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We consider a generalized vacation or polling system, modeled as an input-output process operating over successive “cycles,” in
which the service mechanism can be in an “up” mode (processing) or “down” mode (e.g., vacation, walking). Our primary motivation
is polling systems, in which there are several queues and the server moves cyclically between them providing some service in each.
Our basic assumption is that the amount of work that leaves the system in a “cycle” is no less than the amount present at the
beginning of the cycle. This includes the standard gated and exhaustive policies for polling systems in which a cycle begins whenever
the server arrives at some prespecified queue. The input and output processes satisfy model-dependent conditions: pathwise bounds
on the average rate and the burstiness (Cruz bounds); existence of long-run average rates; a pathwise generalized Law of the Iterated
Logarithm; or exponentially or polynomially bounded tail probabilities of burstiness. In each model we show that these properties
are inherited by performance measures such as the workload and output processes, and that the system is stable (in a model-
dependent sense) if the input rate is smaller than the up-mode processing rate.

‘ N ] e consider a general model for an input-output pro-
cess, which includes many vacation and polling sys-

tems and other queueing systems as special cases. At any
point in time, the system is either in the “up” mode, with
both the arrival (input) and departure (output) process
operating, or the “down” mode, in which the arrival pro-
cess continues to operate, but the departure process may
not be operating. Downtime may correspond to vacation
time or switchover (“walking”) time in a vacation or poll-
ing system. The time that the system is empty will also
typically be understood to be part of the system downtime.
The downtimes may even correspond to operation of the
server at some reduced capacity, instead of complete idle-
ness. In that case, the sufficient conditions for stability and
the performance bounds that we obtain may turn out to be
conservative.

A distinguishing feature of our model is that the time
axis is divided into a sequence of disjoint time intervals, or
“cycles,” and we make certain assumptions about the be-
havior of the arrival and departure processes and the
downtime during each cycle. One example of this type of
setup is a cyclic polling system in which a cycle is defined
in the “natural” way. That is, a cycle begins each time the
server begins serving the first queue. Another is a vacation
model in which a cycle begins each time a vacation ends.
In addition to vacation and polling systems, our model has
other potential applications, including communication

systems with time-division multiplexing and flexible manu-
facturing processes with setups and/or breakdowns.

In general, our model allows considerable flexibility in the
definition of cycles. Our basic assumption throughout
the paper is that the total output during each cycle is at
least as great as the quantity in the system at the beginning
of the cycle. Examples satisfying this Output Assumption
are polling systems with exhaustive, globally gated, or lo-
cally gated service disciplines, with cycles defined as above
in the “natural” way. In contrast to most of the literature
on polling systems, we allow for the discipline to change
over time. Another example is a vacation system in which
the server goes on vacation every time the queue becomes
empty. In each of our models we also assume that the
downtime per cycle satisfies certain constraints or growth
conditions, and that the traffic intensity (suitably defined in
each model) is less than one. It is the interaction of these
conditions with the Output Assumption that essentially
constrains the definition of cycles and motivates our deri-
vations of performance bounds and stability.

We examine various types of performance bounds and
stability for three special cases of our general model, based
on different pathwise characterizations of their arrival and
(potential) departure processes. We present the basic
model and some general properties in Section 1. The three
special cases are discussed in the next three sections.

Subject classifications: Queues: polling and vacation systems, pathwise analysis, performance bounds. Communications: token-ring local area networks.
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The first system (Section 2) has bounded downtimes in
each cycle, and arrival and (potential) departure processes
that satisfy burstiness constraints similar to those of Cruz
(1991, 1992). We obtain uniform upper bounds for several
performance measures, such as the amount of work in the
system and the cycle duration. We also show that the out-
put process satisfies a Cruz-type bound. The second system
(Section 3) has arrival and potential departure processes
with limiting average rates. We show that the system is
rate stable (i.e., the quantity in the system is o(f) as ¢
approaches infinity), and we give explicit expressions for
the limiting average cycle length and fraction of time the
system is down. In Section 4 we look at systems whose
arrival processes satisfy a pathwise analogue of the sto-
chastic law of the iterated logarithm. We show how all
three cases can be analyzed by a unified sample-path
approach.

Finally (Section 5) we show how our pathwise results
can be applied to stochastic models. In particular, we show
that the workload and output processes inherit the prop-
erty of exponentially or polynomially bounded burstiness
from the input process. This implies that upper bounds,
which are uniform in time, can be computed for the total
workload in the system at any moment, for a wide class of
stochastic arrival processes, not necessarily stationary nor
ergodic. This generalizes many previous stability results for
similar stochastic models.

In polling models that have been studied in the litera-
ture, it has usually been assumed that the queues are fed
by independent Poisson arrival processes. Conditions for
ergodicity as a measure of stability were obtained in Alt-
man et al. (1992), Altman and Spieksma (1995), Borovkov
and Schassberger (1994), Fricker and Jaibi (1994), Geor-
giadis and Szpankowski (1992), Resing (1993), and Zh-
danov and Saksonov (1979). Kroese and Schmidt (1992,
1994) studied the stability of polling on a graph (ie., a
“continuous” polling model), and Altman and Levy (1994)
studied the stability of noncyclic polling in two-
dimensional and higher-dimensional planes. Altman et al.
(1992) and Altman and Spieksma further present sufficient
and necessary conditions for stronger notions of stability,
namely geometric ergodicity and geometric rate of conver-
gence of the moments of several performance measures
(embedded at polling instants). Sufficient conditions for
Central Limit Theorems and the Law of Iterated Loga-
rithm are given in Altman and Spieksma. Altman and Liu
(1994) analyse the stability of the FDDI protocol. Condi-
tions for the stability of token rings with spatial reuse were
obtained by Georgiadis et al. (1993).

All the above references assumed Poisson arrivals and
independent walking and service times. This assumption is
unrealistic, however, when dealing with many applications,
e.g., Local Area Networks using token-ring protocols. The
arrival processes there may be quite irregular, highly
bursty, and correlated. Recently, Altman and Foss (1992)
obtained sufficient stability conditions for polling systems
with a general renewal arrival processes, and Massoulié

(1993) reported some results on the construction of a sta-
tionary regime for general stationary ergodic arrival and
service processes.

The analysis in this paper, which is based on pathwise
bounds and limits, allows for more general arrival pro-
cesses and makes it possible either to obtain strict upper
bounds on several performance measures, such as waiting
times, queue lengths, and workloads, or to derive pathwise
stability conditions using a unified approach (based on the
lemmas in Section 1). In Altman et al. (1994), we discuss
some special cases of the models presented in this paper,
with a focus on their applications to token-ring communi-
cation networks.

1. PRELIMINARY LEMMAS

Following Stidham and El-Taha (1993) (see also El-Taha
and Stidham 1993 and Borovkov 1984, Chapter 2) we con-
sider a nonnegative, real-valued deterministic process, Z =
{Z(t), t = 0}—an input-output process—in which Z(z) = 0
represents quantity in a system. Specifically, we assume
that the state space of Z is § = R™, that {Z(¢), t = 0} is
right continuous with left-hand limits, and that

Z(t) = Z(0) + A(t) — D(t), t=0, 1)

where A(t) (D(t)) is the cumulative input to (output from)
the system in [0, ¢], and both {A4(¢), t = 0} and {D(¢), t =
0} are nondecreasing, right-continuous processes. Thus,
Z(t) has bounded variation on finite z-intervals. Note that
D(t) < Z(0) + A(z), since Z(¢) = 0. We shall refer to Z(¢)
generically as the work in the system at time ¢, with the
understanding that it could be some other measure of
quantity (e.g., the number of customers in a queue).

Let u(t) (v(t)) be the indicator function for “up”
(“down”) time. That is, u(t) = 1 if the system is in the
“up” mode, and u(t) = 0 if it is “down” at time ¢; v(t) =
1 — u(t). We assume that u(-) (and hence also «(")) is
integrable over finite ¢-intervals. In a cyclic polling system,
for example, if downtime corresponds to the time spent by
the server “walking” between queues, then [{ u(s) ds
equals the total walking time in [0, ¢], and [ u(s) ds equals
the total time in [0, ) that the server processes work in the
queues.

In general we shall use a and & to denote the arrival rate
and the departure rate, respectively, in some sense, the
exact meaning of which will depend on the context. Define
p = /8. We define the “burstiness” of each process during
a time interval, [s, ¢) by:

B := A(t) — A(s) — a(t — 5), 2
t
BS{’, :=D() —D(s) — & I u(r) dr. 3)
Thus, B;‘f, is the difference between the actual input and
the input that would have occurred if the input process had
operated at its “average” rate throughout the interval. Simi-
larly, B, is the difference between the actual output and the
output that would have occurred if the output process had



operated at its “average” rate throughout the uptime in
the interval (and at rate 0 during the downtime).

We assume that there is a sequence of time points, {z,,
n = 0}, that defines cycles for the system, with 0 = ¢, < 1,
<t, <---. We interpret ¢, to be the time point at which
the nth cycle ends for n = 1. We define quantities corre-
sponding to each cycle. Let T, := ¢, — t,_,, the duration
of the nth cycle. Let U, := [i* u(s)ds, and letV, := [
u(s) ds, be the total uptime and downtime, respectively,
during the nth cycle. Define W, := Z(t,), the work in the
system at the end of the nth cycle. Let B, := B;! , be
the burstiness of the arrival process during the nth cycle,
and let BY := B__, be the burstiness of the departure
process during the nth cycle. To avoid technical difficulties,
we shall assume that ¢, — % as n — o, which is the case,
for example, when the downtimes, V,,, n = 1, are bounded
below by a positive constant.

Motivated by gated and exhaustive polling systems, we
shall make the following assumption throughout this

paper:

Output Assumption. For all n = 1, D(t,) — D(t,_,) =
W, _1. That is, the output in each cycle is at least as great
as the work in the system at the beginning of the cycle.

Remark 1. Until now, our definitions of cycles and down-
times have been very vague. In the following sections,
other assumptions about the downtimes during a cycle
(bounds on their duration or on their average duration)
will make these notions more precise and more related to
what we understand by “cycles” and downtime in applica-
tions. Note that without any further restrictions, the Out-
put Assumption is relatively innocuous. In fact, in the
general setting that we have assumed up until this point
(simply an input-output process, {Z(t), t = 0}, with an
imbedded nondecreasing sequence of time points, {t,, n =
0}), we are free to define the cycles so that the Output
Assumption is trivially satisfied, so long as D(¢) — « as ¢
— o, (For example, define the sequence, {z,, n = 0},
recursively, by ¢, := inf{t:D(t) — D(t,_,) = W,_1}.) As
we have indicated, however, in each of our three applica-
tions the definition of the cycles will be implicitly con-
strained by the bounds or growth conditions that we
impose on the downtime, V,,, in the nth cycle. These con-
straints are inspired by our motivating examples of vaca-
tion and polling systems, in which a cycle begins when the
server begins serving a particular customer class. For addi-
tional observations and a counterexample when the con-
straints are not satisfied, see Remark 6 at the end of
Section 3.

The following example illustrates these issues and moti-
vates our first result (Lemma 1 below).

Example 1. A Globally Gated Polling System. In a globally
gated polling system, a single server attends m queues,
labeled i = 1, ..., m, in sequence, serving at each queue
all work that was present at the beginning of the cycle and
then moving on to the next queue. In this setting, a cycle
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begins each time the server arrives and begins service at
queue 1. The server spends a certain amount of downtime
or walking time moving from queue i to queue i + 1. (We
identify queue m + 1 with queue 1.) The total walking
time in cycle n is V,,. For simplicity, assume that V,, = V,
n = 1. If the departures were at a uniform rate, §, then the
duration of the nth cycle would be V' + W, _,/8. If arrivals
were at a uniform rate, «, then W, would equal al +
pW,_1, and therefore also equal p"W, + aV 37, p" "
Now suppose arrivals and departures are at these uniform
rates, except for a single arrival burst of size X in the third
cycle. Then forn > 3, W, = p"W, + oV 3, p" 7' +
pn—3 X,

The following is a similar result for our more general
setup.

Lemma 1. Suppose that p = «/8 < 1, and let N be a
nonnegative integer. Then

W,<p" "Wy+a 2 p'V, 4)
i=N+1

n n
+ X p"Bi'-p X p"'BP, n=N+1
i=N+1 i=N+1

Proof. First, note that

Wy =W, +A@t,) —At,-1) = [D(t,) = D(t,-1)]
=W, +aT, + B = [8(T, —V,) + B?],

and hence

T, -V, +BP-w, ,=aT, + Bf —W,.

By our assumption that the output during the cycle must
be no smaller than the work at the beginning of the cycle,
both sides of this equation are nonnegative. Noting p < 1,
we subtract p times the left side from the right side and
rearrange them to obtain

W, <pW,_, +aV, + B — pB?. 5)

Beginning with Wy, and iteratively substituting for W, _; in
(5) leads to (4). [

Next, we bound the sum of the “discounted” bursts in
Equation (4) by the sum of the corresponding “undis-
counted” bursts when p; < 1. This result, which is a conse-
quence of the following lemma, is a key tool in establishing
the bounds for all the models considered in the following
sections.

Lemma 2. Suppose we have two sequences of real num-
bers, {B;}}_; and {p;}}_,, such that 0 < p, <---< p,.
Then:

plBl +"'+Pan

= p, maX{Bn,B,, +B,,_1, ,Bn +“‘+Bl}. (6)
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Proof. With p, := 0, we have:
p131+"'+Pan

=2 2 (pj —pj-1)B;
i=1j=1
n
= 21 (pj = pj-1)(Bn + B,y +---+B))
i=
n
= E (P; _Pj—l) maX{Bn’Bn +Bn—19 L. 7Bn

~.
I
—_

+ -+ By}

= Pn max{BnaBn +Bn—1,"-’Bn +"'+Bl},

thus establishing (6). [

Lemma 3. Suppose that p = «/8 < 1, and let N be a
nonnegative integer. Suppose also that V; < V whenever i >
N. Then, forn = N + 1:

a(l — p" My
1-p
+ max{0, B, B4+ B#_,, ..., B

Wn = pn—NWN +

+oe Bﬁ+1}
+ P max{(); (_BnD)7 _(Brlt) + BnD—l)’ LR
—(BY + -+ BRa)hs (7
(1-p"MV
T a(l-p) (1-p?
1

PP A BA+Bi, ... A
+6(1_P) max{O, Bn’ Bn Bn I ’Bn

T < pn—NWN
n

-+ B

1 D D D

+ e - - + BD_

6(1 _ p) maX{O, Bn7 (Bn Bn 1),

oo, —(BR -+ BRE (8)

and for t, <t,.,

a-p-p"MV
1-p

+ max{0, B ,, B , + B}/, ..

Z@)<p" Nwy +

., B, + B}

o B
+ P max{o’ _(Btlz,l)’ _(Bt[:,t + Br?)y cee

—(BP,+BP+ -+ BR)} )

Proof. For (7), we bound the terms of (4). Since the down-
times are bounded by V,

n . n X a(l - pn_N)V
a > p"W,<a X ptV=—---— (10)
i=N+1 i=N+1 I-p
The bounds on the other terms follow from Lemma 2.
To show (8), note that it follows from (3) that
8T, = D(t,) — D(t,_,) + 8V, — BP
<W,_, +aT, + B4+ 8V, — B?,

since the output during a cycle can be no more than the
work at the beginning of the cycle plus the input during
the cycle. Thus,

a(l = p)T, <pW,_ + pB;{ — pBY + aV,

<p" "Wy+a 2 p"V;

i=N+1
n—1
+p( > p"‘l'iBf‘+B,’.‘)
i=N+1
-p 2 p"'BP, (11)
i=N+1

where we have used Lemma 1 to bound W,,_,. The result
then follows using Lemma 2 and (10).
To prove (9), first note that

t

D(t) —D(t,)=8(t—1t,) — & j u(s) ds + BP,

tn

= 8(t —t,) — 8V, + B2,
for ¢t = t,, which implies that
Z(ty=W, +a(t —t,) + B ,— (D(t) = D(t,))
<W, +p(D(t) = D(t,) + 8V, 1 — BY))
+ B, — (D(t) = D(t,))
=W, + aV,. + B, - pBP,

— (1= p)(D(t) — D(t,))
<W,+ oV, +B,~pBP, (12)

Using inequality (4) for W, then yields:

Z(@t) < p" Ny + a( > P+ Vn+1>

i=N+1
n .
o 3 prmieni)
i=N+1 "
o 3 e enr,). (13)
i=N+1

Bounding the terms on the right-hand side of (13) using
Lemma 2 and (10) leads to the desired result. []

2. LINEAR BURSTINESS BOUNDS

For this section, in addition to the assumptions made in
Sections 1 and 2, we assume that the input and output
processes have bounds that are a special case of those
studied by Cruz (1991, 1992). Specifically, we assume that:

A(@) —AG) < alt —s) +t o4, 0=s5<t, (14)

D(t) — D(s) = 8<J' u(r) d‘r) —op, 0=ss<t, (15)

s
where o, and o, are nonnegative constants. In other
words, for both the input and output processes, the bursti-
ness in any interval is bounded by a constant independent



of the length of the interval. We also assume that the
downtime during any cycle is bounded by a constant:
V,<Vioralln= 1.

Theorem 1. Assume p < 1 and W, = 0. Then:

W"$ﬂ—~+o'A+p0'D, nBl,
1-p
|4 o4 T Op
T, = , n=1,
(1-p)2 81 -p)
2-p)V
Z(t)\a(l—z) +o04 +pop, t=0

Proof. It follows from (2) and (14) that By, < oy, and
from (3) and (15) that —BY, < op, for arbitrary s < 1.
Then in Lemma 3 one can replace all the max{ ... } terms
by the appropriate term, o4 or o, replace the W), terms by 0,
and remove the p" " terms to increase the right-hand
sides. []

Remark 2. It is known that the average cycle time in cer-
tain stationary polling systems is given by ¥/(1 — p), where
V is the average downtime (walking time) per cycle. (See,
e.g., Altman et al. 1992. A sample-path proof in a general
setting is given in Theorem 4 in the next section.) The
difference between this expression and the bound obtained
in Theorem 1 can be large for p close to 1. The following
questions arise: (1) Is the bound tight? (2) Can it be im-
proved by giving more information on our system? (3) Is
the condition p < 1 necessary?

It turns out that the difference between the bound given
for T, in Theorem 1 and V/(1 — p) is due to the weak
assumptions that we have made regarding the polling re-
gime. (Recall that we require only that all the work
present in the beginning of a cycle should leave during that
cycle.) The following example shows that our bound is
indeed tight, in the sense that any upper bound has to be
at least V/(1 — p)°.

Consider a polling system with a single queue, an arrival
process with a constant rate of p < 1, a departure process
with a constant rate of 1, and constant walking times equal
to V. Assume that the polling uses the following gated
discipline for a very long time: when the server leaves the
queue a cycle begins; only customers present at the begin-
ning of a cycle are served in the current cycle (cf. the
example of a globally gated discipline in the previous sec-
tion). Since T,,, = pT, + V, it follows that the average
cycle time converges to V/(1 — p). Fix € > 0, and let m be
such that 7,, > V/(1 — p) — e. Then, the work in the
queue at the end of the mth cycle is greater than p[}/(1 —
p) — €]. Now, assume that at the m + 1st cycle the polling
discipline changes to exhaustive, i.e., the server remains at
the queue until it is empty. At the beginning of the m +
1st cycle, the amount of work in the system satisfies Z(t,,)
> p[V/(1 — p) — €]. When the server arrives at the queue,
the amount of work in the queue is Z(t,,) + pV. So the
time to empty the queue is:
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Z(tm) + pV |14 o
P s (et v)a-p
so that
|4 _
Ty s >p(m— c+V)1-p) "+ Y
L4 pe (16)

(1-p)?* 1=p
Hence, the answer to question (1) is “yes”—any upper
bound has to be at least V/(1 — p)*.

The fact that the bounds were shown to be tight implies
that the condition p < 1 is a necessary condition for stabil-
ity: we see that arbitrarily large workloads and cycle times
can be obtained as p — 1. A partial answer to question (2)
is given by Altman and Kofman (1994), who consider poll-
ing systems with a finite number of queues. The bounds
are improved by restricting to fixed polling disciplines (e.g.,
gated or exhaustive), and then exploiting specific charac-
teristics of the polling regime. However, this requires a
case-by-case analysis of different polling regimes. The
methodology used by Altman and Kofman to improve the
bounds involves inductive arguments to estimate different
quantities at each time that the server arrives to a queue
(rather than at each time that a cycle begins).

Finally, we show that the output from the system also
satisfies a Cruz-type bound (of the same type as (14)), with
the same average rate as the input average rate.

Theorem 2. Under the assumptions of Theorem 1, for all
0=t<t:

a2 - p)V

D(t')—-D(@t)<alt' — 1)+ =

+ o4 + pop.

Proof. For 0 <t < t', we have
D(t')—-D@)<Z@)+Al') — A1)
=Z(t)+ a(t’ — 1) + B, 17)

Suppose ¢, < t < t,,,, where n = 0. Using (13), we
obtain:

aV

D(t')—D(t) < a(t' —1t) + N + aV

n
+ (2 orma+na, + B2
i=1

- p( 2 p"BP + BQ,,).

i=1
The desired result then follows, again using Lemma 2. []

Remark 3. The bounds obtained in this section may be
useful in the analysis and design of communications sys-
tems. The characterization of the input process in terms of
the average rate and burstiness is typical of the traffic in a
communications network at the output of a spacer or a leaky
bucket. The bound for the workload in the system can be
used to obtain upper bounds on the size of the buffers
required so as to guarantee no losses. The strict bound on
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the cycle time is also quite desirable in communications
applications, especially in order to guarantee some service
quality for synchronous traffic (such as voice or video).
Indeed, several token-ring protocols possess some distrib-
uted mechanism to enforce a strict upper bound on the
cycle time; an example is the FDDI protocol. The fact that
an upper bound for the cycle times is obtained for the
Cruz-type arrival process suggests that previous distributed
mechanisms to enforce such constraints can be replaced by
shaping the input flows to a token ring using leaky buckets.
Moreover, the fact that the output process satisfies a Cruz-
type bound may be used in analyzing networks, where the
output from one token ring can be the input to another
element of the network. (Applications to token rings are
discussed in more detail in Altman and Kofman and Alt-
man et al. 1994.)

3. LIMITING AVERAGE RATES

In this section we consider systems in which the input and
output processes have limiting average rates. Specifically,
in the same spirit as in Stidham and El-Taha, we make the
following assumptions:

. A@)
lim —— =
t—>o

m Jo u(s) dD(s)

1 _ =
== [oul(s)ds

a, (18)
(19)

We interpret 8 as the sample-path version of the condi-
tional departure rate, given that the system is “up.” We
also assume that:

Va
lim ——= = 0. (20)
Theorem 3. Assume (18), (19), (20), and p = a/d < 1.
Then:

W,

lim " = 0, (21)
T,

lim 2" = 0, (22)
Z(t

lim Z0 _ (23)

Proof. Let € > 0 be given, and suppose N is large enough
so that for alli = N and ¢ = t5:

(a—e)t<A(t) < (a+ e,

(86— ¢€) J u(s) ds < J u(s) dD(s) < (6 + €)

0 0

J u(s) ds,

0
Vi = €l;.

Then, forn > Nandty <s <t <t,

A(lt) —AG) < at+ e —as + es < a(t — s) + 2et,,

so that B!, < 2et,,. Similarly:

t t

D(t) — D(s) = f u(x) dx) — 2et,,

S

u(x) dD(x) = 8<J
so that —Bf, < 2et,. Replacing the max{ ...} terms in
Lemma 3 with 2et, (in the case of (7) and (8)), or 2et,
(in the case of (9)), and replacing V' with e, or e, ., and
dividing by ¢, or ¢,.,, (as the case may be) gives:

Wn n—NW 1— n—N
<P N+[a(1_Pp )+2(1_p)]e’

t, t,

Tn _ Pn_NWn [(1 _ pn—N) 4 :|
< €,
th tpa(l—p) (1-p)* 8(1-p)

Z(t) _pn-nWn [a(2 —p" ™ ]
< + +2(1 - ,
Ln+1 In+1 1-p ( p)|e
fort, <t<t,,.

Taking limits as n — o, (21) and (22) follow. Define N(t)
:= max{n:t, < t}. Then:
Z(t) _ Z(1) INw+1 _

t EN@y+1 t

and thus (23) follows from (22). []

Z(t) IN@+1
N+ Eng

(24)

Remark 4. The condition (23) is a kind of pathwise stabil-
ity condition, called rate stability by El-Taha and Stidham
(see also Stidham and El-Taha). Given lim,_,.. A(?)/t = «
< o, it is equivalent to equality of the input and output
rates:

. D() . A@)

lim ——=1lim—=«

t—o t—o

As an elementary consequence, we obtain the following
result for the long-run fraction of time that the system is
down.

Corollary 1. Under the conditions of Theorem 3:

J6 v(s) ds -
t

lim inf 1-p. (25)

If in addition [{ «(s) dD(s) = 0 for all t = 0, then:

. Jhu(s) ds
lim =

t—

Proof. We have:

1-p. (26)

t

ZO0)+A@)=Z(1t)+D{t) =Z(t) + J u(s) dD(s),
0

(27)
so that
Z(0)+A(t)>Z(t)+féu(s) dD(s) [oul(s)ds
t t Tt b u(s) ds t

Taking limits and using (23), one obtains:

Tou(s) ds)
t

a= 6<lir{1 sup

’



from which (25) follows immediately. When [§ v(s) dD(s)
= 0, we have D(t) = [§ u(s) dD(s) for all ¢+ = 0; hence,
(26) holds. [

In the following theorem we derive an expression for the
long-run average cycle length.

Theorem 4. Under the assumptions of Theorem 3:

th DR
lim inf — < (1 — p) 7! lim inf ———, (28)
n—» R n—w n
tn 2V
limsup —= (1 — p) ! limsup ——. (29)
n—ox R n—x n

If, in addition, lim, ., n~ ' 3%, V; = V < , then:

.ty | 4
lim — = +——.
n—x N l_p

(30)

Proof. Let n and m be positive integers, where n > m.
Then,

Wm +A(tn) _A(tm) = Wn +D(tn) _D(tm),
or, equivalently,

Wn + alt, —t,) + B,

=W, +8(t, —t,) +BP, -8 X V.

i=m+1

Rearranging terms, we have,

(8—a), +W, —B, +BP, =82V, +E,, (31)
i=1

where E,, := W,, — 8 2%, V; + (8 — a)t,,. Now let € and
N be given as in Theorem 3, and suppose thatn > m = N.
Then, B t,| < 2et, and |B? t,| < 2et,. Moreover, from
(21) it follows that 0 < W, /t, < e for sufficiently large n.
Using these bounds in (31), and dividing by n, we obtain
8 2 Vi En
ey

In
—-s(8—a+56);.

Iy
(8 —a—5¢) —=
n n

Now fix m = N and let n — . Since E,, is constant and e
was arbitrary, we conclude that:

ty 2V
(8 — a) lim inf — < § lim inf

n—o0 n n—o n
. 1"l=1 Vi . t,
< § lim sup < (6 — a) limsup —,
n—x n— n

from which the desired result follows upon dividing by 6 —

a. [

Remark 5. Note that the proof of Theorem 4 did not use
our basic assumption that D(¢,,) — D(t,,_,) = W, _,, for all
n = 1, except implicitly when we invoked Theorem 3 to
conclude that (21) holds, that is,

/4
lim —* = 0.

n—oeo I,
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In fact, the proof demonstrates that Theorem 3 holds for
any system in which (18), (19), and (20) hold, with a < §,
provided that (21) also holds. In particular, it suffices that
the system be rate stable: Z(¢)/t — 0 as ¢t — .

The fact that the average cycle length equals V/(1 — p)
for a large class of polling systems seems to be part of the
folklore, but we could not find a previous pathwise proof
in the literature. A proof is given in Altman et al. (1992),
but the proof there uses the theory of stationary point
processes. The assumptions are in some sense orthogonal
to ours, in that they assume stationarity, but not ergodicity,
of the processes involved.

Remark 6. The pathwise assumptions in this section and
the last are usually easier to verify in polling systems if the
cycles are defined in the “natural” way. That is, each cycle
ends when the server completes the walking time between
the last queue and first queue. Then as long as the walking
time between each of the queues is bounded or has a
long-run average, the total walking time in each cycle will
be bounded or have a long-run average. The situation in
systems where the cycles are not defined in the “natural”
way becomes more complicated. For example, as we ob-
served in Remark 1 in Section 1, we can define the cycles
so that the Output Assumption is trivially satisfied, but
then (typically) the bounds or growth conditions on down-
times per cycle, or the constraint that p < 1, will not be
satisfied.

To illustrate, consider a system with two queues and cycles
defined trivially as above. The service intervals and walking
times are always one time unit. The server can serve two
customers per service interval at queue 1, and one cus-
tomer per service interval at queue 2. All arrivals occur
during the walking time between queue 2 and queue 1,
with four customers arriving at queue 1, and one customer
arriving at queue 2. We define the server to be “up” when
it is serving at queue 2. Thus, p = 5/8 < 1. However, it is
not difficult to show that for any initial work load, the
“artificial” cycles we defined to meet the output assump-
tion will start to double in length each successive cycle
after some initial number of cycles. As a result, {V,} is
unbounded, and V, /t, — 3/8 as n — . The restrictions on
V,, in this and the previous sections are not met.

This example points up the delicate interplay between the
Output Assumption, the requirement that p < 1, and
the bounds or growth conditions on V. In particular, we
cannot simply define cycles so that the output condition is
met, and define uptime so that p < 1, if as a result the
constraints on downtime per cycle end up being violated.

4. LAW OF THE ITERATED LOGARITHM

In this section we show how our pathwise analysis can be
used to characterize the asymptotic behavior of W, more
precisely, in the presence of information about the rate of
convergence of A(t)/t to a. To keep the exposition simple,
we shall confine our attention to the special case of a
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constant unit output rate while the system is up. That is,
we assume that:

[ u(x) dD(x) _

=1, t=0. 2
Jou(x) dx (32)

Thus, p = a. (Similar results will hold in the general case.)

Let A(f) be a monotone nondecreasing function of ¢,
such that lim,_,.. A(¢) = . We make the following assump-
tions about {A(¢), t = 0} and {V,, n = 1}:

. A(t) — pt

lim sup ‘W‘ <1, (33)
V.

T (34

Theorem 5. Assume (32), (33), (34), and p = o < 1.
Then:

lim su

W,

Proof. Let € > 0 be given. It follows from (33) and (34)
that there exists an integer N such that, for all ty < s <

t<t,

A(t) —A(s) < p(t —s) +2(1 + €)hl(t,),
and, forall N + 1 < i < n,

V, < eh(t,).

It then follows from (4) and Lemma 2 that

W, <" Wy + (125 + 201+ 9)h(t,),
-p

for alln = N + 1. Since € was arbitrary, the desired result,

(35), then follows by dividing both sides by A(t,) and let-

tingn — . []

Theorem 5 applies, for example, to stochastic models in
which the input process, {A(¢), t = 0}, satisfies a Law of
the Iterated Logarithm (LIL), in which case (33) holds
with probability one with

h(t) = oV2t loglog t. (36)

5. THE STOCHASTIC CASE

In the previous three sections we considered a single sample
path for which we obtained both performance bounds and
stability conditions. In this section we shall discuss stochastic
models. We first note that the assumptions on the arrival and
departure processes described in Section 3 (specifically, (18)
and (19)) hold for any ergodic arrival and departure pro-
cesses with probability 1. In that case, Theorems 1 and 4 still
hold, where the equalities and inequalities should be inter-
preted in the almost sure sense. The assumptions in Sec-
tion 4 also hold in an a.s. sense for many ergodic arrival
processes, with 4 given in (36); hence, Theorem 5 may be
interpreted in the a.s. sense for these cases as well.

Now, we consider stochastic arrival processes of the type
introduced by Yaron and Sidi (1994) and Chang (1994)

characterized by bounds on the tail distribution. We shall
consider a general bound and then specialize to both expo-
nential and polynomial bounds. More precisely, we assume
that there exist some constant p > 0, and a nonincreasing
function G:R — R, such that for all ¢ > 0:

P{A(t) — A(s) — p(t — 5) > 0} < G(0), (37)
0<s<t<o.

We shall further restrict the arrival process and the polling
discipline to ensure that (37) holds when replacing ¢ and s
by some random times. Specifically, we shall assume that it
holds also for ¢t and s chosen as the beginning and end of a
cycle. That is, for all ¢ > 0,

[)(Blr:1 > U) = P{A(tn+l) _A(tn) - p(tn+1 - tn) > U}
<G(o), n=0. (38)

Condition (38) is natural for a quite general class of arrival
processes. At the end of this section we show that this
includes i.i.d. arrivals, each of which brings an amount of
work that satisfies some tail condition.

Throughout this section we shall make the following
simplifying assumptions: (i) departures occur at a constant
unit rate, and (ii) the downtimes are uniformly bounded,
i.e., there exists some constant }" such that V, < V a.s.

We show below that if p < 1, then these assumptions
imply that the workload at the beginning of cycles and
at arbitrary times, as well as the cycle durations, have
similar types of bounds on their distributions. For the
case of exponential bound, this will imply that all moments
of the workload in the systems are uniformly bounded in
time.

Moreover, we show that the departure process has a
characterization of the same type as the input process, with
the same p. This again is important when considering a
network that consists of a number of elements, each of
which maps input processes of the type (37) into departure
processes of the same type (with possibly different con-
stants). Denote

_ - - 2 —p)V
W .= oV , T := A 35 = pi( p) .
I=p (1-p) 1=p

Theorem 6. Assume that (38) holds. Assume p < 1 and
W, = 0. Then the workload at the end of the nth cycle and
the duration of the nth cycle satisfy:

n—1
P{W, -W>o}=< 2 Gla;p™), (39)
i=0
n—1
P{T, - T>a}< > G(p(1—pla;p™, (40)

i=0

for any nonnegative constants ag, ay, . . ., a,_, Such that a,

+a, +--+a, <o

Proof. It follows from Lemma 1 that foralln =0, 1, ...,
W, < W+ 3, p" 'B. Hence



n

P{W,>W+ o} < P{ > pt B > U’}

M=

=

P{p" B > a,_;}

Il

i=1

=

EP{B >a,_ip "}

i

G(an -ip ).

|| M:

Similarly, it follows from (11) that:

Vv n—1
(1=pTy <+ > p" 'Bf + B
i=1
V - .
<-——+ 2 p" 7B
1-p 0

Hence,

P{T, - T>o}< P{ 2": p" 1B > o(1 — p)}

i=1

s

I
—

=

P{p" '""B{' >a,_;(1 - p)}

=

s

Il
—_

—n+i)
b

G(p(1 —pla,-ip

from which the theorem follows. []

Corollary 2. Assume that (38) holds. Assume p < 1 and
W, = 0. Choose some arbitrary € > 0. Consider an expo-
nential bound on the tail distribution of the arrivals (38):

G(o) = K exp(—kg0), o=0, (41)

where kg, K, are some positive constants. Then, the work-
load at the end of the nth cycle satisfies

P{W,-W>o+¢€

<K, exp{—(c + €k}, n=1, 42)

for all o = 0, where k, and K, are constants given by
K
= —_ 2 = io
1 - (1 p) ko, Kl . l—exp(—kle)'

The duration of the nth cycle satisfies

P{T,—T>o0+ ¢}

<K exp{—(c + €k}, n=1, (43)

for all o = 0, where k} and K} are constants given by
K
"= — 53 Lol
kl . p(l P) k09 K 1 — exp( k 6) .

Proof. The proof is obtained by applying Theorem 6. Set
a; := (i + 1)p'd, whered := (1 — p)%d’.
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Note that 22, a; = ¢’. We obtain in particular,

<> Glaip™)

i=0

P(W, — W>g')

=K, i exp{—ko(i + 1)d}

Ky
= 1= expl—dka} exp{—dk,},
for all n. For ¢’ := o + €, we have
exp{—dko} = exp{—(o + €)k,} < exp{—e€k,}, (44)

from which the bound for W, follows. The proof of (43) is
similar. []

Corollary 3. Assume that (38) holds. Assume p < 1 and
W, = 0. Consider a polynomial bound on the tail distribu-
tion of the arrivals (38):

G(o) =Kyo™™, (45)

where K, m are positive constants, with m > 1. Then, the
workload at the end of the nth cycle satisfies

PW,-W>o}<K,oc™, n=1, (46)

for all o = 0, where K, is given by

Ky :==Ko(1—p) 2" > 1™

I=1
The nth cycle duration satisfies
P{T,-T>o}<K\o™ n=>1, 47

for all ¢ = 0, where K is given by

Ki:=Kep"(1—-p) " 21
=1

Proof. As in Corollary 2, set:
a; := (i +1)p'd, whered := a(1 — p)>.

The proof for W, is again obtained by applying Theorem 6,
and

Gla;p™) =G((i + 1)d) = Kod ™(@ + 1) ™.

The proof for T, is similar. []

Next, we obtain bounds on the amount of work at an
arbitrary moment and on the departure process. Let n(t)
denote the (random) number of cycles that started prior to
time ¢. We shall need the following assumption:

P(Bf > a) = P{A(t) — A(t,w) — p(t = taw) > o}
< G(o), t=0. (48)

Theorem 7. Assume that (38) and (48) hold. Assume p <
1 and W, = 0. Then, the workload at an arbitrary time
point t and the departures during an arbitrary interval (¢, t']
satisfy
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P{Z(t) - Z> o} < i Gla;p™) +Gla),
=0

P{D(t') —D(t) — p(t' —t) > o}

8

<> Gla;p™H + Ga') + G(a"),
1=0

for any nonnegative constants a', a”", a,, a,, . . . such that a’
+a"+ Zya; < o.

Proof. It follows from (13) that:

Zu)y<Z+ X2 p"Bf + BY ..
i=1

The bound for Z(f) is now obtained as in the proof of

Theorem 6. The bound for D(¢t') — D(t) is obtained simi-

larly by noting that:

D(t') —D(t) — p(t' —t) < Z(t) + Bf,.
O

As was done in Corollaries 2 and 3 for W,, and T,,, one
may also obtain explicit exponential or polynomial bounds
on the tail probabilities of Z(¢) and on the departure pro-
cess by using Theorem 7 when such bounds hold for the
arrival process.

5.1. Sufficient Conditions for the Burstiness
Constraint (38)

Since (38) is slightly different from the standard burstiness
constraints (37) on the arrivals (Chang 1994, Yaron and
Sidi 1994), we present sufficient conditions for it to hold.
We first show that for both exponential-type and
polynomial-type bounds, (38) is satisfied under the follow-
ing condition. Assume that there is a constant p > 0, and a
nonincreasing function G such that, for all o > 0,

P{A(t, +1) —A(t,) = p-t + o} < G(o), (49)
n=0,t=0.

Indeed, if (49) holds, then forall p > p, A > 0,n =0, 0 =
0:

P{A(t,41) —A(t,) = p(tpsr — t,) + 0}
= E P{A(tn+1) —A(tn) = f)(tni—l - tn) + ag; IA
=0

<t, —t, <+ 1)A}

8

< 2 PlA(t, + (I + 1)A) — A(t,) = pA(I + 1)
0

~
Il

+ o+ A(pl — p(l + 1))}

G(o + APl — p(I + 1))).

Vi
I

Consider ﬁfst _the exponential bound, i.e., assume that
there exist K, k, such that

G(o) = K, - exp{—ky  o}.

Then we obtain

P{A(tn+1) _A(tn) = f)(tn+1 - tn) + U}

< go Ko exp{—ko(o + A(pl — p(I + 1)))}

C := exp{Apk}/[1 — exp{—Ako(p — p)}] < .
For the case of polynomial bounds, i.e.,
G(o) = Cle™,

for some C, m > 0, we get G(x) = ¢/x™ (where ¢ > 0 is
some constant).

Next, we present sufficient conditions for (49). We shall
assume that work arrives to the system with “customers.”
Denote by 7; the time between the arrival of customer i
and customer i + 1, i = 1. Denote by s; the “work” that
customer i brings (i.e., the service time required by it).
Without loss of generality, assume that customer 1 arrives
to an empty system at time ¢ = 0.

Lemma 4. Assume:
(i) the interarrival times of the customers {;} form an
i.i.d. sequence with finite positive mean;
(ii.a) the service times {s;} form an i.i.d. sequence;
(ii.b) there exists a constant X > 0 such that E exp{As;}
< o, and the sequences {7} and {s;} are
independent,
(iii) {t,} are “independent of the future” in the following
sense: for all r, n, an event B, , = { J';ll T <t <
2/ T} is independent of the o-algebra generated
by the sequences {{7;};~,; {s;};>,}.

Then, there exists a constant p > 0 such that, for all o >
0, the bound (49), and hence (38), hold with exponential
tail.

If (ii.b) is replaced by the assumption that Es7"? < o
for some integer m, then (49), and hence (38), hold with a
polynomial tail: G(x) = CK™*' and G(x) = c/x™, for
some constants ¢ and C.

Since the proof is technical, it will be left to the
appendix.

Remark 7. Property (iii) is the only one that is related to
the specific polling policy that is used. It is known to hold
for a very large class of policies, including gated type and
exhaustive type policies. (See Altman and Foss.)

Remark 8. We may generalize the arrival process consid-
ered in Lemma 4 to a regenerative type of arrival process
and still get the same type of results. Consider some regen-
eration times Ty, T,,.... Define 7, = T;,; — T,. The
location of arrivals and the workloads they require in each
regenerative period are given by a measure M defined on



([0, ;) X €), where € is the set of possible values of the
workloads. For any Borel sets B; C R, B, C ¢, M(B, X
B,) is the amount of workload that arrives at time points in
B, with values in B,. Assume that 7, and the amount of
work that arrives during a regenerative period both have
finite first moments. Under fairly general conditions, this
type of arrival process allows, in particular, for K indepen-
dent i.i.d. arrival streams into K nodes. (See Foss and
Rybko.)

APPENDIX
PROOF OF LEMMA 4

For all r, n, we have
7. (2)
A(tn + t) —A(tn) =S4 T E Sr+i+ls
i=1
a.s. on the event B,,, where 7,(f) = max{m = 0:71,,,
+- -+ 7, =<t} r=0. Then,
P{A(t, +t) —A(t,)>p-t+ o}

= > P(B,,) P{A(t, +1t) — A(t,) > p-t + o|B,,}
7, (1)

r=1
= E P(Bn,r)°P{sr+1 + 2 Sr+i+1
r=1

i=1

>pet+ a"B"”}

(1)
P(Bn’r)’P{Sr+1 + E Sr+it1 = p-t + (T}

i=1

I
DANZE

Mo (1)
=P{51 + 2 Siv+1 >p‘t+0’},

i=1

where the next-to-last equality follows from condition (iii),
and the last equality from assumptions (i) and (ii.a). We see
that our problem is reduced to estimating the probability

7(t)
Pt,o' :=P{51+Esi+1>p't+(f}, (50)

i=1

where 7(t) = no(t). Seta = ET,, b = Es,. Choose p > b/a
and set ¢ = pa/b > 1. Fix some constants ¢ and & satisfying
1<¢<c¢, = ao,where 0 < a < 1 is arbitrary. Denote
x = (¢la)t + &, and let [x] denote the smallest integer
greater than or equal to x. We shall decompose (50) into
two parts, which we shall estimate separately:

P, <P, +P,, P,:=P{nit)=[x1},
[x1
P, :=P{Es,~>pt+a}.
i=1
LetT,:= 7 +---+ 7, and let y > 0 be arbitrary. Then,
Py = P{Trq <t} = P{lexp{—yT1.1} = exp{—vt}}
< [Y(v)]* exp(yt) = [¥(y)]1°Te(y) exp{ya/c}] ",
(51)
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where {(y) := E exp{—vy,}, the Laplace-Stieltjes trans-
form of 1, evaluated at y. Now,
U(y)=1-vya+o(y)=1-vyafc

—va(@ - 1D/c +o(y)

as y — 0. Hence, for y << 1, it follows from (51) that

P, < exp{log ¥(y)a} = exp{log ¢(y)ao},

for all £ = 0. (So far, we have not used any assumption on
the tail probability of the service times.)

Next, we bound P,. Let ¢, and € be some strictly positive
constants such that

(Eto/a + 1)(b + E) = pty.

Consider first the case ¢t/a + & = ¢ty/a. Note that:
[¢t/a + &1(b + €) < (Gtla + G + 1)(b + €)
Ctlat+a
= Ctola

_Ctla+ o
Ctola

(Ctola + 1)(b + ¢€)
pto = pt + pad/c.

Recall that in the definition of &, « was arbitrary. We now
choose a specific a so that paa/c =: q is less than 1. Hence,
pad/c = qo. Denote R := sup,~o 21— (s; — b — €). We
have

[et/a+a)

stp{ >

§; > pt + 0'}
i=1

[&t/la+51
sP{ > (s; —b—e)>(1—q)0'}

i=1

<P{R>(1-¢q)o} =:Z.

Now, it is well known (e.g., see Asmussen 1987, p. 184)
that EsT*? < o, m = 0, implies that ER™*! < o, so that
Z < Ma~™*D for some constant M < o; likewise, if E
exp As; < « for some A > 0, then Z < exp{—Moa} for
some constant M > 0 (e.g., see Kingman 1970).

For ¢t/la + & < Ctya, we have

[€to/al [to/al o
P, SP{ > s >0'} < > P{s,— >-—}
i=1 [etg/al

i=1
~ }
Cto/a )

Hence, P, has the same tail behavior as s,. This concludes
the proof. []

= Fato/ﬂp{sl
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