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Abstract

The station times are an important measure of performance in polling systems,
and are often used to determine efficiently other performance measures, such as
waiting times. In this paper we give sufficient and necessary conditions for the
existence of all moments of station times in steady state, for polling systems with
Gated and Globally-Gated disciplines. Moreover, we show that the moments con-
verge geometrically fast to the steady state ones under these conditions. We then
address the question of the rate of convergence of the sample averages of functions
of the station times. We establish the applicability of central limit theorems (CLT)
and the law of iterated logarithm (LIL) for all moments of the station times. In
particular, we compute explicitly the constants involved in the CLT and LIL for
the cycle durations.

Keywords: Polling, Station times, Gated and Globally-Gated disciplines, Geomet-

ric Ergodicity, Moment Stability, Central limit theorems, Law of iterated logarithm.



1 INTRODUCTION

Growing attention was given in recent years to establish rigorously suffi-
cient and necessary stability conditions for polling systems. Several differ-
ent approaches were used to obtain ergodicity as a measure of stability, see
1,2, 3,7, 8,11, 12, 14]. In [1], Altman et al. further present sufficient and
necessary conditions for stronger notions of stability, namely the geometric
ergodicity and the geometric rate of convergence of the first moment of the
process of queues’ length, embedded at polling instants (see Tweedie [17, 18]

for definitions of these notions of stability).

We consider a cyclic polling system with N infinite capacity queues
(stations), served according to the Gated discipline. Hence, in every visit to
a queue, the server serves only the customers present at the polling instant.
New arrivals to the queue while being attended by the server, will wait for
the next visit. We are interested in the stability of station times, which are
defined as the total service time given to a queue plus the walking time to
the next queue (a precise definition is given in the next section). The interest
in these quantities is due to Humblet [9], and Ferguson and Aminetzah [6],
who established an efficient way of computing the expected waiting times in
different queues that requires the first and second moments of the station
times (see also Choudhury and Takagi [5]). Indeed, when station times are
used, then the state of the system is described by an N dimension vector of
station times; it then follows that in order to determine the expected waiting
times, a set of N2 equations should be solved |5, 6, 9]. A method with a
special low complexity of determining the expected waiting time based on
the station time approach is presented in [15]. It requires solving a set of
O(N) linear equations. If the “buffer occupancy" method is used (see Takagi

[16]) then the state of the system is described by an N? dimensional vector



of queue lengths at different polling instants, and thus N3 equations should
be solved in order to obtain the expected waiting times. Another advantage
of working with station times is that in regimes where n < N disjoint groups
of queues have each a global gate (see Boxma et al. [4] for the case n = 1 and
Khamisy et al. [10] for general n) the state of the system can be described
by an n-dimensional state of some generalized station times, and the number
of equations to obtain the expected waiting times reduces to n(2n —1). In
particular, this implies that for n = 1 an explicit expression is obtained for
the expected waiting times [4]. We shall treat the Globally Gated regime in
Section 6.

In Section 3 we obtain sufficient and necessary conditions for geomet-
ric ergodicity of the station times, the existence of the first moments in
steady state, and the geometric rate of convergence of the first moments to
the steady state moments. In Section 4 we obtain sufficient and necessary
conditions for the existence of all moments of the station times in steady
state, as well as the geometric rate of convergence of the moments to those
in steady state. The conditions used in Section 3 are slightly weaker than
those in Section 4, which is natural since the results are weaker. However,
this is not the only reason for separating the discussion on the stability of
the first moment and the stability of all moments. Indeed, in Section 3 we
also obtain a bound on the distance between the probabilities at any time
and the steady state ones (see Theorems 2 (iv)), which is better than the
one that can be obtained in Section 4.

The main tool that we use for establishing conditions for geometric er-
godicity is a generalization of Foster’s condition due to Tweedie [17], which is
required for dealing with the non countable (infinite) state space (of the sta-
tion times). This involves the construction of so called Lyapunov functions

as well as the construction of “small" or “petite" sets. An appropriate choice



of the Lyapunov functions implies stability of all moments [13]. Moreover,
they allow to obtain estimates on the rate of convergence of the sample av-
erages of the moments of the station times. Indeed, in Section 5 we obtain a
central limit theorem (CLT) and a law of iterated logarithm (LIL) for these

empirical moments.

Finally, we obtain in Section 6 similar results for the Globally Gated
regime, which has recently been introduced by Boxma, Levy and Yechiali
14].

The main results of the paper are presented in Theorems 2, 5, 6,
7 and 8. Theorem 2 establishes the geometric ergodicity of the vector of
station times, Theorem 5 establishes the geometric convergence of expected
functions of these station times, and, in particular of all moments; Theorem
6 establishes the CLT and LIL, and Theorem 7 specifies these to the cycle
time (and presents explicit expressions for the constants that appear in the
CLT and LIL). Theorem 8 summarizes these results for the Globally Gated

regime.

2 THE MODEL

The polling system has N queues. All queues’ capacity are infinite. The
server visits the queues in a cyclic order, vz. 0,1,2,---,N —1,0,1,2,---.
Without loss of generality, we assume that the server arrives to queue 0 at
time zero. Thus, the n-th (n > 0) queue that the server visits is queue

I(n) = n mod N, which is the remainder of the division of n by N.

Inter-arrival times to queue ¢ are independent and have Poisson dis-

tribution with rate A;, i =0, ..., N — 1. Denote A = ¥ N o' \;.

The service times of jobs in queue i, (i = 0,..., N — 1), are i.i.d.



random variables distributed as B; with first moment b;. Denote p; def Aib;

and p ¥ £N:1p,. Denote bi(s) = [ e *dFp (t) the Laplace Stieltjes

Transform (LST) of B;. Let Ay = Arxy, bk = brxy and pr = prpy for & > N.
We assume without loss of generality that p; > 0,¢+=0,1,..., N — 1.

The time it takes between the instant that the server moves from the
kth queue on its path (which is the moment when the server finishes service
there, if that queue was non empty upon the arrival of the server to that
queue) till the server arrives to the next queue is called the kth walking time
and is denoted by Dy, k = 0,1, 2, .... We assume that the walking times are
independent, and their distribution depends on k only through I(k). Their

LST is denoted by d(s), and the first moment by dy. Let D = Y1 5" D; be
a generic random variable distributed as the total walking time in a cycle
and denote by d and d*(s) the expectation and LST of D respectively. The
walking times, the inter-arrival times and the service durations are assumed

to be mutually independent.

Let A;(T) denote the number of arrivals to queue 7, 0 < i < N — 1,
during a (possibly random) time interval of length 7T". Let By (l) be a random

variable that represents the total service time of [ customers at the k-th visit

of the server, k > 1. Let Iy(-) & Bi(Arx)(+)). Thus I'y(7T') is the time
needed to serve at the kth queue that is polled all customers that arrive
during a time interval T. Let 7(k) be the kth polling instant to a queue.
Thus a queue that is polled at 7(k) is also polled at 7(k + N), 7(k + 2N)

and so on.

There are two standard ways to describe the evolution of the polling
system using embedded Markov chains. The first uses the vector of the
number of jobs in queue j at the kth polling instant to a queue (“buffer

occupancy" method). We use a second description which is through the



station times at polling instants [5, 6, 9]; we define the station time 6 as
the (random) time it takes to serve the kth queue that is polled, plus the
walking time between that queue and the next queue. We thus consider a
Markov chain embedded at time 7(k), & = 0,1, .... The state at time 7(k)

is then taken to be the following vector of N station times:
ﬁk = {ek—]\ﬁ "'79k—270k—1}- (]-)

Thus the Ith component of 9} is given by V. = Oy_n4y, [ = 0,..., N — 1.
Denote by © the state space (i.e. © = RY).

3 GEOMETRIC ERGODICITY AND STABILITY OF
FIRST MOMENT

The system evolves according to the following dynamics:

N
O =T (Z 0k—i> + Dy (2)
i=1
and thus

N
g1 = {ek—N+1; ey Op—2, Ok 1, T'g (21 919—@') + Dk},

which is a non-homogeneous Markov chain. However, for any 0 < [ < N,
the embedded ¥y, £ = 0,1, ... is a homogeneous Markov chain, of which
we prove the stability below. [ is thus regarded as a reference station (and
will often be chosen to be [ = 0). Note that the values of N — 1 components
of ¥4 and of ¥4, overlap. We denote the transition probabilities of the
embedded chain by Pi. We shall omit £ from the notation when k£ =0, i.e.
we shall understand P = P.
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Denote by W} the total amount of work at queue I(k + [) at the kth
polling instant 7(k), I = 0,..., N — 1. Let Wy = > ;! W} + D.

Lemma 1 The following holds:

N-1 N-1 l
> kBl I8 = BIWloi] = X oL (z pz-) B

Nol oo , N-L
z§) w, B[,y — 03| 0k] = (p — 1) EO U, +d

-1

N-1 N
= (p—1) X wpdp+d+(p-1) ¥

. e%] (1)

where
[ def N=1
wp, =1—"3 pr+js [=0,...N—1. (5)
j=l+1

Proof: We have

-1
E[0%, 5|0 = El0p1|9r] = EIWL9:] + prat 3 E[Orivn|O%] + diss
=0
l -1 _
= E[Wk|’l9k] + Pk+1 ;)E[ﬁ7]/€+N|Il9k:| + dpa1, [=0,....N—1,

which implies the first equality in (3).

The total expected amount of work arriving during 9% (i.e. during

Or+i1-N) 18 pYt . Indeed, let A; be the number of arrivals of customers to
queue ¢ during 9%, =0,1,..., N—1. Let Bg, 1=0,...,.N—=1,7=1,2,... be

independent random variables such that B is distributed like B; (the service



time in queue 7). Then N are independent of the service times required by
these arrivals, so it follows from Wald’s identity that the expected amount

of work arriving during 9% is

N-1 N N-1 N-1 l z

(the second equality follows from the fact that the arrival processes to the

queues are Poisson). However, at time 7(k), the work that arrived during
9% to queues I(k+1+1),...,I(k+ N — 1) has already left the system, and
therefore the expected amount of work arriving during 9% that still remains
at time 7(k) is 9, l_, p;. This establishes the second equality in (3). (4)

then follows immediately. |

Theorem 2 Assume that b;,d; < oo for alli =1, ...,00 and that that p < 1.
Then

(1) for any 0 <1 < N, {948}, 7 =0,1,... is geometrically ergodic, i.e.,
there exists some positive constant o < 1 and some probability measure

on the state space, such that
Jim o™ |[Prnn (9, ) = m()]] =0

where || - || denotes total variation of signed measures [17].

(11) the expectation of all station times ezist in steady state,

(111) the first moments of the station times converge geometrically fast to the
steady state first moment.

(v) Let m denote the steady state distribution on ©. Define g : © — R

as g(x) = 1+ XN  whe;. There exist some € < 1 and R > 0, such that
||P™(3,-)—7(-)|| < RE"g(F) for any ¥ € O, where ||-|| is the total variation

norm.



In order to prove the above Theorem we need the following definitions
and Proposition, for a given a Markov chain (X,,) with state space (X, B(X))
and transition kernel P(z, B).

(1) A set K € B(X) is said to be small if there exists some positive measure
¢ on X, such that for any B C X with ¢(B) > 0 there exists j such that

J
inf Y P"(z,B) > 0.

(2) (X,) is said to be strongly aperiodic if there exists a set C C X, a
probability v on (X, B(X)) with v(C) = 1, and 6 > 0 such that

L(z,C) := P(X, enters C for some n > 1| Xg=1z) > 0
for all z € X, and

P(z,B) > ov(B), zeC,BeBX).

Proposition 3 Consider a strongly aperiodic Markov chain X, on a state
space X with transition probabilities P : X x B(X) — [0,1]. Assume that
there ezists a set K € B(X) and a function g : X — R, g(-) > 1, such that
(1) there exists some € > 0 such that Elg(Xu+1) — 9(Xn)| Xn] < —eg(Xy)
for X,, € K¢;

(11) Elg(Xn+1)|Xn] < 00 for X, € K;

(111) K is a small set.

Then

(a) X, is geometrically ergodic.

(b) Let w be the steady state distribution and denote by X the RV with
distribution w. For any function f : X — IR, such that 0 < f < ag for
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some constant a > 0,
(b.1) B[f(X)] < o0;
(b.2) There exist some & < 1 and R > 0 such that

/yeX f(y) P (x, dy) — /yEX f(y)ﬂ(dy)‘ < R&"g(x)

for all x € X.

Proof: (a) is proved in [17], (or in [13], the Corollary to Theorem 6.2, when
restricting to f = g). (b.1) is proved in [18] and (b.2) follows from [13], the
Corollary to Theorem 6.2. In [13] it is required that the set K be a “petite"

set. This is satisfied since any small set is also a petite set. |

Proof of Theorem 2: We use Proposition 3 (with X,, denoting ¥, n+%)-
It follows from (4) that

Elg(Fr+n) — g(Fk)|9%] < oo,

and that there exists some real number M, and € > 0 such that

Elg(Or+n) — 9(91)|9] < —eg(Vy)

if YV o' 9, > My. This establishes conditions (i) and (i) of Proposition 3.
Consider the set

N-1

IC(M):{X:;OXI<M}, X € ©.

We shall show that KC(M) is a small set for any M > 0, thus establishing
condition (iii) as well. Define ¢y(B) = P({Dx, ..., Drin_1} € B). Let C,
denote the time elapsed from the nth polling instant of a queue, till that
queue is polled again (the (n + N)th polling instant of a queue). Let Sy
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denote the event of no customers present at the kth polling instant 7(k).
Let R denote the event of no arrivals during Cj%. Choose an arbitrary

9 e K(M).

We first lower bound P(Si|9; = 9) and P(Ry|Sk, 9x = 9). For any
subset S of queues, S € {0,1,..., N—1}, we denote Qs(T") = exp{— Zies \iT'}
for T € R. Qs(7T) is the probability of no arrivals during an interval of
length 7" to the queues S (as the arrivals are Poisson). Let J be the set of
all queues. Note that the probability of no arrivals during Cy_n given 9
cannot be written as @ 7(Cy—n) since Ci_n is not independent of the arrival

process in that interval.

N-1 N-1
P(Sp|9, =9) = Ho Quuieriny (X ) = e (6)
1= 1=t

where the inequality follows since 9 € K(M).

P(Ry|Sp, O = ©) = P(Ri|Sy)
= FE[P(no arrivals during [7(k + 1), 7(k + N — 1))|Sk+1, Di) Q5 (Dx)]
= E[Prob(no arrivals during [7(k + 2),7(k + N — 1))|Sk+2, Dk, Di+1)
XQs(Dk + Di+1)]
= ..=E[Q;D)]=E{e*’} >, (7)

where the last inequality follows from Jensen’s inequality. We thus obtain

Pi(9,B) = P(p4n € B|9), =9)

P(O44n € B, Si, Ri|9), = 9)

P(O4in € B|Sk, Ry, O = 9)P(Ry, Sp|9 = 9)
B)P(Ry|Sk, 9 = 9)P(Si|9), = 9)

B)e AWM+, (8)

Y

&(
(

IV
-
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Thus, if ¢(B) > 0 then infg ;. /) Pr(¥,B) > 0, which establishes the

smallness of X(M) for any real number M > 0.

Next we establish the strong aperiodicity. Let R > 0 be such that
P(D < R) > 0. We choose

v(B) = P({Dy, ..., Dysn_1} € B|D < R).

Define § := exp(—A[R+ d])P(D < R). Set C = K(R). Clearly L(z,C) > 0
and v(C) = 1 for any « € X. Indeed, if ¥y = z (for some arbitrary z)
then there exists a strictly positive probability of no arrivals during the time
interval [7(k), 7(k + N)]. Conditioned on this event, 944on is distributed
like (Dy, Dg+1, ---s Dgyn—1). Hence L(z,C) > 0.

Now, for z € C we have by (8):
Pr(9, B) > ¢(B)e E+ > ¢(B|D < R)P(D < R)e M+ = §1(B)

from which we obtain the strong aperiodicity. This establishes the proof of
(1).

Consider the function f : RN — IR given by f(z) = z; for some

i =0,..N —1. Then (ii) and (iii) follow immediately from Proposition 3
(b). (iv) follow from Proposition 3 (b.2) by choosing f(z) = 1. m

Remark: It is known that p < 1 is also a necessary condition for the
ergodicity of the station times (see |7]). It turns out that it is also a necessary
condition for the finiteness of all moments. This follows from the fact that
the expected cycle duration is d/(1 — p) for p < 1, and from the fact that

the cycle durations are stochastically increasing in A, see [1].
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4 STABILITY OF ALL MOMENTS

Lemma 4 Assume that p < 1, bj(w) < oo and dj (w) < oo for some w < 0,
[ =1,....,N. Then there exists some ¢ > 0, B < 1 and My > 0 such that

N-1 |
E (eXP{ > 32792+N}

1=0

N1
19k> < ﬂexp{ > 82?92}

1=0

for all 9y, & K (M) (i.e. for all S ot widi large enough), where si = ewt,
and w, is defined in (5).

Proof: We introduce the following notation:
def * -1
Fi(©) E M (B (=) = 1), (9)
and we shall understand s;‘“ ;= sn " (and w,(c_i) = wp ). Note that

exp{fi(e)} =F [exp {sgc_l)l“k_l(l)}] :

Indeed, let Fp: denote the i-fold convolution of the distribution Fp, of B.

For any real number T,

B [eh@)] = i 7 et dF gy (1) PLAT) = i}

= g[bﬂ—w)]"P{Al(T):i}zf[ — = Mtil=)-1)T

We define recursively for i = 2,..., N

Fie) & Ny [ . (—s(‘“ ¥ f,i(e)) _ 1] .
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(The recursion begins with (9) for 4 = 1.) Hence f}(0) = 1 for all [, and

d d

O = Mem g bi(=si ),

so that (f1)'(0) := LfH(e)|._, = pr_rwy . Similarly,

d d (—) _ = 4l
Lrite) = Noyobt [ —slTY =
IO = Mgt (-7 - £ 460

d " (—i) i—1 ] )

— Nt o i oy o),
L Ot:(—si‘”—Z}if,i(e))( -5 o
so that
. P
(FiY(0) = pos [w,& >+l_zl<fk>'<o>]. (10)

Since, by (5), w,(c_i) =1 — Y21 pr_s, it follows by induction from (10), that
(f£)'(0) < pr—i- (11)
We have

E (exp {sy "Orsn-1}| Ok-1, ..., Oksn—2)

1) N-1
= Elexpisy [Trenv—1| > Ok—14i | + Drpn—1]

1=0

Or—1, .-, 9k+N—2)

Lo N . 1)
= eXP{fk(ﬁ) > 9k—l+z‘}dk—1(—5k )-

i=0
Similarly,

1

N-1 o
E<6Xp{ > Swlm} 9k—27---79k+N—3>
=N

—2
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= k& (GXP {Sl(g_z>0k+N—2} exp {82_1)9k+N—1}‘ Or—2, --- 9k+N—3>

= F (GXP {Sl(g_z>9k+N—2} exp {fé(e)ek—l}

N-2
X exp {f,i(e) ;} 0k+z}

Or—2, ..., 9k+N—3> dz—1(_31(c_1))

N-3
= exp {f;(€)0k- 1}€XP{fk( ) ;} 0k+i}
XE (exp {[Sl(c_Q) + f/i(e)}emN—zH Ok—2, -, 9k+N—3> X dz_l(—8§g_1))

= exp {f} ()0 1}exp{fk( ) i30k+i}exp{f1§(€) ijz_jew}

xdi_y(—sy > — fl(e)) - di_y(—si V)
= exp{(fi(€) + fi(€))0r-1} exp { f1(€)Ok—2}

X exp {[f,i<e> FROY ek} di (=i = J1(e)) - di_y(—sp ).

1=0

Continuing this, we finally obtain

N-1 N N
E (eXp{ > S%Qkﬂ} Or—n, .o 9k—1> = (- [l exp { (Z f;i(@) 9k—z}
i=0 =1 i=l
where
N . (—m) m—1
C - 1__[1 dk—m <_Sk - 21 fl?(d)
Consequently

E (exp {Ziso' 829k+i}| Ok—n, ..., Op—1)
exp {Tiy! siO-n i)

= C'llj—[leXp{(ka( ) — sk )) 9k—z}-
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A sufficient condition for the Lemma to hold, is that for all € > 0 sufficiently
close to 0, gi(€) := exp {Zf\il fie) — sé_l)} < 1. As ¢;(0) =1, it is sufficient
to show that ¢;(0) < 0. This holds indeed, since

/ Y i/ (=10 N i/ (1)
91(0) = gi(e) Zl(fk) (€) — wy = Zl(fk) 0) —w " =p—1,
1= e=0 1=
[ =1,...,N, where the last equality follows from (11). =

Under the conditions of Theorem 2, for each [ =1, ..., N, ¥4 ;5 weakly

converges to some RV which we denote by 9. The following Theorem es-
tablishes the finiteness of all joint moments, as well as their geometric rate

of convergence.

Theorem 5 Assume that p < 1 and that bf(w) < oo and dj(w) < o©
for some w < 0. Let f : RN — R any polynomial function, i.e. of
the form f(z) = ¥ Mot () where n(ij) and K are arbitrary (finite)
integers. Then for any 0 < I < N, E[f(9i14;n)] converges geometrically
fast to E. f (1A91), and the latter expression is finite.

Proof: Let € be asin Lemma 4. Define g : © — Ras g(z) = exp {Z5," shai},
(where st is defined in Lemma 4). It follows from Lemma 4 that there ex-
ists some real number My and 6 > 0 such that E[g(Pr+n) — 9(9%)|9%] <
—0g(9) if =o' 9 > My, and otherwise E[g(9rin) — g(91)|9] < oc.
This establishes conditions (i) and (ii) of Proposition 3. The set X(My) is
small (see the proof of Theorem 2). The Theorem now follows by apply-
ing Proposition 3(b). Note that indeed f < ag for some a > 0 since f is

polynomial whereas g is exponential. m
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5 CENTRAL LIMIT THEOREM AND LAW OF IT-
ERATED LOGARITHM

In this Section we establish a CLT and LIL for the moments of the station
times. The CLT provides the asymptotic distribution of the empirical mean
of functionals of the station times; it shows that by a scaling of square
root of n we get an asymptotic Normal distribution. The LIL provides
asymptotic bounds on the empirical mean of functionals of the station times,
which hold for each sample. The scaling factor is then \/m . We
compute explicitly the constants involved in the CLT and LIL of the cycle
times. Let F, denote the expectation with respect to the probability in
steady state (of the Markov chain {9;4in}2,). For any h : © — IR, let

h(z) := h(z) — E;h(z).

Theorem 6 Assume that p < 1 and that bj(w) < oo and djf(w) < oo for

some w < 0. Let h : RN — R any polynomial function, i.e. of the form

h(z) = X, ! x?(ij), where n(ij) and K are arbitrary (finite) integers.
Then
(1)* = Ex[(90)) + 2 3 Ex[h(Ox)h(9in)]- (12)
i=2

is well defined and finite, and if (y4)* > 0 then

(i ~

Z713:1 h(ﬁkN )
Yrv/n

(11) The limit infimum and limit supremum of the sum

—d N(O, 1)

1 n .
h(9
’vhﬁnloglog(n)fg (Fx)
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are respectively —1 and 1 with probability one.

Proof: Follows from [13] Theorem 9.1. It remains to show that the condi-
tions of this Theorem are satisfied. It follows immediately from Lemma 4
that condition (V5) of this Theorem holds. The petite set required in the
Theorem is of the form (M) for some M > 0. The strong aperiodicity of

the Markov chain is established as in the proof of Theorem 2. m

Next we restrict to the special case where h(19) = N1 9. Cr_y =
h(¥) is thus the duration of the cycle that starts at 7(k — N). In the
next Theorem we obtain the exact value of 73 for that case. Let r;; =
Eﬂ[éiéj], i,j=0,1,..., N — 1, where 6; := 6; — E.6;. The values of Tij were
obtained in [6] (see also [5, 9]).

Theorem 7 Under the assumptions of Theorem 6,
(i)
Si=1(Cr — ©)
Yrv/n

(11) The limit infimum and limit supremum of the sum

—d N(O, 1)

1 n
Cy—c
%\/277, log log(n) kgl[ k=l

are respectively —1 and 1 with probability one, where

1

N= 250" Sk i (S o)
(’7/1)2:;) 1=0 =0 l(gO])

L—p

N-1
2 Tijt
4=0

and both c and v, do not depend on the initial queue that vs polled.
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Proof: The proof follows from Theorem 6, and it remains to calculate the
constants. It is well known that the expected cycle duration in steady state
is ¢ = d/(1 — p), independent of the initial queue that is polled (see e.g.

[16]). It remains to compute ~y;,. Fix some integer k. Denote

é@k = E[9k+z‘|?9k+N} - Eﬂ(0k+i)-

Note that for ¢+ =0,..., N — 1,

0F = Opri = Opri — Er(Or1s). (14)

We have for any integer ¢ > 0,

N-1
B0 n+ilO] = prvi 2o ElOksnvilOr] + diyi
n=0

N-1

Er(Okin+i) = pevi D Erbiinti + diyi-
n=0

Subtracting these equations and summing to an arbitrary R (larger than
N), we get

R a R N-1 -
Z 0N+i = Z Pk+i Z 9n+z
1=0 72=0 n=0

R+N-1  min{R,m} .

= Z Z Pk+z'91]§z

m=0 j=max{0,m—N+1}

1 R+N-1 .

m R
> 3 pusifl +p Z 0+ > X bl
1=0

N—-
m=01 m=R i=m—-N+1
N—-1m R N .
SPIRCES (3 NEVISL
m=01=0 1=0 1=0

N-1 R .
+ > > Pk+i9;€+R

=0 i=R+I-N+1
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As R — oo, 9;1 r goes to zero, for all integers [ > 0 (this easily follows from

Theorem 5), and hence we have

SNZ308 S pri
1—0p '

;)éfcwt - (15)

For k = 0 we get from (12), (14) and (15)

()? = E[R(@0)+2 3 Ex[o(9x)h(9;x)]

j=2

=0 t=0

2sz ot S0 Tim (S p5)
1—0p '

N— 2 N-1 s

_ (; )+222EW(919NH)
N—-1N-—

- Lo

Next we show that +, does not depend on the initial queue. Assume that
the initial queue is [ # 0. Then for n > N,

>. C 294'2(]\[219191\@1\71 ) ZZIGn )N+j-

k=1 7=0 j=

Now, it follows from what we just established, that
n—1 fN-—1
> (Z 9kN+(N—1)+j>
k=0 \ j=0
satisfies a CLT with constants v, and ¢, since Zévz_ol Orn+(v—1)+; are cycles

that start from queue 0. This implies, that so does ¥}_; C%, and with the

same constant 7y, because the other terms tend to zero when divided by

fyh\/Zn loglog(n). |
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6 GLOBALLY GATED REGIME

The results of the previous sections extend to the case of the (cyclic) Glob-
ally Gated (GG) service regime, recently introduced by Boxma, Levy and
Yechiali [4]. According to this service discipline, there are gates in all queues,
which are closed (globally) at the moment the server polls queue 1; during
the following cycle only the customers “captured" (present) at the different
queues at the start of the cycle, will be served, whereas the others have to
wait till the next cycle. This service discipline is known to possess two at-
tractive properties: (i) it brings the polling system closer to the (fair) First
Come First Served discipline (as opposed to the regular Gated or Exhaus-
tive disciplines), and (ii) it enables one to obtain closed form results for cycle

time, moments of waiting times and other performance measures.

The calculations involved in establishing the stability and rate of con-
vergence turn out to be much simpler than those from the previous sections,
required for the Gated discipline.

As the state of the system we use the cycles durations {Cy}, k& =
1,2, ..., where a cycle is the time between two consecutive polling instants
of queue 1. Denote by © = IR, the state space, and C the cycle duration in
steady state. The moments of Cj in steady state are obtained in [4]; more-
over, other performance measures, such as the moments of queues’ length
and waiting times, are expressed as functions of the moments of the cycle

time. The state evolves according to
N-1 -
Cr1= > I(Cy) + D™,
j=0

where D¥ is the total walking time in the kth cycle.
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Theorem 8 Assume that b;,d; < oo for alli =1, ...,00 and that that p < 1.
Then

(1) {C;}, 7 =1,... is geometrically ergodic,
(ii) EC; converge geometrically fast to E,C = d/(1 — p).
(i11) Define g : © — R as g(z) = 1 + pz. There exist some & < 1 and
R >0, such that
IP*(9,-) —m()l] < RE"g(9)
for any ¥ € ©.
() Assume that bf(w) < oo and df(w) < oo for some w < 0. Then
(1) for any k > 0, E,C* < oo,
(2) EC’;C converges geometrically fast to E,C*,
(3) For any integer k,

(W)? = B,[Ch — B,CIF + 23 B,[(Cy — E,C)H(C; — B,C)]

i=2
is well defined and finite, and if (v;)? > 0 then
11 l(C)F = Ex(C)]

Viv/n

and the limat infimum and limit supremum of the sum

—d N(O, 1)

1 vk k
fyk\/2n log log(n) J;[(CJ) E-(C)]

are respectively —1 and 1 with probability one. For the special case of k = 1,

E,(C) = d/(1 - p) and

1 1
+ pfuarﬂC =

1—p (1= p)?

, NL oy
T = var®(D) 4+ Y \b7E [C]] .
i=0
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Proof: The proof is based on the following simple observation. Consider a
second polling system with Globally Gated service discipline and only one
queue. The arrivals are Poisson with rate A\ = X3! A;. The service duration

B of each customer is chosen at random between RVs that are distributed
as By, ..., By_1 with probabilities Ag/A, ..., Ax_1/A. Thus

. N-1 )\Zb:‘ w N-1 )‘zbz N-1
R L
1=0 1=0 1=0

The walking time is distributed as D. Then the {C}} in this new system have
the same (joint) distribution as in the original one. Since there is only one
queue, the Globally Gated and the Gated disciplines coincide. Therefore,
all the results from the previous sections on the Gated discipline can be
applied. Note that since there is only one queue, the cycles and station

times are the same. The expression for 7 finally follows from (13) since by
4], B[C] = /(1 - p) and

1
IL—p

E.[C* =

2

5 N-1 2)
d® +2dpE[C]+ ¥ MbVE[C] ).
=0
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