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Abstract. We consider a stream of packets that arrive at a queue with a finite buffer. A group of consecutive
packets constitutes a frame. We assume that when an arriving packet finds the queue full, not only is the
packet lost but also the future packets that belong to the same frame will be rejected. The first part of the pa-
per deals with a detailed packet level queueing model; we obtain exact expressions for the stationary queue
length distribution and the goodput ratio (i.e. the fraction of arriving frames that experience no losses). The
second part deals with a fluid model and the fluid analysis leads to simple closed form expressions for the
stationary workload process and the fluid goodput ratio.
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1. Introduction

Often, a set of consecutive packets are grouped into a frame, and loss of one packet re-
sults in the loss of the whole frame. This situation is motivated by telecommunication
systems in which often frames of information are fragmented into smaller entities (cells
or packets) and when loosing one or more packets of a frame, the whole frame is cor-
rupted. This is the case if we send Internet packets (typically of the size of 1 kbytes) over
a wireless link (where packets have the size of around 300 bytes) or over the so called
ATM networks (in which cells have the size of 52 bytes) [10]. Thus, packets of a frame,
that arrive after a packet is lost from the same frame, are useless and it is advantageous
to discard them thus achieving the twofold objective of congestion avoidance and good-
put maximization. In the context of telecommunications, this approach for discarding
is known as the Partial Message Discard (PMD) policy. This policy as well as other
discarding approaches have been studied in several previous papers [6,7,9,11,13].

Our model could also be useful in other applications in which an entity is composed
into different objects that queue up for service, and where the loss of one object makes
the whole original entity useless. One may think of remote computing where a computer
program is split into tasks that queue for service at some remote computer and if a task
is lost then the whole program has to be re-initiated. One could also think of production
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lines, where if some component in the production of some entity is lost then the whole
entity is useless.

In [7,13], the basic performance measure for the study of discarding policies is the
effective throughput, which is the ratio of the amount of departures of good packets to the
total outgoing flow. However, as argued in [11], a more suitable performance measure
is the goodput, defined as the ratio of packets belonging to uncorrupteed frames and the
total amount of packets that arrive at the network element’s input.

The goal of this paper is to present explicit expressions for the stationary queue size
distribution and the goodput of the PMD policy. Most of the previous works [9,11], deal
with numerical studies of the performance of PMD policy. The first part of the paper
considers a Markovian framework: a Poisson process of packet arrivals, geometrically
distributed frame size, and exponentially distributed service times of packets. Explicit
expressions for the queue size distribution and of the goodput are obtained based on
recursions introduced in [11]. The originality of the first part is in providing closed form
expressions for the stationary distribution of queue size and the goodput ratio.

As part of our packet level analysis, we propose an interpretation of the queueing
model as equivalent to a dual of a vacation model (queue with service vacation). Using
this interpretation, we provide a simpler analysis for the limiting heavy traffic regime
(when buffer size approaches infinity).

In the second part of the paper we derive a fluid approximation which is valid for
heavy traffic conditions. The input process (which may be quite general) is approximated
by a fluid with a constant rate. We obtain explicit expressions for the workload process
distribution and the goodput for the fluid approximation. The fluid analysis yields an-
alytically tractable, simple expressions which will be helpful in analytical study of the
sensitivity of the goodput to different parameters for, e.g., the message length, the buffer
size, etc., which were studied numerically in earlier works [9,11]. Also, the nature of de-
pendence of goodput to various parameters is clear, in particular the goodput depends on
the mean message length and the buffer size only through their product. Our analytical
results may be quite useful in dimensioning the buffer and/or capacity that is required
for a given required goodput under PMD policy.

The structure of the paper is as follows. Section 2 analyzes the packet model. It
is composed of the model description (section 2.1), the queue length distribution (sec-
tion 2.2), an alternative modeling through a dual vacation model (section 2.3), of the
vacation approach to the case of large buffer (section 2.4), analysis of the goodput (sec-
tion 2.5) and numerical investigations (section 2.6). Section 3 analyzes the fluid model.
It is composed of the model description (section 3.1), the derivation of the distribution
of the workload process (section 3.2), the goodput analysis (section 3.3) and a numerical
study of the fluid model (section 3.4). We then end with a concluding section. Some of
the technical derivations are delayed to the appendix.
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2. Packet model

2.1. Model description

We consider a single M/M/1/N queue.1 The arrival rate is λ packets per second and the
service rate is µ packets per second. Define the load ρ = λ/µ.2 A message length (in
terms of packets) is considered to be geometrically distributed with parameter q. In PMD
policy, if a packet arrives when the queue is full, it is discarded and all the subsequent
packets belonging to the same message are also discarded, irrespective of the state of the
queue upon their arrival epochs, until the head-of-message packet (i.e., a new message)
arrives. To model the policy, two modes for working of the network element are defined:
the normal mode, in which packets are admitted, and the discarding mode, in which
arriving packets are discarded. The state transition diagram for PMD policy under this
model is shown in figure 1. The packet model is the same as the one employed in [11].
Let Pi,j (0 � i � N , j = 0, 1) be the steady-state probability of having i packets
in the system with the system in mode j (j = 0 for normal; j = 1 for discarding).
Thus, we have the following set of equations for the steady-state probabilities [11] from
figure 1:

ρP0,0 =P1,0, (1)

qρP0,1 =P1,1, (2)

(ρ + 1)Pi,0 = ρPi−1,0 + Pi+1,0 + qρPi−1,1, for 1 � i � N − 1, (3)

(qρ + 1)Pi,1 =Pi+1,1, for 1 � i � N − 1, (4)

(ρ + 1)PN,0 = ρPN−1,0 + qρPN−1,1, (5)

PN,1 = ρPN,0, (6)
N∑
i=0

(Pi,0 + Pi,1)= 1. (7)

Let Qj(z) = ∑N
i=0 z

iPi,j (j = 0 for normal mode and j = 1 for discarding mode) and
Q(z) = Q0(z)+Q1(z) = ∑N

i=0(Pi,0 + Pi,1)z
i .

Remark 1. In many practical applications, the distribution of packet sizes and inter-
arrival times may be more general. In particular, frequently packets have a constant

1 Though we do a single node (router) analysis, we would like to comment that analysis by approximating
the whole chain of routers (between the source and the destination) by one single router which experiences
the maximum losses (the bottleneck) has both theoretical and experimental [3,4] justification (see also [5]).
In this sense our single node should be looked on as the bottleneck node. The service time represents the
time between the beginning of the transmission of a packet on the bottleneck interface until the beginning
of the transmission of the next packet from the same flow.

2 Although we consider the analysis of a single connection, our model could also be useful for the case of
multiplexing. In the latter case, two packets of a flow can be spaced apart by a random number of packets
from different flows; we may add this to the service time of a packet and use the exponential distribution
as an (approximating) candidate for modeling the service times in an equivalent model with a single flow.
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Figure 1. Transition structure under the PMD policy.

size (this is the case in ATM networks [11]). Yet our model can often serve as a good
approximation for other distributions. In particular, a numerical investigation is pro-
vided in [11, section 5] that shows that the results for our model very well approximate
those obtained for constant packet size. Moreover, we expect our model to be insensitive
to both packet size distribution as well as to interarrival times distribution in the heavy
traffic regime, for which we provide in section 3 a fluid limiting model (whose perfor-
mance measures depend only on arrival and departure rates of packets and not on their
distributions).

2.2. PGF and distribution of the number of packets in the queue

Proposition 1. The probability generating function Qj(z) is given by

Q0(z)=P0,1q

[
ρ−1 1 − (ρ−1(1 + ρq))

N

1 − ρ−1(1 + ρq)

+
N∑
i=1

[1 − (ρ−1(1 + ρq))
N−i+1](1 + ρq)i−1

1 − ρ−1(1 + ρq)
zi
]
, (8)

Q1(z)=P0,1
(1 − z − zN+1(qρ + 1)Nqρ)

1 − z(qρ + 1)
(9)

with

P0,1 = (1 − ρ)(ρ(1 − q) − 1)

D

and

D = q
(
1 − ρ−N(1 + ρq

)N)+ (
ρ(1 − q) − 1

)(
1 − ρ(1 + ρq)N

)
The proof is given in the appendix.
By taking the inverse z-transform of equation (8) and (9) we obtain:
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Corollary 1. The steady state probabilities are given by

Pi,0 =



P0,1q

ρ

1 − (ρ−1(1 + ρq))
N

1 − ρ−1(1 + ρq)
for i = 0,

P0,1q
[1 − (ρ−1(1 + ρq))

N−i+1](1 + ρq)i−1

1 − ρ−1(1 + ρq)
for 1 � i � N ,

and

Pi,1 =


(1 − ρ)(ρ(1 − q) − 1)

D
for i = 0,

qρ(1 + qρ)i−1P0,1 for 1 � i � N .

2.3. An equivalent vacation model

Next, we propose an interpretation of our model (denoted by P) as equivalent to a dual
vacation model (denoted by Pd). This interpretation will especially be useful later, in
considering the case of large buffers. Let At,N be the number of packets in the P model
at time t . We define a random variable, Yt,N as

Yt,N = N − At,N .

Yt,N
3 will be the number of packets in the equivalent vacation model. In other words, the

number of packets in Pd equals the number of vacant places in the P. It thus follows that
the service times in Pd are i.i.d. exponentially distributed with parameter λ, and that the
arrival process to Pd is Poisson distributed with parameter µ. We note, however, that in
the original process, arrivals are stopped during the discarding period. This discarding
period will correspond to a vacation period in the dual model. More precisely, we define
a discarding period in P as the duration from the instant that the buffer fills, till the next
time the event B1 occurs, where B1 = {service occurs and the next packet to arrive after
that service is not discarded}.

Note that with this definition, the number of packets discarded during a discarding
period may be zero. Indeed, with probability µ/(λ + µ) = 1/(1 + ρ), the first packet
that arrives after the queue fills, will find the queue vacant and will not be discarded, and
there are zero discarded packets in the discarding period.

A particularly important quantity in the equivalent vacation model is the distrib-
ution of the number of arrivals during a vacation denoted by V , or alternatively, the
number of service periods during a discarding period in the original model. Note that by
definition of the original discarding period V � 1.

Let T denote the instant of the beginning of a discarding period, and let S denote
the instant when the first service completion occurs after T . Let V1 (respectively V2) be
a r.v. distributed as V given that at time S, the message that is being transmitted is bad
(respectively good). In other words, V =d V2 if and only if the next packet to arrive after

3 N in subscript is for the buffer size N .
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time S is not discarded. The latter occurs if and only if the following event B2 occurs;
B2 = {either there is no arrival during the interval (T , S), or there is at least one arrival
but the last arrival in that interval is the last packet of a message}. Let

β := (1 − q)ρ

1 + ρ
thus 1 − β = 1 + qρ

1 + ρ
.

Thus V =d V1 with probability β and V =d V2 = 1 with probability 1 − β.
Next we study the distribution of V1. V1 equals in distribution to one plus A := the

number of services that occur during the duration of M arrivals, where M is geomet-
rically distributed with parameter q. Let B(L) be the number of services in a random
duration L. Then B∗

L(z), the p.g.f. of B(L), is given by

B∗
L(z) = E

[ ∞∑
i=0

e−µL (µL)
i

i! zi

]
= E

[
e−µL(1−z)] = L∗(µ(1 − z)

)
where L∗(·) is the LST of L. Thus we need to evaluate L∗(·).

L∗(s) = E
[
e−sL] = E

[
E
[
e−sTi ]M] = E

[(
T ∗(s)

)M] = N
(
T ∗(s)

)
where T ∗(·) is LST of an interarrival time (∼exp λ) and N (·) is the p.g.f. of a geometri-
cally distributed r.v. with parameter q. Observe that,

T ∗(s) = λ

λ+ s
and N (z1) = qz1

1 − (1 − q)z1
.

Thus, if we denote by α(z) the p.g.f. of A, then

α(z)=N
(
T ∗(µ(1 − z)

)) = N
(

λ

λ+ µ(1 − z)

)

= q

ρ−1(1 − z)+ q

The p.g.f. of V is given by z((1 − β) + βα(z)).

2.4. The case of large buffer

We use now the interpretation proposed in section 2.3 as the dual of a vacation model in
order to study the behavior of our system as the buffer size N becomes large. Clearly,
nontrivial distribution of Yt,N is obtained in the limit N → ∞ only in the heavy traffic
regime ρ > 1.

Observe that,

lim
N→∞

P(N − At,N = k) = lim
N→∞

P(Yt,N = k) = P(Yt = k).

In [8] (see also [12]) the authors have shown that the stationary number of customers
present in a M/G/1 queueing system with generalized server vacation is a convolution
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of the distribution function of two independent positive random variables (stochastic de-
composition), one of which being the stationary distribution of the number of customers
in an ordinary M/G/1 queueing system without server vacations. The other corresponds
to the p.g.f. of the number of packets at an arbitrary moment in a vacation. Let φ(·) and
π(·) be the p.g.f. for the stationary distribution of the number of customers at a random
point in time in the in the vacation system and in the standard M/G/1 queueing system,
respectively. Also, let α̂(·) denote the p.g.f. of the random variable V (i.e., the number
of customers that arrive during a vacation). Then, with arrival rate µ (service rate in
PMD queue) and departure rate λ (arrival rate in PMD queue), and ρ = λ/µ, we have
from [8]

φ(z) = 1 − α̂(z)

˙̂α(1)(1 − z)
π(z)

with

π(z) = (1 − ρ−1)(1 − z)B∗(µ− µz)

B∗(µ− µz)− z

where B∗(·) is the Laplace transform of the service time p.d.f. For our M/M/1/V case,
π(z) simplifies to π(z) = (1 − ρ−1)/(1 − ρ−1z). Using the result of the previous
subsection, and inverting the p.g.f. φ(z), we get, finally,

P(Y = k) = q(ρ − 1)

(ρ(1 − q) − 1)

(
ρ(1 − q)(1 + ρq)−(k+1) − ρ−(k+1)).

One can now check that this is indeed the limit obtained as limN→∞ P(AN = N − k)

from corollary 1. We have, for 1 � k � N − 1,

lim
N→∞P(AN = N − k)

= lim
N→∞

(PN−k,0 + PN−k,1)

= lim
N→∞

[
ρ(ρ − 1)q(1 + qρ)N−(k+1)[ρ(1 − q) − ρ−(k+1)(1 + ρq)−(k+1)]]D−1

= P(Y = k).

2.5. Goodput ratio G

The goodput is defined in [11] as the ratio between total packets comprising good
messages exiting the system and the total arriving packets at its input. Let W be the
length (number of packets) of an arriving message, Q denote the queue length seen
by the first packet of the arriving message and V be the random variable represent-
ing the success of a message (V = 1 for a good message, and V = 0 for a message
which has one or more dropped packets). Then G can be expressed (see [11]), with
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Sn,i � P(V = 1 | W = n, Q = i), as

G = q

∞∑
n=1

nq(1 − q)n−1
N∑
i=0

P(V = 1 | W = n, Q = i)P (Q = i). (10)

In [11], recursions for evaluating these probabilities and hence G were given. We will
present here an explicit expression for G. To do this we will use the multidimen-
sional generating function for probabilities Sn,i which was obtained in a different con-
text in [1]. By some abuse of notation let us denote Si(x) (= ∑∞

n=1 Sn,ix
n−1) and by

Sn(y)(= ∑N
i=0 Sn,iy

i) as the generating function for probabilities Sn,i (1 � n � ∞,
0 � i � N) for fixed i and fixed n, respectively. We also define the two-dimensional
generating function of Sn,i as S(x, y), i.e., S(x, y) = ∑∞

n=1

∑N
i=0 Sn,iy

ixn−1.

Proposition 2. The probability generating function S(x, y) can be expressed as S(x, y)
= ∑N

i=0 ci(x)y
i where, for 0 � i � N − 1,

ci(x) =



1 +K3
(
A1 − A2y

N−(i+1)
1 − A3y

N−(i+1)
2

)+K4
(
B1y

N−i
1 + B2y

N−i
2

)
,

0 � i � N − 1,
0, i = N,

with4

y1,2 = 1 + ρ ±√
(1 + ρ)2 − 4ρx

2
, K3 = −xρ,

K4 = xρ(yN1 − yN2 )

yN+1
2 (y1 − ρ)− yN+1

1 (y2 − ρ)
, A1 = 1

(1 − y1)(1 − y2)
,

A2 = 1

(1 − y1)(y1 − y2)
, A3 = 1

(1 − y2)(y2 − y1)
and B1 = −B2 = 1

y1 − y2
.

Proof. From [1], we have

[
(1−αy)αy−xρα2

]
S(x, y) = 1 − yN

1 − y
(1−αy)αy−xρα2(αy)N+1K1 +xα2(y−ρ)K2

with

K1 = α−(N+1)(yN1 − yN2 )

yN+1
2 (y1 − ρ)− yN+1

1 (y2 − ρ)
,

K2 = 1

(y1 − ρ)(y2 − ρ)

[
−1 + yN1 + ρyN+1

1 (y2 − ρ)(yN1 − yN2 )

yN+1
2 (y1 − ρ) − yN+1

1 (y2 − ρ)

]

4 It should be noted that all the apparent constants y1,2, K3,4, A1,2,3 and B1,2 are functions of x.
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where y1 and y2 are the roots of the equation (1 − αy)αy − xρα2 = 0, i.e.,

y1,2(x) = 1 + ρ ±
√
(1 + ρ)2 − 4ρx

2
.

Also y1 + y2 = 1 + ρ and y1y2 = ρx. We will now represent S(x, y) as
∑N

i=0 ci(x)y
i .

Observe that,

S(x, y) = G1(y)− K3G2(y) +K4G3(y) −K5G4(y)

where

G1(y) = 1 − yN

1 − y
, G2(y) = (1 − yN)

(1 − y)(y − y1)(y − y2)
,

G4(y) = (y − ρ)

(y − y1)(y − y2)
, G3(y) = yN+1

(y − y1)(y − y2)

and K3 = −xρ, K4 = xραN+1K1 and K5 = −xK2. We shall now apply the partial
fraction method and express the right-hand side of the last equation in the form of (yk −
ak)/(y − a) for some k and a. Thus we can write,

S(x, y)= (1 +K3A1)
1 − yN

1 − y
− K3A2

yN1 − yN

y1 − y
−K3A3

yN2 − yN

y2 − y

+K4B1
yN+1

1 − yN+1

y1 − y
+K4B2

yN+1
2 − yN+1

y2 − y

+ (K3A2
(
1 − yN1

)+K4B1y
N+1
1 +K5C1

) 1

y − y1

+ (K3A3
(
1 − yN2

)+K4B2y
N+1
2 +K5C2

) 1

y − y2

where

A1 = 1

(1 − y1)(1 − y2)
, A2 = 1

(1 − y1)(y1 − y2)
, A3 = 1

(1 − y2)(y2 − y1)
,

B1 = 1

y1 − y2
, B2 = 1

y2 − y1
, C1 = y1 − ρ

y1 − y2
and C2 = y2 − ρ

y2 − y1
.

But

K3A2
(
1 − yN1

)+K4B1y
N+1+K5C1
1 = K3A3

(
1 − yN2

)+K4B2y
N+1
2 + K5C2 = 0.

This is because S(x, y) is analytic in y, the left-hand side of equation (11) vanishes at
y = yi , i = 1, 2. Hence, the above equation can be written as
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S(x, y)= (1 +K3A1)
1 − yN

1 − y
− K3A2

yN1 − yN

y1 − y
−K3A3

yN2 − yN

y2 − y

+K4B1
yN+1

1 − yN+1

y1 − y
+K4B2

yN+1
2 − yN+1

y2 − y
.

Again, recalling that

ak − yk

a − y
= ak−1 + ak−2y + ak−3y2 + · · · + ayk−2 + yk−1

and grouping the coefficients of the same power of y we get S(x, y) = ∑N
i=0 ci(x)y

i . �

Having expressed S(x, y) as
∑N

i=1 ci(x)y
i (in proposition 2) we now proceed to

obtain the expression for G using S(x, y).

Proposition 3. The goodput ratio, G can be written as

G = q2
N∑
i=0

(
d(xci (x))

dx

)
x=(1−q)

P (Q = i) = q2

[
d

dx

(
N∑
i=0

xci(x)P (Q = i)

)]
x=(1−q)

.

Proof. We know by equation (10),

G = q

∞∑
n=1

nq(1 − q)n−1
N∑
i=0

Sn,iP (Q = i) = q2
N∑
i=0

∞∑
n=1

Sn,in(1 − q)n−1P(Q = i).

Also,

S(x, y) =
N∑
i=0

yi
∞∑
n=1

Sn,ix
n−1 =

N∑
i=0

ci(x)y
i .

Thus, ci(x) = ∑∞
n=1 Sn,ix

n−1 and(
d(xci (x))

dx

)
x=(1−q)

=
∞∑
n=1

nSn,i(1 − q)n−1.

Thus,

G = q2
N∑
i=0

∞∑
n=1

Sn,in(1 − q)n−1P(Q = i) = q2
N∑
i=0

(
d(xci (x))

dx

)
x=(1−q)

P (Q = i).

Thus, we can obtain the exact expression for the goodput ratio by knowing the coef-
ficients ci(x) and P(Q = i) (= Pi,0 + Pi,1), for 0 � i � N (both being previously
obtained in corollary 1 and proposition 2, respectively). Since the derivation as well as
the final result are complex, we defer these to the appendix. We note that though the final
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closed form expression for G is complex, one can obtain significant insights into the de-
pendence of G on different parameters of the network. In particular, the expression for G
can be exploited to dimension the buffer size for QoS provisioning (like maximizing the
goodput ratio). �

Remark 2. Suppose we add an economic feature to our model, by assigning a reward
of γ per packet that is received and belongs to a good message, and a cost of ζ per
packet that belongs to a bad message. Then the over all average rate of utility is

U = λ
(
γG − ζ(1 − G)

)
.

Observe that maximizing G also maximizes U . Thus measure G can be used as a user
centric pricing scenario: the users only pay for the good messages that the network
delivers and thus is an indication of quality perceived by the source and for which it can
be charged by the network.

2.6. Numerical examples

An extensive numerical investigation of the packet model is available in [11]. In partic-
ular, it provides the buffer size needed so as to achieve a given throughput. It also shows
that the model is robust to the distribution of packet size: the performance obtained for
a fixed packet size are well approximated by our model.

The goal of this subsection is to briefly examine the dependence of the goodput on
the message lengths and also on the buffer size in view of our observations in section 2.4.

Below we plot the G obtained with our explicit formula from equation (A.14) (in
the appendix) with increasing load ρ. We first keep N fixed at 10 (50) and plot for
1/q = 5, 10, 15, 20, 25, 30 with ρ varying from 0.1 to 3.0 (in steps of 0.1) in figure 2
(figure 3). Next we keep 1/q fixed at 20 (2) and plot for N = 5, 10, 25, 50, 100, 200,
again with ρ varying from 0.1 to 3.0 (in steps of 0.1) in figure 4 (figure 5). We observe
a limiting value of G as 1/q becomes large for fixed N in figures 2 and 3. Also for
large values of N , the closeness to this limit is pronounced even at low values of mean
message length, i.e., 1/q. We also observe a limiting value of G as N becomes large
for fixed 1/q in figures 4 and 5 and for small values of 1/q, the closeness to this limit
is pronounced even at low values of buffer sizes. This behavior supports the analysis
in section 2.4 where we showed that there exists a nontrivial limiting behavior as N
becomes large, while keeping all other parameters the same.

So far we have done packet-level performance evaluation of the PMD policy for
a M/M/1/N queue model. The explicit expression for goodput is somewhat complex.
In the next section we propose a fluid model for analyzing the PMD policy towards
obtaining simple approximations for the goodput. The fluid model can be seen as a
weak limit of the original packet model through a standard scaling argument.
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Figure 2. G vs. ρ for 1/q = 5, 10, 15, 20, 25, 30 with N = 10.

Figure 3. G vs. ρ for 1/q = 5, 10, 15, 20, 25, 30 with N = 50.
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Figure 4. G vs. ρ for N = 5, 10, 15, 20, 25, 30 with 1/q = 20.

Figure 5. G vs. ρ for N = 5, 10, 15, 20, 25, 30 with 1/q = 2.
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3. Fluid approximation

3.1. Model description

Our fluid source always has messages to send and the capacity of the fluid buffer is finite,
say B. The fluid buffer is served with a capacity c. The length of a message is assumed
to be exponentially distributed with parameter η. If during the arrival of a message, the
workload process V (t) (alternatively the queue length, i.e., amount of fluid in the fluid
buffer) reaches B, then all the remaining fluid corresponding to this message is dropped.
Let the fluid arrival rate be h.

Remark 3. The fluid limit can be seen as a weak limit of the original model through a
standard scaling. More precisely, consider n models, and add n as a superscript to the
parameters of the nth model. Then the scaling is obtained as follows:

• Arrival rate: λ(n) := nλ;

• Service rate: µ(n) := nµ;

• Size of messages: geometrically distributed with parameter q(n) := q/n;

• Buffer size: N(n) = nB.

Let X(n)(t) be the queue length process of the nth model. Then, as n → ∞, the
process X(n)(t)/n weakly converges to our fluid process V (t), with h = λ, c = µ and
with η = qλ.

A typical evolution of V (t) in our model is shown in figure 6. Also, let A be the
event that the incoming fluid is accepted. To remove trivialities we assume that c < h.

Figure 6. A typical evolution of the workload process V (t) in our fluid model.
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Let Vn be the random variable denoting the queue length at the end of nth non-acceptance
period. The dynamics of Vn can be written as

Vn+1 = Vn + (h− c)An − cAc
n (11)

where An = (B − Vn)/(h − c) is the duration of the (n + 1)st acceptance period and
Ac
n = min(Xn, B/c) is the duration upto which the process V (t) will have a negative

slope where Xn is the remaining length of the current incoming message at the epoch
when V (t) hits B, i.e., at the end of the (n + 1)th acceptance period and the start of
the (n + 1)th non-acceptance period. Let Tn be the epoch of the commencement of the
(n+1)st acceptance event. Thus, Tn+1 = Tn+An+Xn and (Vn,An+Xn) can be viewed
as a marked point process [2]. Thus,

Vn+1 = B − cAc
n.

Denote the steady state Laplace–Stieltjes Transform (LST) of Vn, i.e., E[e−s(B−cAc
n)] by

Vp(s).5 Let ρp be the probability density of Vn (the inverse of LST of Vn) in steady state.

3.2. The workload process

In this section we provide the distribution of the workload process.

Lemma 1. The LST and the probability density of Vn in steady state are given by

Vp(s)= e−sBη
[

1 − e(B/c)(η−sc)

η − sc
+ esBe−ηB/c

η

]
,

ρp(v)= η

c
e(η/c)(v−B) + e−ηB/cδ(v)

(for v ∈ [0, B)).

In the above lemma we obtained the workload LST and probability density at the
end of non-acceptance periods. Next we shall obtain these quantities at an arbitrary time,
i.e. the LST and the probability density of the time stationary workload.

Proposition 4. The LST V (s) and the probability density ρ of V (t) in stationary regime
are given by

V (s) = ηh

(h− ce−Bη/c)
e−sB

(
1 − e−B(η−sc)/c

η − sc

)
− h(1 − e−ηB/c)
(h− ce−Bη/c)

+ 1. (12)

For v ∈ [0, B),
ρ(v) = ρ0(v)+ ρ1(v)

5 The subscript p indicates the point process.
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where ρ0(v) = (1 − h(1 − e−ηB/c)/(h − ce−Bη/c))δ(v), ρ1(v) = ηh/(h −
ce−Bη/c)(e(η/c)(v−B)/c) and ρ(v) = 0 for v � B. Finally, the mean stationary work-
load Mf is given by

Mf = h

h− ce−Bη/c

(
B − c

η

(
1 − e−Bη/c)). (13)

Proof. We shall now use the following inversion formula (see, e.g., [2, chapter 1, sec-
tion 4]) to obtain the LST for the workload process V (t) which we will then invert to get
the probability density function

E
[
e−sV (t)] = E0[∫ T1

0 e−sV (t)]
E0[T1] .

Thus,

V (s)= E0
[∫ (B−V0)/(h−c)

0 e−s(V0+(h−c)t) dt

E0[(B − V0)/(h− c)+X0]

+
∫ (B−V0)/(h−c)+Ac

0
(B−V0)/(h−c) e−s(B−c(t−(B−V0)/(h−c))) dt +X0 − Ac

0

]
E0[(B − V0)/(h− c) +X0]

= (h− c)η

(h− ce−Bη/c)

[
E0[e−sV0] − e−sB

s(h − c)
+ e−sB(E0[escAc

0 ] − 1)

sc
+ E[X0] − E[Ac

0]
]
.

Observe that we have expressions for E[e−sV0] (i.e., Vp(s)), E[V0] (can be obtained from
Vp(s)) and the expression for E[escAc

0] and hence for E[Ac
0] can be easily obtained by

the definition of Ac
0. Thus, we get after some calculations (12). The inverse of the LST

of the last equation gives ρ(v). Finally, Mf is obtained by the integration:

Mf =
∫ B

0
vρ(v) dv =

∫ B

0
v

ηh

(h− ce−Bη/c)

(
e(η/c)(v−B)

c

)
dv

which implies (13). �

3.3. The goodput ratio Gf

We proceed with the model from the previous subsection and in particular, we continue
to assume that c < h in order to avoid trivialities. We define, the fluid analog of the
goodput ratio, Gf as the ratio of the total fluid comprising good messages (i.e., messages
which do not suffer any fluid loss due to buffer overflow) exiting the node to the total
arriving fluid at its input. Let Vf be the random variable representing the success of
a message, Vf = 1 for a good message, and Vf = 0 for a message which has lost
some fluid. Let us define the sub-distribution function F(w, 1) as the probability that a
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message is of length � w and is good, i.e., F(w, 1) = P(W � w, Vf = 1). Then we
can write the goodput ratio as

Gf =
∫∞

0 w dF(w, 1)∫∞
0 w dF(w)

where F(w) is the message length distribution (∼exp η). Again, writing F(w, 1) as,

F(w, 1)=P(Vf = 1 | W � w)P (W � w)

=
∫ B

0
P(Vf = 1 | W � w, V = v)ρ(v) dv

∫ w

0
f (u) du

where ρ(v) is the queue length density and V is the queue length at the epoch of the
arrival of the message6 and f (x) is the message length density.

Proposition 5. The goodput is given by

Gf = c

(h− ce−Bη/c)

[
e−Bηh/((h−c)c)

(
1 − c

h

)
+
(
c

h
− e−Bη/c

)]
. (14)

Proof. Observe that, for w ∈ [0, (B − v)/(h− c)],
P(Vf = 1 | W � w, V = v) = 1

and, for w > (B − v)/(h− c),

P(Vf = 1 | W � w, V = v) = P

(
W <

B − v

h− c

∣∣∣ W < w

)
.

Or in other words, for w ∈ [0, B/(h− c)], if v ∈ [0, B − w(h− c)]
P(Vf = 1 | W � w, V = v) = 1,

else

P(Vf = 1 | W � w, V = v) = P(W < (B − v)/(h− c))

P (W < w)
.

And for w > B/(h− c),

P(Vf = 1 | W � w, V = v) = P(W < (B − v)/(h− c))

P (W < w)
.

Thus we write, for w ∈ [0, B/(h− c)], F(w, 1) = F1(w)+ F2(w), where

F1(w) = (
1 − e−ηw) ∫ B−w(h−c)

0
ρ(v) dv = (

1 − e−ηw)[1 − h(1 − e−wη(h−c)/c)
(h− ce−Bη/c)

]
.

6 Due to PASTA the queue length distribution at the arrival epochs of messages, which come as a Poisson
stream, is same as the stationary queue length distribution.
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Further,

F2(w)=
∫ B

B−w(h−c)+
(
1 − e−(B−v)/(h−c)η)ρ1(v) dv

= h

(h− ce−Bη/c)

[(
1 − e−ηw(h−c)/c)− (h− c)

h

(
1 − e−ηhw/c)]

and for w > B/(h− c), F(w) = ∫ B
0 (1 − e−(B−v)η/(h−c))ρ(v) dv. Thus we get

dF1(w)= ηh

(h− ce−Bη/c)

((
e−wηh/c − c

h
e−ηB/ce−ηw

)

+
(

1 − h

c

)(
e−wη(h−c)/c − e−wηh/c)) dw,

dF2(w)= hη(h− c)

c(h− ce−Bη/c)
[
e−η(h−c)w/c − e−ηhw/c] dw.

Thus, for w ∈ [0, B/(h− c)),

dF(w, 1)= dF1(w)+ dF2(w)

= ηh

(h− ce−Bη/c)
(
e−wηh/c − c

h
e−ηB/ce−ηw)

)
dw

and for w > B/(h− c), dF(w, 1) = 0. Hence we obtain

Gf = η2h

(h− ce−Bη/c)

∫ B/(h−c)

0
w
(
e−wηh/c − c

h
e−ηB/ce−ηw) dw

from which we obtain equation (14). �

Let us now observe the behavior of Gf for extreme values of η, keeping all other
parameters fixed. As η tends to zero we see from expression (14) that Gf tends to zero.
This can be explained by the fact that small η corresponds to very long frames, so that
the probability that the queue will fill during the arrival of a message tends to one (since
h > c).

For the other extreme, i.e. η → ∞, the length of a message is very short; one
could then expect that the goodput would be equal to the relative amount of fluid that is
lost, since a message corresponds to an infinitesimal amount of fluid. This would give
a goodput of c/h. This is however not the real limiting value of the goodput: we see,
in fact, that as η → ∞, we get Gf → c2/h2 from expression (14). The reason that
one could expect to have a goodput of c/h is that this indeed is the fraction of fluid that
could be served. So this could give an expression for throughput. But even for a huge
buffer, this does not take into account the fact that part of the fluid that is already in the
queue corresponds to bad packets: they belong to messages in which some packets are
dropped. In fact, all the queued fluid of a message that arrives when the amount of fluid
hits the boundary is lost. We next provide an intuitive argument through an example that
may justify this limiting behavior.
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Consider η = 1, h = 10 and c = 6. We will show the approximate limit achievable
for an expected behavior of our queue and see that it is close to c2/h2. We look at the
case when a message is discarded, then the expected length of the subsequent discarding
period will be 1 (= 1/η) (the expected remaining length of an exp(1) distributed random
variable). During this period there will be an approximate7 expected reduction of 6
(= c/η) in the fluid level. Then a new message, call it message a of expected length 1
starts arriving. The expected queue length at the end of the arrival of this message will
approximately B − 6 + (h − c) = B − 2. However the expected amount of good fluid
that was injected in the queue by this message is approximately 10. Then message b

starts arriving, whose expected remaining length is again 1. Thus had message b been
completely accepted the expected amount of fluid injected into the queue would have
been 10, but because of buffer overflow the expected amount of fluid that can be accepted
is approximately h× 2/(h− c) = 5 units. Then the next discarding period starts, whose
expected length will again be 1. And the expected amount of fluid that will be discarded
in this discarding period will be approximately 10. Thus we have

Gf = 10 + 10 + · · ·
10 + 5 + 10 + 10 + 5 + 10 + · · ·

which gives

Gf = 10

25
= 0.4 ≈ c2

h2
= 0.36.

Another interesting observation from the expression for Gf is that the dependence
of Gf on different parameters is only through two ratios, c/h and Bη/c. In particular,
Gf is dependent on η and B only through their product. Also, observe that as B tends
to 0, Gf tends to 0 and when B tends to ∞, Gf tends to c2/h2.

3.4. Numerical examples

We shall first plot the density of the stationary workload process ρ(v) and the goodput Gf

using our analytical expressions for an example with c = 8, h = 12 and η = 0.6. To
compare the behavior of fluid approximation with the packet model we also plot the
queue length distribution and the goodput ratio for the packet model. For the packet
model we took λ = h = 12, µ = c = 8, q = η/λ = 0.05. The plot for ρ(v) for
B = N = 100 is given in figure 7. We also plot the curves for G and Gf as a function
of buffer size in figure 8. We observe that the limiting value of goodput c2/h2 by the
fluid model is close ot the actual limit of the goodput in the packet model. We next study
the behavior of Gf as we increase η. Again, we take c = 8, h = 12 and observe the
behavior of Gf for B = 10, 30, 100 as η increases from 0 to 15 in figure 9. The limiting

7 Note that the reduction cannot be greater than B units of fluid, hence, in fact, the reduction is
�min(B,Xc), where X � exp(η). The use of word approximate/approximately in subsequent discussion
is to highlight the fact that we are approximating a restricted exponential distribution as an exponential
distribution.
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Figure 7. The probability density function ρ(v) of the stationary workload process for the fluid model and
the queue length distribution for the packet model.

Figure 8. The goodput ratio as a function of buffer size for the packet model and its fluid approximation.
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Figure 9. Gf vs. η for different values of B with c = 8 and h = 12.

behavior (limη→∞ Gf = c2/h2 = 0.44) as η increases is seen even at low values of η as
B increases. We next show the behavior of Gf for η = 0, 1, 2, 3, 4, 5 as B increases
from 5 to 30 in figure 10. Again the limiting behavior (limB→∞ Gf = c2/h2 = 0.44)
as B increases is seen even at low values of B as η increases. Next we keep all other
parameters same and take h = 9. Thus the limiting Gf for large B (and also for large η)
is 0.79. For different η (B) we plot Gf in figure 11 (respectively 12) and observe again
the limiting behavior for lower h/c.

Remark 4 (A network engineering problem). Consider the case where we want to di-
mension the buffer size at a network node so as to achieve the maximum goodput for a
source when the node employs PMD policy for buffer management. From the expression
for Gf in equation (14) we have

∂Gf

∂B
= (η/h)e−Bη/ce−Bηh/(h−c)c − (η/h)e−Bη/c + (hη/c2)(e−Bη/c − e−Bηh/(h−c)c)

(h/c − e−Bη/c)2

= e−Bη/cηh
(1/c2)(1 − e−Bη/(h−c))− (1/h2)(1 − e−Bηh/((h−c)c))

(h/c − e−Bη/c)2
� 0.

The non-negativity of ∂Gf/∂B follows as h > c. Thus the optimum buffer B size (at
which the goodput is maximum) is the solution to:

1 − e−Bηh/((h−c)c)

1 − e−Bη/(h−c) = h2

c2
.
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Figure 10. Gf vs. B for different values of η with c = 8 and h = 12.

Figure 11. Gf vs. η for different values of B with c = 8 and h = 9.
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Figure 12. Gf vs. B for different values of η with c = 8 and h = 9.

For multiple solutions we shoose the smallest one, as we have observed a limiting value
of Gf for large B. This solution (for fluid model) can provide useful engineering guide-
lines for designing buffer sizes for packet networks.

4. Conclusion

We have provided explicit expressions for the queue size distribution and for the good-
put for the packet model based on recursions introduced in [11]. We then provided an
alternative fluid approximation for studying the PMD policy and obtained the queue size
distribution and goodput in this framework of fluid queue. Our analytical results will
be quite useful in dimensioning the buffer size that should be used for a given required
goodput under the PMD policy. Also the explicit expressions will be helpful in analyti-
cally studying the sensitivity of the goodput to various parameters. Our analysis shows
the existence of nontrivial limits of the goodput for different regimes. An interesting
exercise can be to obtain the limiting goodput expression (for different limiting behav-
ior, large buffers, small mean message lengths, etc.) for the packet and the fluid model
through our closed form expressions. The resulting simpler expressions (expecially for
the packet model) can then be studied to provide guidelines for network designing. We
are currently studying the potentials of the fluid model as an alternative to the packet
model. Our ongoing work include generalizing the fluid model to include Markovian
fluids and experimental validations of our models/findings.
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Appendix A.

A.1. Proof of proposition 1

Proof. From equations (3) and (5) by applying z-transform we get

Q0(z)
[
(ρ + 1) − ρz − z−1

]− qρzQ1(z)

= P0,0
[
1 + ρ − z−1]− P1,0 − ρzN+1[PN,0 + qPN,1]. (A.1)

Similarly, by applying z-transform to equation (4), we get

Q1(z) = P0,1
(1 − z− zN+1(qρ + 1)Nqρ)

1 − z(qρ + 1)
. (A.2)

Now from equations (1), (2), (6) and (A.1), we get on solving for Q0(z)

Q0(z) = P0,0[1 − z−1] − ρzN+1PN,0[1 + ρq] +Q1(z)qρz

[(ρ + 1) − ρz − z−1] . (A.3)

The zeros of the denominator of equation (A.3) are z = 1, ρ−1. At these values of z,
the numerator of equation (A.3) should be equal to 0 because of the analyticity of Q0(z)

(being a polynomial in z of degree less than or equal to N). Thus, substituting z = 1 in
the numerator of equation (A.3) and equating it to 0 we get an equation

PN,0 = (1 + qρ)N−1qP0,1. (A.4)

Also, substituting z = ρ−1 in the numerator of equation (A.3) and equating it to 0 we
get another equation

P0,0(1 − ρ)− ρ−NPN,0(1 + ρq) +Q1
(
ρ−1)q = 0. (A.5)

From equations (A.2), (A.4) and (A.5), we get

P0,0 = P0,1
q(1 − (p−1 + q)

N
)

[p(1 − q) − 1] . (A.6)

We shall interpret equation (7) as

Q0(1) +Q1(1) = 1. (A.7)

From equation (A.2)

Q1(1) = (qρ + 1)NP0,1 (A.8)

and

Q̇1(1) = P0,1[1 + (ρq + 1)N(Nρq − 1)]
qρ

. (A.9)
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From equation (A.3) differentiating the numerator and denominator and taking
limit as z → 1, we get

Q0(1)= lim
z→1

Q0(z)

= lim
z→1

z−2P0,0 − ρ(N + 1)zNPN,0(1 + ρq) + qρ(zQ̇1(z)+Q1(z))

(−ρ + z−2)
. (A.10)

Thus from equations (A.8), (A.9), (A.4), (A.6) and (A.10) we get

Q0(1) = P0,1

(1 − ρ)

[
q(1 − (p−1 + q)

N
)

[p(1 − q) − 1] + 1 − (1 + ρq)N
]
. (A.11)

Substituting equations (A.11) and (A.8) in equation (A.7), and solving for P0,1, we get

P0,1 = (1 − ρ)(ρ(1 − q) − 1)

q(1 − ρ−N(1 + ρq)N)+ (ρ(1 − q) − 1)(1 − ρ(1 + ρq)N)
. (A.12)

Knowing P0,1 we have obtained the generating functions Q0(z) and Q1(z). However,
we can further modify the expression for Q1(z) to a more meaningful form. From equa-
tion (A.3) we write, after some algebraic manipulations,

Q0(z) = P0,1q

[
(1 + ρq)N−1

(
zN+1 − ρ−(N+1)

z − ρ−1

)
+ (1 + ρq)N−2

(
zN − ρ−N

z − ρ−1

)

+ · · · + z2 − ρ−2

z − ρ−1

]
.

Observe that, each fraction inside the bracket on the right-hand side of the last equation
is of the form (xk − ak)/(x − a) which simplifies to

xk − ak

x − a
= xk−1 + xk−1a + xk−2a2 + · · · + xak−2 + ak−1,

thus we get

Q0(z)= P0,1qρ

[
(1 + ρq)N−1zN+1

N+1∑
j=1

(
1

ρz

)j
+ (1 + ρq)N−2zN

N∑
j=1

(
1

ρz

)j

+ · · · + z2
2∑

j=1

(
1

ρz

)j]
.

Grouping the coefficients of the powers of z we get (8). �
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A.2. Exact expression for G

We shall first obtain an expression for
∑N

i=0 ciP (Q = i):

N∑
i=0

ci(x)P (Q = i)= c0(x)P (Q = 0) +
N−1∑
i=1

ci(x)P (Q = i)

= (1 +K3A1)+ (
c0 − (1 +K3A1)

)
P(Q = 0)

+ [
K4B1y

N
1 −K3A2y

N−1
1

] N−1∑
i=1

P(Q = i)y−i
1

+ [
K4B2y

N
2 −K3A3y

N−1
2

] N−1∑
i=1

P(Q = i)y−i
2

− (1 +K3A1)P (Q = N). (A.13)

Observe that
N−1∑
i=1

P(Q = i)y−i
1 =Q0

(
y−1

1

)+Q1
(
y−1

1

)− P(Q = 0)− P(Q = N)y−N
1 ,

N−1∑
i=1

P(Q = i)y−i
2 =Q0

(
y−1

2

)+Q1
(
y−1

2

)− P(Q = 0)− P(Q = N)y−N
2 .

Writing Q(z) = Q1(z) + Q2(z), from the above equation the expression for∑N
i=1 ciP (Q = i) simplifies to

N∑
i=0

ci(x)P (Q = i)

= (1 +K3A1)
(
1 − P(Q = N)

)+ [
K4B1y

N
1 −K3A2y

N−1
1

]
Q
(
y−1

1

)
+ [

K4B2y
N
2 −K3A3y

N−1
2

]
Q
(
y−1

2

)+K3
(
A2y

−1
1 + A3y

−1
2

)
P(Q = N).

And by proposition 3 we write

G = q2

[
(1−q)

(
d

dx

(
N∑
i=0

ci(x)P (Q = i)

))
x=(1−q)

+
N∑
i=0

ci(1−q)P (Q = i)

]
. (A.14)

Thus we need to evaluate (d/dx)(
∑N

i=0 ci(x)P (Q = i)). From the expression for∑N
i=0 ci(x)P (Q = i) from equation (A.13), we write

d

dx

(
N∑
i=0

ciP (Q = i)

)

= d

dx
K3A1

(
1 − P(Q = N)

)+ [
K4B1y

N
1 −K3A2y

N−1
1

] d

dx
Q
(
y−1

1

)
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+ Q
(
y−1

1

) d

dx

[
K4B1y

N
1 −K3A2y

N−1
1

]+ [
K4B2y

N
2 −K3A3y

N−1
2

] d

dx
Q
(
y−1

2

)
+ Q

(
y−1

2

) d

dx

[
K4B2y

N
2 −K3A3y

N−1
2

]+ d

dx

(
K3(A2y

−1
1 + A3y

−1
2 )
)
P(Q = N).

Thus, we need to obtain the derivative terms on the right side of the last equation. We
have obtained these terms. The final expressions are provided here:

d

dx
K3A1 = 1

q2
,

(
K4B1y

N
1 −K3A2y

N−1
1

) = yN−1
1 xρ

(1 − y1)φN+1δ

(
ρφN − δN(1 − y1)

)
,

(
K4B2y

N
2 −K3A2y

N−1
2

) = − yN−1
2 xρ

(1 − y2)φN+1δ

(
ρφN − δN(1 − y2)

)
,

d

dx

(
K4B1y

N
1 −K3A2y

N−1
1

)
= yN−1

1 xρ

(1 − y1)φN+1δ

[
ρ

(
x(N − 1)βN−2

dy1

dx
+ δN−1 −NβN−1

dy1

dx

)

− (1 − y1)NβN−1
dy1

dx
+ δN

dy1

dx
+ (

ρφN − δN(1 − y1)
)

×
(

1

x
+ 1

(1 − y1)

dy1

dx
+ (N − 1)

y1

dy1

dx
− 1

δ
2

dy1

dx
− 1

φN+1

dφN+1

dx

)]
,

d

dx

(
K4B2y

N
2 −K3A3y

N−1
2

)
= − yN−1

2 xρ

(1 − y2)φNδ

[
ρ

(
x(N − 1)βN−2

dy2

dx
+ δN−1 −NβN−1

dy2

dx

)

− (1 − y2)NβN−1
dy2

dx
+ δN

dy2

dx
+ (

ρφN − δN(1 − y2)
)

×
(

1

x
+ 1

(1 − y2)

dy2

dx
+ (N − 1)

y2

dy2

dx
− 1

δ
2

dy2

dx
− 1

φN+1

dφN+1

dx

)]
,

Q(y)= (P0,0 + P0,1)+ qP0,1

(1 + qρ)(1 − ρ−1(1 + ρq))

×
[
ρ(1 − q)(1 + ρq)y

1 − (1 + ρq)NyN

1 − (1 + ρq)y
− (1 + ρq)N+1

ρN
y

1 − (yρ)N

1 − (yρ)

]
and, finally,

dy1

dx
= −dy2

dx
= ρ√

(1 + ρ)2 − 4ρx
.

Thus, having obtained all the terms in equation (A.14) we have the explicit expression
for G.
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