP is bounded by
a constant Tmax. This bound may be enforced through an appropriate
admission control mechanism.

2. Best Effort (BE) service class:

(a)
(b)

(c)

y(t) denotes the number of active sessions at time ¢ in service class BE.

Ape denotes the rate of erternal (new) sessions arriving to BE, and is
assumed to be constant.

Let upe denote the available service rate, in sessions per second, at the
BE service class. This service rate depends of course on available network
resources, which in turn depend on the load at GP. Assuming linear
dependence on the latter, we obtain

Mbe = Hmax — Olhgp - (1)

The parameter « is the service consumption ratio, which gives the (aver-
age) number of sessions that can be served at BE at the expense of one
GP session. As we shall see, this parameter will play a central role in
our analysis; in particular, it will be important to specify whether it is
smaller or larger that one. This will be further discussed at the end of

this section. Recalling now that p4, = 12, we obtain

Hbe = Umax — Cllgp = Mmax — QAU1T - (2)

With service distributed evenly among sessions, the service rate per BE
session is g 1= /Lbe/y = (Nmax - aulx)/y.

3. Session migration:

Sessions can migrate from one service class to the other, either at the begin-

ning or during their service period. Migration decisions naturally depend on

the load and availability of the service classes. Let A,,; denote the net migra-

tion rate from BE to GP. We shall make the following assumptions regarding

the migration rate, which we further discuss subsequently:

(M1) Mpi = Ami(z,y) is a continuous function of the instantaneous loads

(number of sessions) x and y at the GP and BE service classes, respectively.

(M2) A\pi(x,0) = 0 for all feasible values of z.

(M3) Anmi(z,y) is strictly increasing in y, for all , and limy_, o0 Ami(,y) = oco.
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We proceed to discuss the assumptions stated above concerning the migra-
tion rate Am,;. We begin by noting that sessions may be classified into two cate-
gories: the first includes sessions that require absolute service guarantees, which
can be provided only at the GP service class; such sessions will adhere to the
GP service class, if admitted, and never migrate. The second category includes
sessions that are satisfied with BE service, provided that the service quality there
is acceptable for their purpose; otherwise they may choose to migrate to GP (and
possibly migrate back to BE later). It should be noted that getting service at GP
rather than at BE normally incurs some additional cost, either directly via pricing,
or indirectly due to the overhead associated with connection setup and teardown.
This implies that a session belonging to the second category will first attempt to
obtain service at BE, and will migrate to GP only if the service it experiences
there is unsatisfactory. Reverse migration, from GP to BE, thus comprises solely
of sessions that previously migrated from BE to GP.

A basic postulate of our model is that the migration rate A,,; at time ¢ de-
pends only on the current system conditions (captured through the load variables
x(t) and y(t)), and not on previous history (assumption M1 above). Implicit in
this is that the rate of change of the system load is small with respect to a session
lifetime — so that the number of sessions at GP that previously migrated from BE
and would be willing to return to BE is roughly determined by the current load.

The monotone increasing dependence of A,i(z,y) on y (assumption M3)
is obvious — when y increases, both the service quality at BE decreases, which
increases the fraction of migrating sessions, while the number of sessions that can
migrate from BE increases proportionally to y. We note that, while it is natural
to assume that A,;(x,y) monotonously increases also with x, such an assumption
is not made as it is not required by our analysis. Finally, assumption M2 reflects
the fact that a lightly loaded BE service class (y = 0) should provide an adequate
service quality, thus denying the incentive to migrate from BE to GP; it then
follows from the previous discussion that the reverse migration effect will also be
negligible.

For convenience, we assume that the average service requirement at GP of a
migrating BE session is identical to that of an original GP session; this can always
be arranged by re-scaling y(t).

Some restrictions are required on the possible values of the system parame-
ters. First, note that the resource sharing relation (1) implies that pg, cannot
exceed fimax/c, at which GP occupies all available resources; thus, the maximal
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allowed load at GP must satisfy:

Tmax < ,U/max/a,ul . (3)

Additionally, we assume that GP has enough bandwidth to handle its externally
arriving traffic (namely, without migrating sessions from BE) without overflow.
This requires A\gp < [1Tmax, since the latter is the maximal service rate at GP.
This requirement can be expressed as
Trmin ‘= A < Tmax - (4)
M1

ZTmin 18 the minimal level required at GP to handle the external traffic alone, and
hence can serve as an effective lower bound for z(¢). Both (3) and (4) are assumed
to hold in the sequel.

The resulting flow dynamics at the two service classes may now be expressed
by the following pair of coupled differential equations:

d
%x =Agp = Hgp(®) + Ami(z,y), 0 <& < Tmax, (5)
d
%y:)\be_ﬂbe(l')_)\mi(x,y); y>0, (6)
where
fgp(T) = 17, (7)
Poe(T) = fmax — aﬂgp(x) = Mmax — QU1T . (8)

The boundaries £ = rmax and y = 0 require special attention to prevent the state
variables from exceeding their feasible regions. (The boundary at x = 0 presents
no such problem since the service rate p4, = p12 is nullified there.) Consider first
the case of y = 0. Since the derivative of y cannot be negative, and noting that
Ami = 0 there, we obtain:

%x = Agp — Hgp() (10)
L= Do — el ()

= [Abe = fmax + Ozu1$]+ , fory=0,

where [-]T denotes the positive part.
The boundary at x = xpmax requires additional care, regarding its effect on
the migration term \A,,; and hence on the variation of y.
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e The derivative of x should obviously be non-positive.

e We assume that BE sessions that cannot migrate to GP because of rejection,
remain in BE, and thus remain in the system. Thus, in practice, only real GP

sessions suffer from actual rejection.

e When the total arrival rate to GP is larger than the service rate, the surplus
[Agp + Ami — fgp] must be rejected. The migration behavior will then clearly
change. The actual arrival rates S\mi and 5\gp must now satisfy the constraint
5\gp + Aoni — pgp = 0, Thus, in particular, Ami will be upper bounded by pgp (in
contrast with assumption M3, whereby Ami tends to infinity when y — o0).
Since some of the attempts of BE to join the GP service fail due to rejection,
we shall have S\mz < Ami- The actual value of A,,; will depend on the actual
type of BE applications (e.g. the willingness to retry to migrate) as well as on
parameters such as pricing.

It follows that 0 < Xgp < Agp, and that Ami = S\W(y) must satisfy

Hgp — Agp < :\mi < min{ﬂgpa Ami} s (12)

when Agp + Ami > pgp. We shall further assume that Ami is continuous and
increasing in y. (We note that in the particular case where the rejection proportion
of the two arrival types is the same, and rejected BE sessions do not retry to join
GP, we obtain Ami = ﬁ)‘m’) To complete the specification of Ami we define

S\mi = Ami when Ag, + Ay < pgp. The above two constraints on S\mz can be

summarized as follows:
min{/igp — Agp: Ami} < Ami < min{figp, Ami} (13)

where all quantities are computed at the point (Zmax,y). Thus, finally we obtain

d )

T min{0, Agp — figp + Ami} (14)
d .

pTi Abe — fbe — Ami, TOT T = Tmax - (15)

Having specified the dynamic model, we turn now to discuss the relation (1),
which quantifies the service rate trade-off between BE and GP, and in particular
the parameter o which appears in it. A possible way to arrive at this relation is
by assuming that the system can offer a fixed amount W, of effective bandwidth
(which consolidates the restrictions imposed by link capacities, finite buffers, etc.
and their interaction with service quality requirements). This available bandwidth
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is utilized by BE and GP in a linear proportion to their momentary service rate.
Thus, a service rate ugp in GP requires agppgp units of effective bandwidth, and
similarly ppe in BE requires apeptpe. Here agp and g, are fixed parameters which
are not necessarily equal, due to different data transmission efficiencies, partial
utilization of reserved resources in GP, etc. This is further elaborated at the end
of this section. It follows that the following constraint applies: agpfigp + Otpeflpe <
Winaz- Denoting fimax := Wiaa/ape and a := agp/ape, and assuming that all
available bandwidth is used by BE, we obtain (1).

The service consumption ratio « reflects the fact that a session which mi-
grates from BE to GP might require more (« > 1) or less (o < 1) system resources
(effective bandwidth) than required by it originally. This depends on the exact
nature of the traffic, the exact service category (CBR, VBR etc.), and the resource
reservation scheme. For example, o > 1 would naturally follow from the resource
reservation which is essential to meet service guarantees in the GP class; on the
other hand, a < 1 would apply to the case of partial resource sharing between GP
and BE, that is, not all the resource which are unused by GP are made available
to BE. We address both possible ranges of a.

Remark. As it stands, our model allows gy, the number of sessions in BE, to
decrease to 0 when the available service rate at BE is larger than the arrival
rate there. This is obviously an approximation, and should be interpreted as
representing small values of y, i.e., no backlog at BE, with the actual service
rate approximately equal to the arrival rate. Using some additional modeling
assumptions, it is not hard to obtain a lower bound Y, > 0. For example,
-1

assuming that the minimal possible service time of a BE session is tin (i-€., 7,
is the maximal service rate that a single BE session may consume), then it is
easily verified that y cannot decrease below Ape - tmin (while the model for larger

values of y is not affected).

3. Equilibrium Conditions and their Stability

In this section we characterize the equilibrium conditions at which our system
can operate.
A basic quantity which influences the stability properties of the system is the
(overall) load factor, which is defined as follows. Let

A= /\gp + )\be ) ,u(x) = ugp(x) + Mbe(x) (16)
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denote the combined arrival and available service rates. Define p as their ratio:

_ A _ A
P@) = 00 T Q) F e — o) )

A
B Pmax + (1 — a) g1 ‘

It may be seen that p depends on the load x at GP, and may be increasing or
decreasing in z, depending on « being larger or smaller than unity. As we shall
see, these two possibilities will lead to different system behaviors.

As a first step, we make the following distinction between systems based on
their overall loading conditions.

a. Under-loaded case: p(z) < 1 for all feasible x.
b. Over-loaded case: p(x) > 1 for all feasible z.
c. Non-definite loading: Both p(z) > 1 and p(x) < 1 are possible, depending

on r.

As may be expected, the first case leads to stable system operation with minimal
session backlog. However, this case may correspond to over-conservative system
design, especially when « is significantly different from unity. The second case will
inevitably lead to buffer overflow and session rejection. For completeness, these
two cases are briefly treated below. Our main concern and interest shall lie in the
case of non-definite loading, where the analysis will be conducted separately for
a>1land a < 1.

Before proceeding, we need to define what we mean by “feasible z” in the
above definitions of system loading conditions. As explained in the previous
section, x is upper bounded by Zmax, and lower bounded by =i, (any value
T < Zmin 1S transient, and after some finite time, it is never visited by the state
trajectory). Thus, x is said to be feasible if Zyin < 2 < Tmax-

We now turn to analyze the equilibrium conditions which may prevail in our
system for the different cases mentioned above. Note that the term equilibrium
refers to a point p. = (Ze, ye) for which & = ¢ = 0. Also, as we shall see, under
certain (overflow) conditions a diverging trajectory {& = Tmax and y — oo} is
obtained; for convenience we also refer to that behavior as an equilibrium of
the system. (Obviously, in practice y cannot increase without bound, and will
stabilize around some large, finite value.)
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3.1. Under-loaded case

We assume here that p(z) < 1 for Zmin < & < Zmax. Summing (5) and (6),

we obtain

d

7 @ty)=A—pu() <0 (18)
for < Tmax and y > 0 (the inequality follows from p < 1). Similarly, for y > 0

and T = Tmax we obtain 4 (z +y) < A — u(z) < 0. Evidently, this precludes any

equilibrium (x., ye) with y. > 0.

Consider then y = 0. The corresponding equilibrium value for x is obtained
from (10), namely Agp — pgp(z) = Agp — p1z = 0 yields £ = A\gp/p1 = Tmin. Fur-
thermore, since § = [Ape—tpe ()] for y = 0, it is required that Ape— ptpe(Tmin) < 0;
however this follows since, by assumption, p(zmin) < 1 and since, as we just ob-
served, A\gp = ltgp at T = Tmin.

It follows that the system has a single equilibrium point p, = (¢, ye) at
(Zmin, 0). Furthermore, it can be seen that this equilibrium is globally asymptot-
ically stable, namely for any feasible initial conditions of p(t) = (x(t), y(t)) we
obtain tll)rglo p(t) = pe- This can be verified as follows. First, we note that

a
dt
with equality holding if y = 0. Assuming first that x(0) > Zpin, it follows that

T = Agp — P14+ Ami > Agp — 11T = 11 (Tmin — ) , (19)

x(t) > Tmin for all t > 0. We now show that (z + y) is monotonically decreasing.
Since p(x) < 1 over Tmin < & < Tmax, it follows that A — p(z) < —&, there, for
some fixed €, > 0. Thus, for y > 0 we have (see (18)):
d
E(a:+y)=)\—u(w)<—5o. (20)
If y =0, then & = p1(Tmin — =) < 0, and thus

d 3 +

%(x—l—y) = [ be _Mbe(x)] +/j/1(xm1n_37)
=max {A — (), p1(Tmn — )}
<max{—e, p1(Tmin —x)} <0.

It follows then that (x+y) (which can be viewed as a Lyapunov function) decreases
at least exponentially fast to iy, implying that x decreases to xmi, and y to 0.
In fact, it is easily verified that y reaches 0 within a finite time ¢y < [2(0) — Zpin +
y(0)]/¢,, and then x converges exponentially to i, with time constant (u;)~!.
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Finally, if (0) < Zmin, it follows from (19) that x(¢) converges at least
exponentially to {& > Tmin}, and the above argument may be repeated.

3.2. Over-loaded case

Here we assume that p(x) > 1 for Zmin < = < Tmax, implying that A—pu(z) >
¢ > 0 in that region. The total flow equation now yields
%(x+y):/\—u(x)>€, (21)
for x < Tmax and y > 0.

Similarly, for ¥ = 0 we obtain % (x+1y) > A—p(x) > e. Thus, beyond some
finite time we must have £ = Tmax, or y(t) — oco. However, since \n,; increases
to infinity with y, it follows that x = .y is obtained in the second case as well.

Given & = .y, the asymptotic behavior of y may be obtained from (15),
namely § = Ape — fipe(Tmax) — Ami(y) = f(y), and may depend on the specific
definition of Apmi(y). We note first that f(y) decreases in y since Ay increases in
y; thus, if f(y) = 0 is solvable for some yy (equivalently, A\ . := yli_)rgo Ami (y) >

Abe — Mbe(Tmax)), then y(t) — yo. Otherwise, y(t) — oo def yo- In either case, we
say that the system is in overflow equilibrium, and we have

A — i
Rejection rate of actual GP = op(t0) — Hmaz ml(yo).
Agp Agp

3.8. Non-definite loading, with o > 1

For o > 1, we can see from (17) that p(z) is increasing in x. The non-definite
loading condition is thus equivalent to p(zmin) < 1, and p(zmax) > 1. Under these
conditions the system will have multiple equilibrium points, as summarized below.

Theorem 1. For the case of non-definite loading and « > 1, there exist exactly

three equilibrium points (ze, y.), with the following characteristics:
(1) Te = Tmin, Ye = 0.

(ii) ze € (Tmin, Tmax) satisfying p(z.) = 1, and y, > 0.

(ili) e = Tmax (overflow equilibrium).

Proof. Consider y. = 0 first. From (10) and & = 0 we obtain z, = Tyin = %”

The condition for this point to be an equilibrium is then § = [Ape —ptpe (Tmin)] ™ = 0.
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However, p(#min) < 1 implies that p(Zmin) = fbe(Tmin) + fgp(Tmin) > A =
Mbe + Agp, and figp(Tmin) = Agp by definition of @min. It follows that indeed
[Abe — tbe(Tmin)] < 0, and (Zmin, 0) is an equilibrium.

Next, consider a possible equilibrium with y. > 0 and z. < Tmax. Equating
the total flow to zero gives here % (x+y) = A= p(z) = 0, namely p(z.) =
1. However, by continuity and monotonicity of p and the non-definite loading
condition p(min) < 1 and p(xmax) > 1, it follows that p(z.) = 1 is satisfied
for a unique T, € (Tmin, Tmax). The equilibrium equation for y is then § =
Abe — pbe(Te) — Ami(Te, y) = 0. Recalling that \,,;(ze, y) is strictly increasing in ¥,
this equation will have a unique solution y. > 0 provided that Ape — ppe(xe) > 0.
However, the latter follows from p(ze) = X and pgp(ze) > pgp(Tmin) = Agp. Thus,
there exists a unique equilibrium (z¢, ye) with e < Tmax and ye > 0, which is
defined by p(ze) =1 and Api(Ze, Ye) = Ape — thpe(Te)-

Finally, consider a possible “overflow equilibrium” with . = Zmax. Noting
that p(Tmax) > 1 by assumption, the situation here is similar to the overloaded
case discussed in the previous subsection. Thus, if f(y) = Ape — tpe(Tmax) —
Ami(y) = 0 is solvable for some g, then (Zmayx,y0) is an equilibrium point. Oth-
erwise, y(t) — oo results. [ ]

To understand the long-term system behavior, we need to determine the
stability properties of these equilibrium points. Our stability definitions follow
the standard definitions in the sense of Lyapunov (c.f. [5] or [9]). Namely, an
equilibrium point p, = (¢, ye) is stable if for any neighborhood (or open ball)
B, of p. there exists another (small enough) neighborhood Bs so that p(0) € Bs
implies p(t) € B for all ¢ > 0. p. is unstable if it is not stable in the above
sense. p. is asymptotically stable if it is stable and, in addition, there exists some
neighborhood D of p. such that p(0) € D implies p(t) — pe. Stability of the
overflow equilibrium {x = &y, y(t) — oo} may be defined similarly with respect
to the x coordinate only.

Theorem 2. The equilibria (i) and (iii) are asymptotically stable, while (ii) is
unstable.

Proof. Stability of (i) follows by noting that p(zmin) < 1, so that p(z) < 1
holds in some neighborhood (Zmin — €, Tmin + €) of Tmin. Applying locally the
stability arguments used in Section 3.1, for the under-loaded case, yields the
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(local) stability of (Zmin,0).

Stability of the overflow-equilibrium (iii) is argued similarly to the over-
loaded case in Section 3.2. For the case of y.(t) — oo, since A\p,i — oo it follows
that any downward deviation from x = xax is offset in finite time. For y. =
Yo < 00, we argue similarly that % x > ¢ for some € > 0, for all x < xmax and y
close enough t0 (Zmax, ¥0). Indeed, this follows by continuity from p(zmax) > 1,
implying that % (x+y) > e >0 for (x,y) close enough to (Tmax, Yo), while y =0
at ¥ = ye by the equilibrium condition. Thus, here also x converges t0 Tax in
finite time, and then y converges to its equilibrium value according to (15), as
shown in Section 3.2.

The final equilibrium point (ii), being internal, is a continuity point of the
flows (&, 9), and therefore its stability may be determined by direct linearization
(cf. [9]). Denoting a%)‘mi := 3, and a%)‘mi := [y the Jacobian of (&, y), as
defined in (5) and (6), is

(22)

—H1 +5:L" ﬁy]

apr — Bz, —By

The corresponding eigenvalues are the solutions of the characteristic equation

)‘2+(ﬂ1 =B+ By)A — (= 1) By =0. (23)

Since pu18, > 0 and a > 1 at least one eigenvalue A is positive, implying that the
internal equilibrium (., y.) cannot be stable. [ |

The preceding stability results may be interpreted in terms of the load factor
p(x). Thus p(Zmin) < 1 accounts for the stability of (Zmin,0) while p(Tmax) > 1
accounts for stability of the overflow equilibrium at x = xmax. The instability of
the internal equilibrium (ii), where p(x.) = 1, can be understood by noting that
p(x) increases in x, hence when x deviates from z. a positive feedback mechanism
results which further contributes to this deviation. Of course, this interpretation
ignores the interaction between = and y, and thus in some cases might not coincide
with the actual results, as shall be seen in the next subsection.

The observed stability properties of the system have the following implica-
tion on its operation. Initially, the system may be operating at the equilibrium
(Zmin, 0), resulting in satisfactory performance in both service classes. However,
if the load (z or y) increases momentarily beyond a certain value, the system may
revert to operating in the overflow equilibrium condition, resulting in a large load
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in both service classes and session rejection. Specific measures may be required

to mitigate this phenomena.!

3.4. Non-definite loading, with o < 1

For @ < 1, we observe from (17) that p(z) is decreasing in z. The non-
definite loading requirement is now equivalent to p(min) > 1 and p(Tmax) < 1.
The equilibrium properties for this case are summarized below.

Theorem 3. Consider the case of non-definite loading and « < 1.

(i) There exists a single equilibrium point (ze, y.), which is internal (y > 0, = <
Tmax) and satisfies p(ze) = 1.
(ii) This point may be stable or unstable, depending on the specific system pa-

rameters.

Proof. The possibility of equilibrium with y = 0 (and hence & = xyin) is easily
negated by noting that p(zmin) > 1 implies that % (x+y) > 0 for z = Tmin.
Similarly the possibility of an overflow equilibrium with & = . is negated since
p(Tmax) < 1 implies that % (z +y) < 0 there. It remains to consider a possible
internal equilibrium (z., y.), for which (5) and (6) hold. As seen in the previous
subsection, this immediately implies that p(x.) = 1, yielding a unique value for
Ze, while y, is determined as the unique solution of Api(Ze, ¥) = Abe — Lpe(Te)-

Stability of this equilibrium may again be determined through linearization,
leading to the characteristic equation (23) for the linearized system, repeated here
as follows:

)‘2+(ll«l = Bo+By)A+ (1 — )1y =0. (24)

Since pu18y > 0 and a < 1, the last term is positive, and the stability properties
depend on the value of v := p1 — B+ By at (ze, ye). Thus if v > 0 the equilibrium

is stable, while v < 0 implies instability. However, recalling that 8, = agg”' and
= =52t bo Al are positive according to the migration characteristics,
y = &=t both d g, t ding to th tion characterist

and depending on their specific values v may be either negative or positive. H

1 We observe that this type of stability characterization somewhat resembles that of an Aloha
system [7]: there too, three equilibria exist, two of which are stable, and only one of which is
desirable.
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As observed in the above proof, the equilibrium point will be unstable if
v o=y — % + 63—;"" < 0, which required that the effect of x on the migration

rate Am; will be larger than the effect of 4.

4. Global stabilization of the non-congested equilibrium

As we have seen, for non-definite loading with o > 1 the system exhibits
an unfavorable bistable behavior. Unfortunately, this case is seemingly the most
important one. Although a < 1 is feasible, as explained at the end of Section 2, we
propose that @ > 1 would be the more common case. Furthermore, non-definite
loading reflects a network which has sufficient resources to support the service
demands of normal incoming traffic, albeit under proper resource usage. In this
light, an under-loaded design indeed reflects an over-design.

Specifically, we have seen that in this case there exist three equilibrium
points, two of which are asymptotically stable. While the first stable equilib-
rium, (Zmin,0), provides satisfactory performance to both classes, the second is
an overflow equilibrium. In this section we show that, by exercising a simple call
admission control (CAC) scheme, the system globally stabilizes at the efficient
(and now unique) equilibrium (i, 0).

A CAC scheme should operate on the GP class only, and refrain from re-
jecting BE flow?. Moreover, a reasonable scheme would reject sessions only when
both x and y become large, i.e., exceed some thresholds # and g, respectively.
This means that while y is small, e.g. y = 0, no sessions would be rejected, even
if x grows to its maximal value xmax. Accordingly, consider the following scheme.

CAC Scheme

o If x <& or y < g, then all newly arriving GP sessions are admitted.

e Otherwise (z > & and y > §), reject a portion ¢ (0 < ¢ < 1) of the newly
arriving GP sessions, where ¢ = ¢(x, y) may depend on the number of GP and
BE sessions.

As will be shown, the above scheme, with the proper choice of parameters z,
7 and ¢, and under the standard assumptions of our model, provides the required
21deally, it should start by rejecting sessions that migrated from the BE class; however this is

not possible, since the network cannot distinguish between “genuine” GP sessions and those
that migrated from the BE class.
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stability result. The following discussion indicates the appropriate values of the
parameters.

Consider the original system, without the application of the CAC scheme.
A1—=€)"' — pmax

(1—0)um ’
We proceed to characterize the region on the (z,y) plane in which = > z, and

For a small € > 0, let =, be such that p(z,) =1 —¢, i.e., v, =

4z < —c. Let (z,y), > x,, be in that region, i.c. (see (5)):
)‘m’i('ra y) :S H1T — )‘gp — € (25)

for e sufficiently small. For a fixed > x,, the right hand side of (25) is a positive
constant, while the left hand side is monotonously increasing in y, and takes the
values of 0 and oo, respectively, for y = 0 and y — oo. For each z, < z < Tnax,
define y.(z) def sup{y : Ami(z,y) < 1z — Agp — €}. Note that 0 < y.(z) < oc.
We proceed to introduce some additional notation. Let )\Zf = Agp+Ami(z,y)
denote the total arrival rate to the GP class (prior to the application of the CAC).
Denote by 5\2‘;}5 the actual arrival rate to the GP service, after the rejection imposed
by the CAC scheme, that is, 5\2‘;}" = (1—¢) - Ao'. The CAC will be employed at
states (x,y) for which in the original system we have %x > 0, i.e. for which we

have, instead of (25) (again by (5)):
)\z(;;t = )\mi(xay) + )‘gp > p1x.

We shall choose the fraction ¢ so that when replacing in (5) Ami(z,y) + Agp by
Xtot
gp°

(1=(x,y)) Ny (2, y) < prz—e for all (x,y) such that = € [z, Tmaz] and y = ye().

then %x will be no larger than —e. In other words, we choose ¢ such that

Finally, denote by /_\gp the actual arrival rate of external sessions to GP.

Theorem 4. Let the above CAC scheme be applied to the system with

a A . _ 1 H1T—E€
T=ZTp, Y= xpﬁrﬂ’l;lflgmax ye(l‘) and (b(xay) =1 )\z%t(l_7y)

Then, the system globally stabilizes at pe = (Zmin,0), .e.: for any initial condi-
tions p(to) = (2(t0),y(t0)), z(to) > 0, y(to) > 0, we have lim p(t) = pe.
—00

The theorem is proved thorough the following sequence of lemmas.

4

Lemma 5. Whenever z > x,, &

r < —€.

Proof. Consider x > z,. If y < §, then the lemma follows from the definition
of §. Otherwise, we have x > x, = & and y > §, meaning that the CAC
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scheme is applied. The actual arrival rate to the GP service is decreased to
AU = (1 —¢) - M% = pjz —e. Replacing A% with A% in (5), the lemma
follows. [ |

The following lemma is an immediate consequence of the previous one.

Lemma 6. Suppose that, at some time ¢; > ty, x(¢t1) > x,. Then, there is a
time ¢y, t; < ty < 0o, such that z(t2) = z,.

Lemma 7. Suppose that, at some time t; > ¢, 2(t1) < x,. Then, either (i)
there is some time 5, t; < ¢y < 00, such that x(t2) = z,, in which case (z +y) is
monotonically decreasing for ¢t; <t < 9, or else (ii) for all ¢ > ¢, z(t) < z, and
(z + y) is monotonically decreasing. Moreover, in the later case tll)rgo p(t) = pe.

Proof. Let 7, 7 > t1, be such that z(t) < z, for all ¢; <t < 7. Following the
same lines as in the stability proof for the under-loaded case, it can be established
that (z + y) is monotonically decreasing for all ¢t} < ¢ < 7.

If there is some ¢y, t; < t3 < o0, such that z(t3) = z,, then the above
argumentation, applied to 7 = ¢, establishes case (3).

Otherwise z(t) < z, for all ¢ > ¢;, and it follows from the above argumen-
tation (taking 7 — oo) that (x + y) is monotonically decreasing for all ¢ > ¢;.
Following the same lines as in the stability proof for the under-loaded case, it can
be shown that tllglo p(t) = pe, thus establishing case (7). [ ]

Lemma 8. Suppose that, at some time #; > ty, x(t1) = x,. Then, at z = z(t1),
42 < —¢and (z + y) is monotonically decreasing.

Proof. The first part of the lemma follows from Lemma 5. We proceed to estab-
lish the second part. For x = x,, we have:

d B
E(CK +y)= Agp + Ape — ng(x) — pe()
< Agp + Abe — gp(T) — ppe(x) <0,

where the first inequality follows from Ay, < Agp and the second from p(z,) =
1—-e<1. |

Proof of Theorem 4. By Lemma 6, there is some time ¢; > ¢, such that z(¢;) <
z,. According to Lemma 8, at x = z,, %x < —e < 0, therefore for all ¢t > tq,
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x(t) < x, holds. Thus, by Lemmas 7 and 8, %(x +y) < 0 for t > t1, and the

proof follows as in the under-loaded case. |

Remark. In the presence of CAC, one may consider again the possibility that the
migration of BE to GP will actually be at a smaller rate than A,,;, as in the case
discussed above (expression (12)). It is easy to verify that the assertions of the
lemmas and theorem of this section would still hold. Moreover, the above phe-
nomenon would have an additional stabilizing effect on the system. For example,

the time derivative of z in Lemma 5 will become smaller.

To conclude, we stress the practical implication of the above result. Without
the application of a CAC scheme, the system is bistable, meaning that a transient
congestion may lock it in an over-loaded equilibrium. However, by exercising a
simple CAC rule, while the system can still be temporarily driven to any feasible
state due to transient conditions, it is guaranteed to converge back to the efficient,
under-loaded equilibrium.

Our CAC mechanism has a "smooth" behavior: only a fraction of calls that
use GP service are rejected when the undesirable equilibria occurs. The amount
of rejection is linear in the excess of the actual overall arrival rate ()\Z‘;f) beyond
the available bandwidth for GP. Thus if the excess is small then the rejection rate
is small too, so that the non-congested equilibrium can be reached with a minimal
intervention from the network.

An alternative way to handle occasional undesirable overflow equilibria could
be to reject, during short periods, all arriving sessions, till the system stabilizes
again in the desirable equilibrium (as done, for example, in the TCP/IP Tahoe
congestion avoidance mechanism, where the window size for the transmission of
packets is sharply reset to one when congestion is detected). The advantage of
such a drastic approach is in its simplicity. However, our analysis shows that in
order to avoid congestion it suffices to use our proposed CAC.

Finally, we point out that the CAC only rejects calls that use GP service.
One could propose to reject also BE traffic. We are not enthusiastic about such
a solution, since an application that uses a best effort service (with no guarantee
on the minimum bandwidth) is already penalized by having to accept a very
low throughput during congestion periods. The gain on the overall performance,
which would be obtained by rejecting a session that uses just a small part of the
bandwidth, would be negligible. Moreover, our approach is in agreement with the
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ATM Forum specification concerning ABR traffic, which has no minimum cell
rate guarantee, namely: “the CAC will not block the connection attempt because
of bandwidth allocated to other connections” ([1], p. 85).

5. Concluding remarks

We have analyzed in this paper the behavior of a network that provides both
best-effort as well as guaranteed-performance services. In such networks, during
congested periods, some best-effort applications might prefer to use guaranteed-
performance service instead. We analyzed the possible overall equilibria behavior
of the network due to that phenomenon, and showed how different equilibria,
namely overflow equilibria and non-congested equilibria, are obtained depending
on the network’s and traffic’s parameters. We identified four qualitative behaviors
of the system: an under-loaded regime, an overloaded regime, and two non-definite
regimes. We identified a case of bi-equilibria behavior, where one of the equilibria
corresponds to a congested system. We then presented a call admission mecha-
nism that ensures that the system stabilizes in the non-congested equilibrium. In
all cases of overflow (congested) equilibria, the number of guaranteed-performance
sessions reaches in finite time the available upper limit z;;,4,. In the non-congested
equilibria, the number of guaranteed-performance sessions converges, geometri-
cally fast, to the value Agp/pi1.

The congestion in the overflow-equilibrium case is experienced differently by
best-effort and guaranteed-performance sessions. As the number of best-effort
sessions becomes large, the throughput available for each session becomes small,
and its sojourn time, i.e. the time it takes to transmit all the packets of a ses-
sion, becomes unacceptably large. When the number of guaranteed-performance
sessions becomes large and attains x,,.., the congestion that the guaranteed-
performance sessions experience results in an increased rejection probability of
new guaranteed-performance sessions.

It is important to note that the main results and conclusions of this paper
do not depend on the specific form of the migration rate function \,,;, which may
be hard to estimate, but rather on its general properties (assumptions M1-M3 in
Section 2).

A basic postulate of the present model is that the migration rate \,,; at
time t depends on the current system load only. As noted in Section 2, this
assumption holds, in particular, in the typical case where the rate of change of
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the system load is small with respect to a session lifetime. Otherwise, the number
of sessions that migrate from GP back to BE may depend on past history; for
example, if a congestion condition at BE is rapidly cleared, then sessions that
migrated from BE to GP and have not cleared yet, may decide to migrate back.
Such phenomena may result in richer system dynamics, including a potential for
oscillatory behavior. The investigation of such system dynamics may provide an
interesting topic for future research.

The fluid model proposed in this study seems to be an appropriate and useful
tool for analyzing phenomena that arise due to interaction mechanisms in multi-
class systems. Future research should address extensions to complete network

topologies.
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