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We analyze a feedback system consisting of a finite buffer fluid queue and a
responsive source+ The source alternates between silence periods and active pe-
riods+ At random epochs of times, the source becomes ready to send a burst of
fluid+ The length of the bursts~length of the active periods! are independent and
identically distributed with some general distribution+ The queue employs a thresh-
old discarding policy in the sense that only those bursts at whose commencement
epoch~the instant at which the source is ready to send! the workload~i+e+, the
amount of fluid in the buffer! is less than some preset threshold are accepted+ If
the burst is rejected then the source backs off from sending+ We work within the
framework of Poisson counter-driven stochastic differential equations and obtain
the moment generating function and hence the probability density function of the
stationary workload process+We then comment on the stability of this fluid queue+
Our explicit characterizations will further provide useful insights and “engineer-
ing” guidelines for better network designing+
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1. INTRODUCTION

Selective message discarding policies have been proposed@9# and are implemented
in routers~e+g+, in Cisco BP 8600 series! to prevent network congestion+ This is
particularly the case with the router supporting UBR~unspecified bit rate! service
class of ATM, where message~i+e+, a frame! discarding is employed to achieve the
twin goals of reduced network congestion and increased goodput@10# + In the ATM
context, message discarding is based on the idea that loss of a single packet results
in the corruption of the entire message~to which it belongs! and hence it is advan-
tageous to discard the entire remaining message+ Two discarding mechanisms are
frequently used: thepartial message discarding~PMD!, in which packets that be-
long to an already corrupted message are discarded, and theearly message discard-
ing ~EMD!, in which in addition to partial discarding, an admission control is applied
to reject an entire message if upon arrival of its first packet, the queue exceeds some
threshold valueK ~threshold discarding! @10# +We have focused both on the discrete
as well as on the fluid analysis~back-to-back message arrival with exponentially
distributed message lengths! of the first mechanism in@4# and of the second in@5,6#
with the goal of obtaining explicit expressions for performance metrics like the
stationary distribution of the workload process and the goodput ratio+ In both the
packet model in@4,6# and the fluid model in@4,5# , the source was nonresponsive to
message discarding at the network element and thus the system was effectively
open-loop+ The discarding policies worked independently without any cooperation
from the source~the source continues sending even if its data are being rejected by
the network node!+Also in the fluid model in@4,5# , we have back-to-back messages
with exponential distribution of length and thus the fluid arrival rate was deterministic+

In this article, we study responsive sources~in the spirit of@8,12# !+We propose
a model for the feedback system consisting of the network node with selective burst
~the burst can be seen as a message! discarding and the source which responds to
congestion signals~in our case, the congestion signal being positive if the queue
length at the network node is higher than some preset threshold and is negative if the
queue length is less than some preset threshold!+ This will help us in understanding
the improvement in the performance achievable with combining selective burst dis-
carding with congestion feedback to sources and responsiveness of sources in back-
ing off from sending+

Our model consists of a finite buffer fluid queue fed by a source that alternates
between off periods and active periods+An off period corresponds to a time interval
when the source is not sending fluid and an active period corresponds to an interval
when the source is actually transmitting fluid+At random epochs of times, the source
becomes ready to send a burst of fluid+ The lengths of the bursts~lengths of the
active periods! are independent and identically distributed with an exponential dis-
tribution+ The queue employs a threshold discarding policy in the sense that only
those bursts at whose arrival epochs1 the workload~i+e+, the amount of fluid in the
buffer! is less than some preset threshold are accepted+ If the burst is rejected, then

1By arrival epoch of a burst we mean the time instant when the source is ready to transmit a “potential”
burst+
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the source backs off instantaneously from sending and goes into a silence~back-off!
period+ The off-period distribution is characterized as follows+ After an exponen-
tially distributed silence time, a new batch arrives; if it is accepted, then the off
period ends+ Otherwise, a new exponentially distributed silence period commences
and so on+ The off period is then the sum of the consecutive silence periods+

Our analysis employsPoisson counter-driven stochastic differential equations
@2,3# for describing the workload dynamics+We obtain closed-form expressions for
the distribution of the stationary workload process by first finding the Laplace–
Stieltjes transform~LST! of the stationary workload process and then inverting it+

In Section 2, we formally define our model and state our main results on the
LST and the density of the stationary workload process+ The infinite buffer case
along with its stability analysis is presented in Section 3+ In Section 4,we present an
approach for analyzing a policy which has partial discarding of bursts in addition to
threshold burst discarding+2

2. MODEL: FORMAL DEFINITION

The fluid arrival rate ish in the active period and zero in the off period~which
models either the thinking time of the source or forced back-off by the source due to
positive congestion feedback!; the server has a constant capacityc+ Let the buffer
size beB ~maximum amount of fluid! and the threshold beK, K , B+ Let the silence
and back-off periods be exponentially distributed, both with parameterl1, and let
the burst sizes also have an exponential distribution with parameterl2+ Let the
distribution of the off period between messages be as described in Section 1+

We have analyzed the same model but with infinite buffer in@7# +We extend here
the analysis to the finite buffer case and obtain expressions for the stationary distri-
bution of the workload process+ The results for the infinite buffer can be obtained by
takingBr ` in the expressions for the finite buffer case and we present them as a
special case of our model+

The discarding policy is such that if at the commencement epoch of a message
the workload processv~t ! is less thanK, the message is admitted, otherwise not+We
assume3 thatc , h+ Figure 1 explains the model~the source behavior and the work-
load process in the queue!+

We write the dynamics of the system in terms of Poisson counter-driven sto-
chastic differential equations@3# + LetN1 andN2 be Poisson counters with parameters
l1 andl2, respectively+We define a new variablex [ $0,1% as the indicator of the
actual arrival processto the buffer+ x~t ! captures the behavior of the discarding
policy+ The dynamics ofx~t ! and of the workloadv~t ! are

dx~t ! 5 ~2x~t ! 1 1! dN1 I ~v~t ! , K ! 2 x~t ! dN2, (1)

dv~t ! 5 2cI ~v~t ! . 0! dt 1 hx~t !I ~v~t ! , B! dt 1 cx~t !I ~v~t ! 5 B! dt+ (2)

2Recall that under partial discarding, once the buffer starts overflowing, the source backs off instanta-
neously and goes into a silence period+
3For the casec $ h, the workload will always be zero w+p+ 1+
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Remark 1:Observe that in@3# a model for a finite buffer fluid queue without
discarding has been studied+ However, the expression fordv~t ! in Eq+ ~28! in
@3, Sect+ 4# does not have the boundary termI ~v5 B!+ This will result in a “chatter-
ing” of the fluid level at the boundary+

We next present our main results: The LSTV~s! ~5 E @e2sv# ! of v is obtained
from which we obtain the stationary probability density function, r~v! of v+The LST
will be obtained by deriving a recursive formula for the momentsE @vn# for all
positive integersn+

Proposition 1: V~s! is given by

V~s! 5
~ p2 2 p1!g6

11 g5s F ~h 2 c!

l2 1 ~h 2 c!s
~e2Ks 2 e2Bse2l2~B2K !0~h2c! !

1
~h 2 c!

l2

~e2l2~B2K !0~h2c! 2 1!G1 g3

~12 p2!~e2Bs 2 1!

11 g5s
1 1

1
s

11 g5sSh~h 2 c!g0~12 p2!

c~l1 1 l2!
2

hg5

c
E @x#D1

g5~12 p2!s~e2Bs 2 1!

11 g5s
, (3)

Figure 1. The dynamics of the arrival process and the workload in our model+
Tan

andTsn
denote thenth active and silence periods, respectively+
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where p1 5 Prob~v , K !, p2 5 Prob~v , B!, and

g0 5 S12
hl1

c~l1 1 l2!D21

, g3 5 1 2 S hl2

c~l1 1 l2!Dg0,

g5 5
~h 2 c!

l1 1 l2

g0, g6 5 F12
l2

l1 1 l2

g0G 1

~h 2 c!E @Y1#
,

E @x# 5
l1

l1 1 l2
S12 ~ p2 2 p1!S12

c

h
DD, E @Y1# 5

1

l2

~12 e2@~B2K !0~h2c!#l2 !+ (4)

Corollary 1: The stationary probability density functionr~{! of v~t ! is
given by

r~m! 5 5
r0 for m5 0

r1~m! for 0 , m , K

r2~m! for K $ m , B

12 p2 for m5 B,

where

r0 5 F11
h

cS ~h 2 c!g0~12 p2!

g5~l1 1 l2!
2 E @x#D2 ~12 p2!G, (5)

r1~m! 5
~ p2 2 p1!~h 2 c!g6

g5l2

~e2l2~B2K !0~h2c! 2 1!e2g5
21m

1 S~12 p2!~12 g3! 2
h

cS ~h 2 c!g0~12 p2!

g5~l1 1 l2!
2 E @x#DDg5

21e2g5
21m, (6)

r2~m! 5 r1~m! 1
~ p2 2 p1!g6

S12
l2g5

~h 2 c!
D ~e2l2~m2K !0~h2c! 2 e2g5

21~m2K ! ! (7)

and whered~{! is the Dirac delta function and p1 and p2 are given by

F11 a1 2 a2~11 e2g5
21K ! 212 a1 1 ~a2 1 a6!~11 e2g5

21K ! 1 ~g3 2 1!e2g5
21K

211 a3~a2 1 a4! 2 a5 11 a3~2a2 1 ~g3 2 1! 2 a4 1 a6! 1 a5
G

3 Fp1

p2
G 5 Fa6 2 a7 1 e2g5

21K~~g3 2 1! 1 a6 2 a7!

a3~~g3 2 1! 1 a6 2 a7! G (8)
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with

a1 5
g6~h 2 c!

l2

~e2l2~B2K !0~h2c! 2 1!~12 e2g5
21K !,

a2 5
l1

l1 1 l2
Sh

c
2 1D,

a3 5 e2g5
21K 2 e2g5

21B,

a4 5
g6~h 2 c!

l2

~e2l2~B2K !0~h2c! 2 1!,

a5 5
g6~h 2 c!

l2

~e2l2~B2K !0~h2c! 2 e2g5
21~B2K ! !

12
g5l2

~h 2 c!

,

a6 5
h

c

~h 2 c!g0

g5~l1 1 l2!
,

a7 5
h

c

l1

l1 1 l2

+

2.1. Model Analysis and Proofs of the Main Results

Observe that the fluid levelv never remains steady atK ~visiting it only at isolated
points in time! and hencev does not have any probability mass atK+ Thus, the
distribution function is continuous atK+ However, there is a probability mass at
v 5 B due to the buffer size being finite+ From stochastic calculus,4 we can write
from ~1! and ~2!5

dvn11 5 ~n 1 1!vn~2cI ~v . 0! dt 1 hxI ~v , B! dt 1 cxI ~v5 B! dt! (9)

dvnx 5 xnvn21 dv1 vn dx

5 nvn21x~2cI ~v . 0! dt 1 hxI ~v , B! dt 1 cxI ~v5 B! dt!

1 vn @~2x 1 1! dN1 I ~v , K ! 2 xdN2#+ (10)

Note thatP~v5 B! 5 1 2 p2+ From ~9! and~10!, we get

dE@vn11# 5 ~n 1 1!~2cE@vn# dt 1 hE@vnx6v , B# p2 dt 1 cE@vnxI ~v5 B!# dt!,

dE@vnx# 5 l1 dt E@vn~2x 1 1!I ~v , K !# 2 l2 dt E@vnx# 2 cnE@vn21x# dt

1 hnE@vn21x2 6v , B# p2 dt 1 cnE@vn21x2I ~v5 B!# dt+ (11)

4See the Appendix and@3# +
5For notational convenience, henceforth we will not showt in parentheses+
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Observe that, E @vn21x26v , B# p2 5 E @vn21x2# 2 E @vn21x26v 5 B# ~1 2 p2! 5
E @v n21x# 2 Bn21~1 2 p2!+ This is becausev 5 B only when x 5 1 and also
E @vn21x2# 5 E @vn21x# for anyn $ 1+ Thus, we get

dE@vnx# 5 ~h 2 c!nE@vn21x# dt 2 hnBn21~12 p2! dt 1 E @vn 6v , K # p1l1 dt

2 E @vnx6v , K #l1 p1 dt 2 E @vnx6v , B#l2 p2 dt

2 Bnl2~12 p2! dt 1 cnBn21~12 p2! dt+ (12)

By the total probability argument, we can write

E @vn 6v , B# p2 5 E @vn 6v , K # p1 1 E @vn 6K , v , B# ~ p2 2 p1!,

E @vnx6v , B# p2 5 E @vnx6v , K # p1 1 E @vnx6K , v , B# ~ p2 2 p1!+

Thus, we can write~11! and~12! as

dE@vn11# 5 ~n 1 1!~2cE@vn 6v , K # p1 2 cE@vn 6K , v , B# ~ p2 2 p1!

1 hE@vnx6v , K # p1 1 hE@vnx6K , v , B# ~ p2 2 p1!! dt

dE@vnx# 5 2ncE@vn21x# dt 1 nhE@vn21x6v , B# p2 dt

1 ncBn21~12 p2! dt 2 E @vnx6v , K # p1l1 dt

1 E @vn 6v , K # p1l1 dt 2 E @vnx6v , K # p1l2 dt

2 E @vnx6K , v , B# ~ p2 2 p1!l2 dt 2 Bn~12 p2!l2 dt+

Thus, for the existence of the steady state, the following should vanish:

Sp1l1 0 2~l1 1 l2!p1 2l2~ p2 2 p1!

2cp1 2c~ p2 2 p1! hp1 h~ p2 2 p1! D1
E~vn 6v , K !

E~vn 6K , v , B!

E~vnx6v , K !

E~vnx6K , v , B!
2

1 Sn~h 2 c!E @vn21x# 2 ~12 p2!~n~h 2 c!Bn21 1 Bnl2!

0 D+ (13)

Thus,we have two equations in six unknowns~the four conditional expectations and
p1 andp2!+ However, an important observation to be made here is that for anyn$1,
E @vn6K , v, B# andE @vnx6K , v, B# can be calculated alternatively as follows:

Whenv$ K and the state of the modulating process changes from zero to one
for the first time~and succeeding times!, then the incoming fluid is not accepted+
This is done untilv, K+Also, even if the current on period started whenv, K ~and
hence accepted! butv reaches the levelB before the on period ends, then the excess
fluid corresponding to this on period~which arrives whenv5 B! is lost due to buffer
overflow+ The queue length can only cross the threshold ofK at any timet, if x~t ! 5
x~t2!51+Because the sojourn time in a state is exponentially distributed, the excess
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time the Markov chain spends in state 1 after timet is again exponentially distributed
given that the chain was in state 1 at timet+ The fluid level will rise steadily with a
rate~h2 c! from t until the Poisson processN2 causesx to change from one to zero
or until v5 B ~whichever occurs earlier!+ Then, eitherv will stay atB ~if the excess
time the Markov chain spends in state 1 after timet is greater than~B2 K !0~h2 c!!
or v will start decreasing at a steady rate ofc until the buffer level isK+ During this
period~whenv . K !, even if a new message arrives~with fluid arriving at rateh!,
the fluid is not accepted~the fact highlighted by the presence of an indicator function
I ~v , K ! in ~1!!, and even if the current on period started whenv , K ~and hence
accepted! but v reaches the levelB before the on period ends, then the excess fluid
corresponding to this on period~which arrives whenv5 B! is lost ~the fact high-
lighted by the presence of an indicator functionI ~v , B! in ~2!!+ Let Ti , i 51,2, + + +
be the random variable denoting the time spent byv after crossingK at thei th cross
and during which the conditionK , v , B is true+ Thus,

Ti 5 Yi 1
Yi ~h 2 c!

c
5 Yi

h

c
, (14)

where

Yi 5 minS B 2 K

h 2 c
,XiD

andXi is the excess sojourn time in state 1+ Note that the conditionv~t ! . K implies
that at the time of crossing the levelK, say at timet1 # t, x~t1! 5 1+ Thus, the
sequence$Ti % is independent and identically distributed~sinceXi ; expl2! and

E @Yi # 5 EFXi ISXi ,
B 2 K

h 2 c
D1 S B 2 K

h 2 c
D ISXi .

B 2 K

h 2 c
DG ,

which gives the expression forE @Y1# in ~4!+ Observe that we can write

E @vn 6K , v , B# 5 EFvn 6K , v , B,
dv

dt
5 ~h 2 c!GPSdv

dt
5 ~h 2 c!6K , v , BD

1 EFvn 6K , v , B,
dv

dt
5 2cGPSdv

dt
5 2c6K , v , BD+ (15)

From ~14!, we haveYi 5 ~c0h!Ti + Thus, we have

PSdv

dt
5 ~h 2 c!6K , v , BD5

c

h

and

PSdv

dt
5 2c6K , v , BD5 1 2 PSdv

dt
5 h 2 c6K , v , BD5 1 2

c

h
+
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Thus, from ~15!, we can write

E @vn 6K , v , B# 5 EFvn 6K , v , B,
dv

dt
5 ~h 2 c!G c

h

1 EFvn 6K , v , B,
dv

dt
5 2cGS12

c

h
D+

Now, observe that when the condition~dv0dt 5 h 2 c,K , v , B! is true, v~t ! :5
v1~t ! 5 ~h2 c!~t 2 t0! 1 K, wheret0 is the last time the workload process was atK+
Thus, we have by the Renewal Reward Theorem@13#

EFvn 6K , v , B,
dv

dt
5 h 2 cG5

EFE
t0

t01Y1

~v1~t !!n dtG
E @Y1#

,

5 EF ~K 1 Y1~h 2 c!!n11 2 K n11

~n 1 1!~h 2 c!
G~E @Y1# !21

5 EFvn 6K , v , B,
dv

dt
5 2cG

5 E @vn 6K , v , B# + (16)

We proceed to evaluateE @vnx6K , v , B# + By similar arguments, it is given by

EFvnx6K , v , B,
dv

dt
5 ~h 2 c!G c

h
1 EFvnx6K , v , B,

dv

dt
5 2cGS12

c

h
D+

Also x 5 1 when ~dv0dt 5 h 2 c,K , v , B! and x 5 0 when~dv0dt 5 2c,
K , v , B!+ Thus

E @vnx6K , v , B# 5 EFvnx6K , v , B,
dv

dt
5 h 2 cG c

h

5 SEF ~K 1 Y1~h 2 c!!n11 2 K n11

~n 1 1!~h 2 c!
G~E @Y1# !21D c

h
+ (17)

Observe that from~13! for n51, we will require an expression forE @x# + Next, we
continue the analysis and obtain an expression forE @x# in terms ofp1 andp2+

Lemma 1: E @x# is given by

E @x# 5
l1

l1 1 l2
S12 ~ p2 2 p1!S12

c

h
DD+ (18)

Proof: In the steady state from~1!, we get

l2 E @x# 5 p1l1 2 E @x6v , K # p1l1+ (19)
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Also,

E @x# 5 E @x6v , K # p1 1 E @x6K , v , B# ~ p2 2 p1! 1 E @x6v5 B# ~12 p2!

5 E @x6v , K # p1 1 SEFx6K , v , B,
dv

dt
5 h 2 cG

3 PSdv

dt
5 h 2 c6K , v , BD

1 EFx6K , v , B,
dv

dt
5 2cG

3 PSdv

dt
5 2c6K , v , BDD

3 ~ p2 2 p1! 1 ~12 p2!

n E @x6v , K # p1 5 E @x# 2
c

h
~ p2 2 p1! 2 ~12 p2!+ (20)

The equivalence follows asx5 0 for the case~K , v, B, dv0dt5 2c!+ From~19!
and~20!, we obtain~18!+ n

Proof of Proposition 1: We eliminateE @vnx6v, K # from the steady-state equa-
tions+ After some calculations, we obtain

E @vn 6v , K #5 F h

c
~~E @vnx6K , v , B#l1~ p2 2 p1! 1 n~h 2 c!E @vn21x#

2 ~12 p2!Bn~n~h 2 c!B21 1 l2!!0~l1 1 l2!!

2 E @vn 6K , v , B# ~ p2 2 p1!GSp1 2
hp1l1

c~l1 1 l2!D21

+ (21)

Replacing the left-hand side of the last equation byp1
21~E @vn# 2 E @vn6K ,

v, B# ~ p22 p1! 2 Bn~12 p2!! and usingE @vnx6K , v, B# 5 E @vn6K , v, B# 3
~c0h! from ~17!, we get, from ~21!,

E @vn# 5 g1nE@vn21x# 1 g2~ p2 2 p1!E @vn 6K , v , B# 1 g3~12 p2!Bn

1 g4n~12 p2!Bn21, (22)

with

g0 5 S12
hl1

c~l1 1 l2!D21

, g1 5
h~h 2 c!

c~l1 1 l2!
g0, g2 5 F12

l2

l1 1 l2

g0G ,
g3 5 F12 S hl2

c~l1 1 l2!Dg0G , g4 5
2h~h 2 c!

c~l1 1 l2!
g0+
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Also, with E @vnx# 5 E @vnxI ~v , B!# 1 Bn~12 p2!, from the steady-state behavior
of ~9!, we can write~for n $ 1!

E @vnx# 5
c

h
E @vn# 1 Bn

~h 2 c!

h
~12 p2!+ (23)

From ~16!, ~23!, and~22! we get, for n $ 2,

E @vn# 5 g5nE@vn21# 1 g1

~h 2 c!

h
~12 p2!nBn21

1 g6

~ p2 2 p1!

~n 1 1!
E @~K 1 Y1~h 2 c!!n11 2 K n11#

1 g3~12 p2!Bn 1 g4~12 p2!nBn21+ (24)

For n 5 1 from ~16! and~22!, we have

E@v# 5 g1 E @x# 1 g6

~ p2 2 p1!

2
E @~K 1 Y1~h 2 c!!2 2 K 2# 1 g7~12 p2!Bn, (25)

where

g5 5 g1

c

h
, g6 5

g2

E @Y1# ~h 2 c!
, g7 5 F12Sh~h 2 c!B21 1 hl2

c~l1 1 l2! Dg0G ,
E @Y1# being obtained earlier in~4!+

Thus, we have a recursive relation betweenE @vn# andE @vn21# for n $ 1+With
these, we will proceed to find the LST of the stationary workload+ Further multiply-
ing both the sides of~24! by ~2s!n0n! and summing fromn 5 2 to`, we can write
~with g1 1 g4 5 2g5!

(
n$2

~2s!n

n!
E @vn#

5 g5~2s! (
n$2

E @vn21#
~2s!n21

~n 2 1!!
2 g5~12 p2!~2s! (

n$2

~2Bs!n21

~n 2 1!!

1 g6~ p2 2 p1!EF 1

~2s! (
n$2

@~K 1 Y1~h 2 c!!n11 2 K n11#
~2s!n11

~n 1 1!! G
1 g3~12 p2! (

n$2

Bn
~2s!n

n!
+ (26)
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Adding to~26! and multiplying~25! by ~2s!, we get

(
n$1

~2s!n

n!
E @vn#

5 g5~2s! (
n$2

E @vn21#
~2s!n21

~n 2 1!!
1 g5~12 p2!s (

n$2

~2Bs!n21

~n 2 1!!

1 g6~ p2 2 p1!EF 1

~2s! (
n$1

@~K 1 Y1~h 2 c!!n11 2 K n11#
~2s!n11

~n 1 1!! G
1 g3~12 p2! (

n$1

Bn
~2s!n

n!
2 sg1 E @x# 1

h~h 2 c!g0

c~l1 1 l2!
s~12 p2!+ (27)

Also, observe that

EF 1

2s (
n$1

@~K 1 Y1~h 2 c!!n11 2 K n11#
~2s!n11

~n 1 1!! G
5 EF e2Ks

s
~12 e2Y1~h2c!s! 2 Y1~h 2 c!G ,

EF e2Ks

s
~12 e2Y1~h2c!s! 2 Y1~h 2 c!G

5
~h 2 c!

l2 1 ~h 2 c!s
~e2Ks 2 e2Bse2l2~B2K !0~h2c! !

1
~h 2 c!

l2

~e2l2~B2K !0~h2c! 2 1!+

Furthermore, V~s! 5 (n$0~2s!nEvn0n! ; thus, we get from~27!

V~s! 2 1 5 2g5s~V~s! 2 1! 1 g6~ p2 2 p1!

3 F ~h 2 c!

l2 1 ~h 2 c!s
~e2Ks 2 e2Bse2l2~B2K !0~h2c! !

1
~h 2 c!

l2

~e2l2~B2K !0~h2c! 2 1!G
1 g3~12 p2!~e2Bs 2 1! 1 sSh~h 2 c!g0~12 p2!

c~l1 1 l2!
2 g1 E @x#D

1 g5~12 p2!s~e2Bs 2 1!,

which implies~3!+ n
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Proof of Corollary 1: Taking the inverse LST of~3!, we get, for 0 # v# K, ~6!+
For K , v# B, the inverse LST implies

r~v! 5 r2~v! 5 r1~v! 1 L21S ~ p2 2 p1!g6~h 2 c!e2Ks

~11 g5s!~l2 1 ~h 2 c!s!D, (28)

whereL21 denotes the inverse LST+6 Thus~with *denoting the convolution operator!,

L21S 1

~s1 g5
21!Ss1

l2

h 2 c
DD 5 e2g5

21v * e2l2v0~h2c!

5
1

Sg5
21 2

l2

~h 2 c!
D ~e2l2v0~h2c! 2 e2g5

21v !+ (29)

Thus, from ~29! and~28!, we get

r2~m! 5 r1~m! 1
~ p2 2 p1!g6

S12
l2g5

~h 2 c!
D ~e2l2~m2K !0~h2c! 2 e2g5

21~m2K ! !, (30)

which is~7!+Observe that*0
K r1~v! dv5 p1 and*K

B r2~v! dv5 p22 p1+ Thus,we get
from integrating~5! and~6!, and~7! with limits @0,K ! and@K,B# respectively, two
linear equations in two unknownsp1 andp2 which gives explicit closed form solu-
tions forp1 andp2 in ~8!+ n

3. INFINITE BUFFER CASE: THE WORKLOAD PROCESS
AND THE STABILITY ANALYSIS

TakingB r ` in Corollary 1, we have the following+

Corollary 2 ~ @7, Prop+ 2# !: The stationary probability density functionr~{! of
v~t ! is

r~m! 5 5
r1~m! for 0 # m , K

k2~12 p!
al2

~h 2 c!

Sa 2
l2

~h 2 c!
D ~e2@l20~h2c!# ~m2K ! 2 e2a~m2K ! ! 1 r1~m!

for m$ K,

6For a random variableX with distributionF~x! and LSTL~s!~5 *0
` e2sx dF~x!!, we mean byL21, the

probability density~if it exists! of X ~i+e+, L21@L~s!# 5 dF~x!0dx!+
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where

r1~m! 5 d~m!S12
h

c
E @x#D1 S h

ck1

E @x# 2
k2

k1

~12 p!De2am,

k1 5 F ~h 2 c!

~l1 1 l2! S12
hl1

c~l1 1 l2!D21G,
k2 5 F12

l2

l1 1 l2
S12

hl1

c~l1 1 l2!D21G , a 5 k1
21

E @x# 5
l1

l1 1 l2
SpS12

c

h
D1

c

h
D, p 5

1

11
a

12
ac

h

,

a 5
l1e2aKh

~l1 1 l2!c
~12 k2 1 k2e2aK!21+

Remark 2:TakingK to infinity in Corollary 2, we get

r~m! 5 S12
l1h

c~l1 1 l2!Dd~m! 1
hl1

c~l1 1 l2!
l2el2m,

which is the probability density function for the stationary workload in a single
server infinite buffer queue and is of course the same as the results of Anick,Mitra,
and Sondhi@1# +

Next, we establish the stability of the queue for the infinite buffer case+ In par-
ticular, we show that the workload process is a renewal process+ To that end, we
consider the Markov chainVn,which is the workload as seen by the commencement
of the nth potential arriving message+ We will show thatVn is a Harris recurrent
Markov chain and that the empty state is recurrent wheneverc . 0+ This will then
imply that the original workload process is a renewal process+ To that end, we recall
the following sufficient condition for the Harris recurrence, which follows from
@11, Thm+ 14+0+1, p+ 330# +

Lemma 2: Assume thatVn is C-irreducible ( for someC) and aperiodic. Let there be
a function f, somee . 0, and some small set C such that

E @ f ~Vn11! 2 f ~Vn!6Vn 5 v# , 2e 1 I $v Ó C%+ (31)

Then, the Markov chainVn is positive recurrent, it has a stationary probability
p, and the n-step transition probabilities Pn converge to thep in total variation as
n r `.
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In Lemma 2, a setC is smallif there exists some integern, a constantg . 0, and
a probability measuref over the state spaceR such that

@Pn#xA . gf~A! for all x [ C and measurable setA , R+ (32)

Theorem 1: Assume that c. 0. Then, the processVn is Harris recurrent.

Proof: DefineC 5 @0,K # andf ~v! 5 v+ Let T be an exponentially distributed ran-
dom variable with parameterl2+ Then, for all v Ó C,

E @Vn11 2 Vn6Vn 5 v# , 2cEFminST,
K

c
DG 5:2 e+

Thus, ~31! holds+ Next, we check thatC is indeed a small set+ Let Zi be an exponen-
tially distributed random variable with parameterl i , i 5 1,2+ Viewing Z1 as the
length of the off period andZ2 as the length of the on period, we have for anyv[ C
and measurableA , R,

@P2#vA $ PS K

h 2 c
, Z2 ,

2K

h 2 c
, Z1 .

3K

c
DP0A+

Thus, ~32! holds withf~A! 5 P0A andg 5 P~Z!, where

Z 5 H K

h 2 c
, Z2 ,

2K

h 2 c
, Z1 .

3K

c
J +

Note that onZ, a message starts to arrive whenv, K and then no more messages are
accepted until the system empties+

Observe thatVn is f-irreducible@11, pp+ 70 and 87# because the probability of
eventually reaching any measurable setA , R from any statex is greater than
gf~A!+ Finally, the aperiodicity follows because the probability to go from state 0
to state 0 is strictly positive+ n

4. COMBINING PARTIAL AND THRESHOLD DISCARDING

Observe that in our discarding policy,we continue accepting the fluid of an accepted
burst, even if during the arrival period of the burst, the queue hitsB and the buffer
overflows+Thus, the distribution function has a positive mass atv5B+A much more
efficient policy is one in which a source also backs off when the queue hitsB+ Thus,
there may be partial discarding of an accepted message+

The difference between our model and the one in which we combine both thresh-
old ~like in our model! and partial discarding policies is that now whenB is reached,
immediately discarding begins+Unlike the threshold discarding, this time not a whole
message is discarded but only the remaining message~afterB is reached!+Hence, the
probability mass that we had atB ~see Fig+ 1! disappears+
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In both types of discarding~partial at the boundary and complete at thresholds!,
we assume that when discarding begins, the source changes immediately from the
active period to a silence period+ Thus, fluid stops being injected to the system once
discarding begins and a “thinking time” begins until the arrival of the next batch+

Consider a sample path ofv~t ! in our previous model+ Let ti be thei th timev~t !
hits B and letsi be thei th time it leavesB+ Define Si , i 5 1,2, + + + to be the time
interval~ti ,si # +We now construct a new sample[v~t ! that is obtained byeliminating
the periodsSi from v~t ! ~by simply “cutting” them out!+ Then, it is easy to see that
[v~t ! has the same distribution as the process in the new model that combines both
discarding mechanisms+ We conclude that the stationary probability density func-
tion of the new model is given byr~{!0p2, wherer andp2 ~the probability of not
being atB! are given in Corollary 1;we thus have also the probability distribution of
the model with combined discarding mechanisms+
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APPENDIX7

Consider a stochastic differential equation driven byn independent Poisson countersN1, + + + ,Nn,

dx 5 f ~x! dt 1 (
i51

n

gi ~x! dNi , x [ Rn+

7This material summarizes results from@3# which we make use of+
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Then, we have the following Itô rule:
If f :Rn r R is a differentiable function, then

df~x~t !! 5 K ]f

]x
, f ~x!L dt 1 (

i51

n

@f~x~t ! 1 gi ~x~t !!! 2 f~x~t !!# dNi +

Also, sincex~t ! is continuous from the left and the Poisson counter is taken to be continuous
from the right, we have

d

dt
~E @x~t !# ! 5 E @ f ~x~t !!# 1 (

i51

n

~E @gi ~x~t !!# !l i ,

and, similarly, one can interchange the expectation and derivative operators forf~x~t !! also+
In our analysis for any integern $ 1, we have the following relations:

dvn~t !

dt
5

]vn

]v
dv5 nvn21 dv,

d~vn~t !x~t !!

dt
5 nvn21x dv1 vn dx1 @vn~x 2 x 1 1! 2 vnx#I ~v , K ! dN1

1 @vn~x 2 x! 2 vnx# dN2

5 nvn21x dv1 vn dx+
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