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We analyze a feedback system consisting of a finite buffer fluid queue and a
responsive sourc&he source alternates between silence periods and active pe-
riods At random epochs of timeshe source becomes ready to send a burst of
fluid. The length of the burstdength of the active periodlsre independent and
identically distributed with some general distributidine queue employs a thresh-
old discarding policy in the sense that only those bursts at whose commencement
epoch(the instant at which the source is ready to Setie workload(i.e., the
amount of fluid in the bufferis less than some preset threshold are accejited
the burst is rejected then the source backs off from sendfifegwork within the
framework of Poisson counter-driven stochastic differential equations and obtain
the moment generating function and hence the probability density function of the
stationary workload proces#/e then comment on the stability of this fluid queue
Our explicit characterizations will further provide useful insights and “engineer-
ing” guidelines for better network designing
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1. INTRODUCTION

Selective message discarding policies have been prop8sedd are implemented
in routers(e.g., in Cisco BP 8600 seriggo prevent network congestioihis is
particularly the case with the router supporting UBRspecified bit rateservice
class of ATM where message.e., a frame discarding is employed to achieve the
twin goals of reduced network congestion and increased go¢diplitin the ATM
context message discarding is based on the idea that loss of a single packet results
in the corruption of the entire message which it belongsand hence it is advan-
tageous to discard the entire remaining mess&ge discarding mechanisms are
frequently usedthe partial message discarding®MD), in which packets that be-
long to an already corrupted message are discaatatitheecarly message discard-
ing (EMD), in which in addition to partial discardingn admission control is applied
to reject an entire message if upon arrival of its first padket queue exceeds some
threshold valu& (threshold discarding 10]. We have focused both on the discrete
as well as on the fluid analysi®ack-to-back message arrival with exponentially
distributed message lengitaf the first mechanism ifd] and of the second if5,6]
with the goal of obtaining explicit expressions for performance metrics like the
stationary distribution of the workload process and the goodput. riatiboth the
packet model i4,6] and the fluid model ifi4,5], the source was nonresponsive to
message discarding at the network element and thus the system was effectively
open-loop The discarding policies worked independently without any cooperation
from the sourcdthe source continues sending even if its data are being rejected by
the network node Also in the fluid model if4,5], we have back-to-back messages
with exponential distribution of length and thus the fluid arrival rate was deterministic

In this article we study responsive sourc@s the spirit 0f[8,12]). We propose
a model for the feedback system consisting of the network node with selective burst
(the burst can be seen as a messgalgcarding and the source which responds to
congestion signalén our casethe congestion signal being positive if the queue
length at the network node is higher than some preset threshold and is negative if the
gueue length is less than some preset thregh®hds will help us in understanding
the improvement in the performance achievable with combining selective burst dis-
carding with congestion feedback to sources and responsiveness of sources in back-
ing off from sending

Our model consists of a finite buffer fluid queue fed by a source that alternates
between off periods and active periods off period corresponds to a time interval
when the source is not sending fluid and an active period corresponds to an interval
when the source is actually transmitting fluikd random epochs of timethe source
becomes ready to send a burst of fluithe lengths of the burstdengths of the
active periodsare independent and identically distributed with an exponential dis-
tribution. The queue employs a threshold discarding policy in the sense that only
those bursts at whose arrival epothise workload(i.e., the amount of fluid in the
buffer) is less than some preset threshold are accefftdte burst is rejectedhen

1By arrival epoch of a burst we mean the time instant when the source is ready to transmit a “potential”
burst
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the source backs off instantaneously from sending and goes into a diberoteoff)
period The off-period distribution is characterized as followdter an exponen-
tially distributed silence timea new batch arrivedf it is acceptedthen the off
period endsOtherwise a new exponentially distributed silence period commences
and so onThe off period is then the sum of the consecutive silence periods

Our analysis employRBoisson counter-driven stochastic differential equations
[2,3] for describing the workload dynamid#/e obtain closed-form expressions for
the distribution of the stationary workload process by first finding the Laplace—
Stieltjes transforn{LST) of the stationary workload process and then inverting it

In Section 2 we formally define our model and state our main results on the
LST and the density of the stationary workload proc@se infinite buffer case
along with its stability analysis is presented in Sectiom3®Bection 4we present an
approach for analyzing a policy which has partial discarding of bursts in addition to
threshold burst discardirfy

2. MODEL: FORMAL DEFINITION

The fluid arrival rate ish in the active period and zero in the off periggdhich
models either the thinking time of the source or forced back-off by the source due to
positive congestion feedbagkhe server has a constant capadity et the buffer
size beB (maximum amount of fluigland the threshold b€, K < B. Let the silence
and back-off periods be exponentially distributbdth with parametei,, and let
the burst sizes also have an exponential distribution with paramstdret the
distribution of the off period between messages be as described in Section 1

We have analyzed the same model but with infinite buffé7in\We extend here
the analysis to the finite buffer case and obtain expressions for the stationary distri-
bution of the workload processhe results for the infinite buffer can be obtained by
takingB — oo in the expressions for the finite buffer case and we present them as a
special case of our model

The discarding policy is such that if at the commencement epoch of a message
the workload process(t) is less thark, the message is admitteatherwise natWe
assuméthatc < h. Figure 1 explains the modéhe source behavior and the work-
load process in the queue

We write the dynamics of the system in terms of Poisson counter-driven sto-
chastic differential equatioi8]. LetN; andN, be Poisson counters with parameters
A1 andA,, respectivelyWe define a new variable € {0,1} as the indicator of the
actual arrival procesgo the buffer x(t) captures the behavior of the discarding
policy. The dynamics ok(t) and of the workload (t) are

dx(t) = (=x(t) + 1) dNy 1 (v(t) < K) — x(t) dN,, (1)
dv(t) = —cl(v(t) > 0)dt+ hx(t)I (v(t) < B)dt+ cx(t)l (v(t) =B)dt.  (2)

?Recall that under partial discardingnce the buffer starts overflowinthe source backs off instanta-
neously and goes into a silence period

3For the case = h, the workload will always be zero.m 1.
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) active period negalive feedbick ' active period
source backs off from sending
the burst
positive feedback
source transmits a burst \
0 N silence period

slope -¢

slope (h-c)
buffer full, fluid loss due to
buffer overflow

buffer empty

Ficure 1. The dynamics of the arrival process and the workload in our model
T,, andT, denote thenth active and silence periodespectively

Remark 1:Observe that iff3] a model for a finite buffer fluid queue without
discarding has been studiedowever the expression fodv(t) in Eq. (28) in
[3, Sect 4] does not have the boundary terfa = B). This will result in a “chatter-
ing” of the fluid level at the boundary

We next present our main resulhe LSTV(s) (= E[e"¥]) of v is obtained
from which we obtain the stationary probability density functietv) ofv. The LST
will be obtained by deriving a recursive formula for the mome{s"] for all
positive integers.

ProrosITION 1: V(s) is given by
(P2—P)%|[ (h—0)
1+gss | A, +(h—0)s
(h—c)
Az

.S (hth=0)g(d=p.) ho Elx]) + 9s(1—pz)s(e **—1)
1+9gss c(A+ Ay) c 1+ gsS

V(s) =

(est _ estefAz(BfK)/(h—c) )

(1-p)(e®—1) N
1+ 0ss

4 (efAz(BfK)/(hfc) _ 1)] + Os 1

)
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where p = Prob(v < K), p, = Prob(v < B), and

— (1 h)\l -1 -1 h/\z
%= c(A1+Az)) 7 %= C(A1+A2) G-
05 = ALt A, Y, Os = ALt A, % (h—OE[Y,]’

e - i (1- e po(1- 7)) B ety (g

CoroLLARY 1: The stationary probability density functiop(-) of v(t) is
given by

Do form=20
p(m) forO<m<K

p(m) = po(m) forK=m<B
1-p, form=B,
where
B h/(h-c)go(1—p;) o
Po = [1"' C< Gs(As + Ap) E[X]> (1 pz)], (5)
_ (P=pP)(h =08\ e im0 _ 110 gsim
pa(m) = s (e (B7/he) —T)ero
h h_ 1_ 2 —1
+ ((1— ) (1= gs) - E<( i E[X]>>gslegs " (6)
po(M) = pa(m) + M (@ *2(m=K)/(h=c) _ e—gs’l(m—K)) (7)

A20s
(l_ h— c))

and wheres (+) is the Dirac delta function and,mand p, are given by

1+a,—a,(l+e %K) —l—a +(a,+ag)(l+e % )+ (gs—1e %
—1+az(a;+a,) —as l+ag(—a,+(gs—1) —as+as) +as

y lm} _ lae—aﬁegs ((gs—l)+ae—a7)] )

P2 az((gs—1) +ag— ay)
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with

a, = m (e 2(B=K)/(h—c) _ 1)(1 — e—gs’lK),
Az

wrle )
a2 __1,
A+ A\ c

—ag-1 _n-1
az;=e 9s K_e 95 B,

_%h-0 (e 22(B-K)/(h—c) _ 1)

Az

gs(h — c) (e *2(B-K)/(h—¢) _ g=0s7(B-K))

%= Az 1— 95_/\2 ’
(h—c)
L N (h-og
¢ Os(Ay + Az)

h Ay
a7 = - .

C ALt Ay

2.1. Model Analysis and Proofs of the Main Results

Observe that the fluid level never remains steady Kt(visiting it only at isolated
points in timg and hence does not have any probability masskatThus the
distribution function is continuous a. However there is a probability mass at
v = B due to the buffer size being finitEérom stochastic calculifswe can write
from (1) and(2)°®

dv™* = (n+ 1)v"(—cl (v > 0)dt+ hxi (v < B)dt+ cxl (v = B) dt) (9)
do"x = xnw" T dv + v" dx
= " x(—cl (v > 0)dt+ hxl (v < B) dt + cxl (v = B) dt)
+ o " [(=x+ 1) dN I (v < K) — xdN,]. (10)
Note thatP(v = B) = 1 — p,. From(9) and(10), we get
dE[v"**] = (n+ 1)(—cE[v"]dt + hE[v"X|v < B]p,dt + cE[v"XI (v = B)] dt),
dE[v"X] = A, dtE[o"(—x+ D)l (v < K)] — A, dt E[v"X] — cnE[v""1x] dt
+ hnE[v""x2|v < B]p, dt + cnE[v""1x21 (v = B)] dt. (11)

4See the Appendix an@].
SFor notational convenienchenceforth we will not showin parentheses
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Observe thatE[v""*x?|v < B]p, = E[v"*x?] — E[v""x?*[v = B](1 — p,) =
E[v" Ix] — B" (1 — p,). This is because = B only whenx = 1 and also
E[v" 2] = E[v"*x] for anyn = 1. Thus we get

dE[v"x] = (h—c)nE[v" x]dt — hnB""1(1— p,) dt+ E[v"|v < K]p,; A, dt
— E[v"X|v < K]A,p; dt — E[v"X|v < B]A,p, dt
—B"A,(1—p,)dt+cnB" (11— p,)dt. (12)
By the total probability argumenive can write
E[v"|v <B]p,=E[v"|v < K]p,+ E[v"|K < v < B](p2— po),
E[v"X|v < B]p, = E[v"X|v < K]p; + E[v"X|K <v < B](p, — p1).
Thus we can write(11) and(12) as
dE[v"*1] = (n+ 1)(—cE[v"|v < K]py — CE[v"|K < v < B](p, — py)
+ hE[v"x|v < K]py + hE[v"X|K < v < B](p, — p,)) dt
dE[v"X] = —ncE[v" x] dt + nhE[v" x|v < B]p, dt
+ ncB" (1 - p,) dt— E[v"X|v < K]pyA, dt
+ E[v"|v < K]pi A dt— E[v"X|v < K]p; A, dt
— E[v"X|K <v <BJ](p, — p)A,dt — B"(1— p,)A,dt.

Thus for the existence of the steady statee following should vanish

E("|v <K)
P11 0 —(A1+2A2)pr —Ax(p2—p1) E@"|K<v<B)
—cpr —C(p2—Ppa) hp, h(p2— p1) E(w"x|v < K)

E(v"X|K <v < B)

n(h—c)E[v" ] — (L—p,)(n(h—c)B" 1+ B"A,)
+ < 0 ) (13)

Thus we have two equations in six unknow(tise four conditional expectations and

p. andp,). However an important observation to be made here is that forenyl,

E[v"|K <v < BJ]andE[v"x|K < v < B] can be calculated alternatively as follaws
Whenv = K and the state of the modulating process changes from zero to one

for the first time(and succeeding timgsthen the incoming fluid is not accepted

This is done untib < K. Also, even if the current on period started whes K (and

hence acceptgdutv reaches the levé before the on period enghen the excess

fluid corresponding to this on periddhich arrives whem = B) is lost due to buffer

overflow The queue length can only cross the threshold af any time, if x(t) =

X(t7) =1. Because the sojourn time in a state is exponentially distrihthed:xcess
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time the Markov chain spends in state 1 after tinseagain exponentially distributed
given that the chain was in state 1 at tim&he fluid level will rise steadily with a
rate(h — c) fromt until the Poisson proce$$ causex to change from one to zero
or untilv = B (whichever occurs earligrThen eitherv will stay atB (if the excess
time the Markov chain spends in state 1 after tingegreater thaB — K)/(h — c))
or v will start decreasing at a steady ratecafntil the buffer level i&K. During this
period(whenv > K), even if a new message arrivesith fluid arriving at rateh),
the fluid is not acceptedhe fact highlighted by the presence of an indicator function
(v < K)in (1)), and even if the current on period started when K (and hence
acceptedlbutv reaches the levé before the on period endhen the excess fluid
corresponding to this on perigavhich arrives when = B) is lost(the fact high-
lighted by the presence of an indicator functidn < B) in (2)). LetT;, i =1,2,...
be the random variable denoting the time spent bfter crossind< at theith cross
and during which the conditiod < v < Bis true Thus

Y(h-c _h
Y+ =Y (14)
Cc C

where

_<B—K )
Y, = min{ —, X;
h—c

andX; is the excess sojourn time in statéNbte that the condition(t) > K implies
that at the time of crossing the levl say at timet; = t, x(t;) = 1. Thus the
sequencéT;} is independent and identically distributéinceX; ~ expA,) and

o223 (2232
[Yi]= A= + h_c " hoc/l

which gives the expression f&{Y;] in (4). Observe that we can write

d d
E[v”\K<u<B]:E[v"|K<v<B,d—lt):(h—c)]P<d—l;:(h—c)|K<v<B>
+E[ "K < <de— ]P(dv— K < <B> 15
v v at c i c v . (15)

From(14), we haveY; = (c¢/h)T;. Thus we have

P(% (h—c)|K < <B>—E
dt ¢ v " h

and

dv dv
Pl—=—-cK<v<B|]=1-P|—=h—-c|[K<v<B|=1-
dt dt

Slo
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Thus from (15), we can write

dv

dt

+E[ K < <de ](1 C)
n — =-C e
v T h

Now, observe that when the conditigdv/dt = h — ¢, K < v < B) is trug v(t) :=
v1(t) = (h—c)(t — ty) + K, wherety is the last time the workload process wa¥at
Thus we have by the Renewal Reward Theorl8]

E[ f ) dt}
c} _

o
E[v”|K<v<B]=E[U”|K<U<B, :(h_c)]ﬁ

0

dv
Elv"|K<v<B,—=h-—

dt E[Y1] ,
B (K + Yl(h _ C))n+1 _ Kn+1 .
—e[rmae e

dv
=E|v"|K<v<B,— =-¢C
dt

=E[v"|K <v < B]. (16)

We proceed to evaluate[v"x|K < v < B]. By similar argumentsit is given by

E[ "X|IK<v<B CIU—(h c)}C+E[ "XIK<v<B do_ c](l C)

v"'X v "t = h vX v it = h)

Also x = 1 when(dv/dt = h — ¢,K < v < B) andx = 0 whendv/dt = —c,
K <v <B). Thus

dv c

E[v"™X|[K<v<B]=E an|K<U<B,a=h—C h

B <E|: (K + Yl(h _ C))n+1 — KN+l
- (n+1)(h—-c)

C
](E[le) Loan

Observe that froni13) for n = 1, we will require an expression fd[x]. Next, we
continue the analysis and obtain an expressiorefos] in terms ofp; andp,.

LemMma 1: E[x]is given by

Sl &
At A —(p>—p1) YL (18)

ProoF: In the steady state froifi), we get

E[x] =

AE[X] = piAs — E[x[v < K]piA;. (19)
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Also,

E[X] = E[x|v < K]p, + E[X|K <v < B](p, — p1) + E[x[v = B](1~p,)

d
:E[X|U<K]p1+(E[x|K<u<B,d—Lt]:h_ }

dv
><P<—=h—c|K<v<B>
dt

dv
+E[x|K<v<B,—=—c
dt

d
><P<—=—c|K<u<B>>

X (p—p) +(1—pyo)

<

= Elxlv < Kp= E[X = ¢ (po= 1) = (1= o). (20)

The equivalence follows as= 0 for the cas€éK < v < B, dv/dt= —c). From(19)
and(20), we obtain(18). [ |

PrOOF OF PrOPOSITION 1: We eliminateE [v"x|v < K] from the steady-state equa-
tions After some calculationsve obtain

E[v"|v <K]= [2((E[U”X|K < v < BJAy(p,— p1) + n(h—c)E[v" ]

—(1—p2)B"(N(h—)B™1 + A,))/(Ay + AJ))

hp Ay -1
—E[v”|K<v<B](pz—p1)KD1—ﬁ) . (21)

Replacing the left-hand side of the last equation@y(E[v"] — E[v"|K <
v<BJ](p,—p1) —B"(1—p.)) and usinge[v"X|K < v < B]=E[v"|K <v < B] X
(c/h) from (17), we get from (21),

E[v"] = ginE[v" *X] + go(p2 — PE[v"|K <v < B] + g5(1— p,)B"

+g4n(1—p,)B", (22)
with
_ 1 h/\l -1 _ h(h - C) _ 1 /\2
0o = Ot A ) 0= CAL+ Ay) Jo, 0= At A, Yo |>

(e _ —h(h—0)
93_[ <c()\1+)\2)>g°]’ 9= e+ Ay %
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Also, with E[v"x] = E[v "Xl (v < B)] + B"(1 — p,), from the steady-state behavior
of (9), we can write(for n = 1)

(h-o

E[v"x] = EE[U”]—FB” = (1-p,). 23)
From(16), (23), and(22) we get forn = 2,
E[v"] = gsnE[v" ']+ Gy @ (1—-pynB™*
o 2P B vy h— et — Ko
* (n+1)
+ g3(1— p,)B" + gs(1— p,)nB™ L (24)

Forn =1 from (16) and(22), we have

Elv] = 0. E[X] + 06 (pz—;pl) E[(K+ Yi(h—c)?—-K?]+g,(1—p,)B", (25)
where
_c B 0> - h(h—c)B™t + ha,
05 =01 h’ Os = E[Y,](h—c)’ g7 = CAL+ Ay) % |

E[Y,] being obtained earlier it4).

Thus we have a recursive relation betweefp"] andE[v" 1] for n = 1. With
thesewe will proceed to find the LST of the stationary worklo&adirther multiply-
ing both the sides af24) by (—s)"/n! and summing fromn = 2 to co, we can write
(with g; + g4 = —0s)

22( S) E[b"]
_gq)h—1 B 1
= 0s(— S)n§>:2E[Un 1]( )1)| 0L py) (= S>§2( sl)I
+ Ge(P2 — PLE _E[(K+Y(h_c))n+1 Kn+1](_s)n+l
R IEE =R Dl
s

+0s(1—p2) X B" (26)

n=2
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Adding to(26) and multiplying(25) by (—s), we get

2(—)

n=1

Efv"]

n—1 (_ )” ' (_Bs)n_l
=009 L LT Ty e s 2 T

n+1 n+1 ﬂ
+ (P2 — pl)E|:(_ gl[(K"‘Yl(h_C)) — K™ (n+l)!]

—g)n h(h = c)go
b1 p) 3BT S sGEIX + L O R sapy. (27)

Also, observe that

n+1 __ n+1 ﬂ
{ IS RACES) ](n+1)!]

est
= E[ s (1—e Mh9s) — vy (h - c)},

e~ Ks
E[ (1—e ah=9s) —y(h— c)]

_ (h—c) (e7Ks — g Bsg—12(B-K)/(h—0))
A, +(h—c)s
n (h—c) (e 2(B-K)/(h=c) _ 7).

Az
FurthermoreV(s) = > -o(—s)"Ev"/n!; thus we get from(27)
V(s) =1 = —gss(V(s) = 1) + gs(P2 = P1)

(h—o¢ K Bsa—A
— (e~ s __ e sef 2(B—K)/(h—c)
A+ (h— c)s( )

h—

. (h-o)
Az

(e*/\z(B*K)/(h*C) _ 1):|

h(h—c)go(1—p,)
C(Ay+ Ay)

+(1-p)e® -1+ S( - glE[X]>

+0s5(1—py)s(e ®—1),

which implies(3). u
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Proor oF CorOLLARY 1: Taking the inverse LST af3), we getfor0=v =K, (6).
ForK < v = B, the inverse LST implies

(p2— P1)gs(h—c)e ™
(1+9s9) (A + (h=0)s) )’

p(v)==pﬂv)=:pﬂv)+-£‘l< (28)

where£ ~* denotes the inverse LSThus(with * denoting the convolution operajor

1

E71 = e—gglu * e*)lzv/(hfc)

(s+0g5%) <s+ L)

Os h_oc
1 1
= ———————— (e /("0 — g707v), (29)
=,
> (h-o)

Thus from (29) and(28), we get

,Dz(m) — Pl(m) + (pz_—/\pl;ge (e—/\z(m—K)/(h—C) _ e—ggl(m—K)), (30)

20s
< (h— C))

which is(7). Observe thafy p;(v) dv=p, andf p,(v) dv = p, — p;. Thus we get
from integrating(5) and(6), and(7) with limits [0, K) and[K, B] respectivelytwo
linear equations in two unknowms andp, which gives explicit closed form solu-
tions forp; andp, in (8). n

3. INFINITE BUFFER CASE: THE WORKLOAD PROCESS
AND THE STABILITY ANALYSIS

TakingB — oo in Corollary 1, we have the following

CoroLLARY 2 ([7, Prop 2]): The stationary probability density functign(-) of
v(t)is

(pi(m) forO=m<K
aA;
ko(1-p) (h—o)
p(m) = I (e—[Az/(h—C)](m—K) _ e—a(m—K)) + pa(m)
(a T (h- c))
\ form= K,

®For a random variabl¥ with distributionF (x) and LSTL(s)(= [5° e **dF(x)), we mean by. 1, the
probability density(if it exists) of X (i.e., L[ £(s)] = dF(x)/dx).
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where

_6 1 DE iE & 1 —am
pi(m) = (m)< T [XJ>+<Ck1 [X]_kl( —p)>e )

K = (h—o0) 1 hA, -1
1_[(/\1"‘)\2)( C()\1+/\2)> ]’

k, = |1 A2 (4 My \* kit
= — — a:
2 X+ Ay Ay + Ay) ’ .

Elx] Al ((1 c)+c> B 1
=+ \PUTh) ) PT a

Ae 3h

= (1-ky+ ke )L
C= Dt Ao ket ™)

Remark 2: TakingK to infinity in Corollary 2 we get

c(Ai+1y)

- Aperzm
c(AL+Ay) 2

p(m) = (1 >6(m)+

which is the probability density function for the stationary workload in a single
server infinite buffer queue and is of course the same as the results of, Mitc#,
and Sondhj1].

Next, we establish the stability of the queue for the infinite buffer chsear-
ticular, we show that the workload process is a renewal processhat endwe
consider the Markov chaiyi,, which is the workload as seen by the commencement
of the nth potential arriving messag&/e will show thatV, is a Harris recurrent
Markov chain and that the empty state is recurrent whenewe®. This will then
imply that the original workload process is a renewal procésshat endwe recall
the following sufficient condition for the Harris recurrenaghich follows from
[11, Thm. 14.0.1, p. 330].

LEmMma 2: Assume thaY, is W-irreducible (for somel) and aperiodic. Let there be
a function f, some > 0, and some small set C such that

E[f(vn+1)_f(vn)|vn: U]< —€+ I{U & C} (31)

Then, the Markov chaifV, is positive recurrent, it has a stationary probability
7, and the n-step transition probabilities’Ronverge to ther in total variation as
n— oo.
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InLemma 2 a setCis smallif there exists some integara constang > 0, and
a probability measure over the state spadesuch that

[P"]ua>gp(A) forall x € Cand measurable sétC R. (32)

THEOREM 1: Assume that ¢ 0. Then, the procesk, is Harris recurrent.

Proor: DefineC =[0,K]andf(v) = v. Let T be an exponentially distributed ran-
dom variable with parameter,. Then for all v & C,

K
E[Vn+1 - Vn|vn = U] < —CE{min(T, €>:| = — €.

Thus (31) holds Next, we check tha€C is indeed a small setet Z; be an exponen-
tially distributed random variable with parameter, i = 1,2. Viewing Z; as the
length of the off period and, as the length of the on peripdie have for any € C
and measurabla C R,

) K 2K 3K
[P?],a=P E<ZZ< E,Zl>? Poa-

Thus (32) holds with¢(A) = Pya andg = P(Z), where

Z_{ K <Z,< 2K Z>3K}
“lh=c TP T h-¢ 7 ¢ )

Note that orZ, a message starts to arrive wher K and then no more messages are
accepted until the system empties

Observe thav), is ¢-irreducible[11, pp. 70 and 87 because the probability of
eventually reaching any measurable geC R from any statex is greater than
go(A). Finally, the aperiodicity follows because the probability to go from state 0
to state O is strictly positive u

4. COMBINING PARTIAL AND THRESHOLD DISCARDING

Observe that in our discarding poliaye continue accepting the fluid of an accepted
burst even if during the arrival period of the burgihe queue hit®8 and the buffer
overflows Thus the distribution function has a positive mass atB. Amuch more
efficient policy is one in which a source also backs off when the queudhitbus
there may be partial discarding of an accepted message

The difference between our model and the one in which we combine both thresh-
old (like in our mode) and partial discarding policies is that now wH&is reached
immediately discarding begingnlike the threshold discardinthis time not a whole
message is discarded but only the remaining medsdigeB is reachedl Hencethe
probability mass that we had Bt(see Fig 1) disappears
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In both types of discardingpartial at the boundary and complete at thresholds
we assume that when discarding begihg source changes immediately from the
active period to a silence periotihus fluid stops being injected to the system once
discarding begins and a “thinking time” begins until the arrival of the next batch

Consider a sample pathoft) in our previous modeLet 7; be theith timeuv (t)
hits B and leto; be theith time it leavesB. Define S§,i = 1,2,... to be the time
interval(r;, o; ]. We now construct a new samglé&) that is obtained bgliminating
the periodsS fromv(t) (by simply “cutting” them ouk Then it is easy to see that
v(t) has the same distribution as the process in the new model that combines both
discarding mechanism$Ve conclude that the stationary probability density func-
tion of the new model is given by(-)/p,, wherep andp, (the probability of not
being atB) are given in Corollary dwe thus have also the probability distribution of
the model with combined discarding mechanisms
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APPENDIX’
Consider a stochastic differential equation drivemiydependent Poisson count&s. ..., Ny,

dx=f(x)dt+igi(x)dN, X €€ R"
i=1

"This material summarizes results frg8] which we make use of
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Then we have the following It6 rule
If :R" — Ris a differentiable functiofthen

a n
do(x(1)) = <a—i) f(X)> dt+ > [¢(x(t) + g (x(1)) = ¢(x()]dN.

i=1

Also, sincex(t) is continuous from the left and the Poisson counter is taken to be continuous
from the right we have

d n
gt (EXOD = ELT(x(®)] + i:El(E[@Ji(X(t))]))u,

and similarly, one can interchange the expectation and derivative operataps ¢t)) alsa
In our analysis for any integer= 1, we have the following relations

do"(t "
b"(®) = Ldvznv"‘ldv,
dt v
d(e"(t)x(t
W =m" IXdv+ " dx+ [v"(x— x+ 1) — o"X]l (v < K) dN,

+ [v"(x = %) — "] dN,

=" X dv + " dx



