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Abstract - A wireless Ad-hoc network is expected to
be made up of energy aware entities (nodes) interested in
their own perceived performance. An important problem in
such a scenario is to provide incentives for collaboration
among the participating entities. Forwarding packets of other
nodes is an example of activity that requires such a collab-
oration. However, it may not be in interest of a node to
always forward the requesting packets. At the same time,
not forwarding any packet may adversly affect the network
functioning. Assuming that the nodes are rational, i.e., their
actions are strictly determined by their self-interest, we view
the problem in framework of non-cooperative game theory
and provide a simple punishing mechanism considering end-
to-end performance objectives of the nodes. We also provide
a distributed implementation of the proposed mechanism.
This implementation has a small computational and storage
complexity hence is suitable for the scenario under consid-
eration.

Keywords - Game theory, Stochastic approximation algo-
rithm.

I. INTRODUCTION

In order to maintain connectivity in an Ad-hoc network,
mobile terminals should not only spend their resources
(battery power) to send their own packets, but also for for-
warding packets of other mobiles. Since Ad-hoc networks do
not have a centralized base-station that coordinates between
them, an important question that has been addressed is to
know whether we may indeed expect mobiles to collaborate
in such forwarding. If mobiles behave selfishly, they might
not be interested in spending their precious transmission
power in forwarding of other mobile’s traffic. A natural
framework to study this problem is noncooperative game
theory. As already observed in many papers that consider
noncooperative behavior in Ad-hoc networks, if we restrict to
simplistic policies in which each mobile determines a fixed
probability of forwarding a packet, then this gives rise to
the most “aggressive” equilibrium in which no one forwards
packets, see e.g. [3, Corollary 1], [4], thus preventing the
system to behave as a connected network. The phenomenon
of aggressive equilibrium that severely affects performance
has also been reported in other noncooperative problems in
networking, see e.g. [1] for a flow control context (in which
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the aggressive equilibrium corresponds to all users sending
at their maximum rate).

In order to avoid very aggressive equilibria, we propose
strategies based on threats of punishments for misbehaving
aggressive mobiles, which is in the spirit of a well estab-
lished design approach for promoting cooperation in Ad-hoc
networks, carried on in many previous works [3], [7]. In
all these references, the well known “TIT-FOR-TAT” (TFT)
strategy was proposed. This is a strategy in which when
a misbehaving node is detected then the reaction of other
mobiles is to stop completely forwarding packets during
some time; it thus prescribes a threat for very “aggressive”
punishment, resulting in an enforcement of a fully cooper-
ative equilibrium in which all mobiles forward all packets
they receive (see e.g. [3, Corollary 2]). The authors of [6]
also propose use of a variant of TFT in a similar context.

In this work we consider a less agressive punishment
policy. We simply assume that if the fraction q 0 of packets
forwarded by a mobile is less than the fraction q forwarded
by other mobiles, then this will result in a decrease of the for-
warding probability of the other mobiles to the value q 0. We
shall show that this will indeed lead to non-aggressive equi-
libria, yet not necessarily to complete cooperation. See [9]
for reasons for adopting this milder punishment strategy.
As already mentioned, incentive for cooperation in Ad-hoc
networks have been studied in several papers, see [3], [4],
[6], [7]. Almost all previous papers however only considered
utilities related to successful transmission of a mobile’s
packet to its neighbor. In practice, however, multihop routes
may be required for a packet to reach its destination, so the
utility corresponding to successful transmission depends on
the forwarding behavior of all mobiles along the path. The
goal of our paper is therefore to study the forwarding taking
into account the multihop topological characteristics of the
path.

Most close to our work is the paper [3] which considers
a model similar to ours (introduced in Section II below).
[3] provides sufficient condition on the network topology
under which each node employing the “aggressive” TFT
punishment strategy results in a Nash equilibrium. In the
present paper, we show that a less aggressive punishment
mechanism can also lead to a Nash equilibrium which has
a desirable feature that it is less resource consuming in the
sense that a node need not accept all the forwarding request.
We also provide some results describing the structure of
the Nash equilibrium thus obtained (Section V). We then



provide a distributed algorithm which can be used by the
nodes to compute their equlibrium strategies and enforce
the punishment mechanism using only local information
(Section VI). Scetion VII concludes the paper.

II. THE MODEL

Consider an Ad-hoc network described by a directed graph
G = (N; V ). Along with that network, we consider a set
of source-destination pairs O and a given routing between
each source s and its corresponding destination d, of the
form �(s; d) = (s; n1; n2; : : : ; nk; d), where k = k(s; d)
is the number of intermediate hops and nj = nj(s; d) is
the jth intermediate node on path �(s; d). We assume that
mobile j forwards packets (independently from the source
of the packet) with a fixed probabilty 
j . Let 
 be the
vector of forwarding probabilities of all mobiles. We assume
however that each source s forwards its own packets with
probability one. For a given path �(s; d), the probability that
a transmitted packet reaches its destination is thus:

p(s; d; 
) =

k(s;d)Y
j=1


(nj(s; d)):

If i belongs to a path �(s; d) we write i 2 �(s; d). For
a given path �(s; d) of the form (s; n1; n2; : : : ; nk; d) and
a given mobile nj 2 �(s; d), define the set of intermediate
nodes before nj to be the set S(s; d;nj) = (n1; :::; nj�1).
The probability that some node i 2 �(s; d) receives a packet
originating from s with d as its destination is then given by

p(s; d; i; 
) =
Y

j2S(s;d;i)


(j):

Note that p(s; d; d; 
) = p(s; d; 
), the probability that node
d receives a packet originating from source s and having d

as its destination.
Define O(i) to be all the paths in which a mobile i is

an intermediate node. Let the rate at which source s creates
packets for destination d be given by some constant �sd.
Then the rate at which packets arrive at node i in order to
be forwarded there is given by

�i(
) =
X

�(s;d)2O(i)

�sdp(s; d; i; 
):

Let Ef be the total energy needed for forwarding a packet
(which includes the energy for its reception and its trans-
mission). Then the utility of mobile i that we consider is

Ui(
) =
X

n:(i;n)2O

�infi(p(i; n; 
))

+
X

n:(n;i)2O

�nigi(p(n; i; 
))� aEf �i(
); (1)

where fi and gi are utility functions that depend on the
success probabilities associated with node i as a source and
as a destination respectively and a is some multiplicative

constant. We assume that fi(�) and gi(�) are nondecreasing
concave in their arguments. The objective of mobile i is to
choose 
i that maximizes Ui(
). We remark here that similar
utility function is also considered in [3] with the difference
that node’s utility does not include its reward as a destination,
i.e., they assume that gi(�) � 0.
Definition: For any choices of strategy 
 for all mobiles,
define (
 0i; 


�i) to be the strategy obtained when only player
i deviates from 
i to 
0i and other mobiles maintain their
strategies fixed.

In a noncooperative framework, the solution concept of the
optimization problem faced by all players is the following:
Definition: A Nash equilibrium, is some strategy set 
� for
all mobiles such that for each mobile i,

Ui(

�) = max


0

i

Ui(

0
i; (


�)�i):

We call argmax
0

i
Ui(


0
i; 


�i) the set of optimal responses
of player i against other mobiles policy 
�i (it may be an
empty set or have several elements).

In our setting, it is easy to see that for each mobile i and
each fixed strategy 
�i for other players, the best response of
mobile i is 
i = 0 (unless O(i) = ; in which case, the best
response is the whole interval [0; 1]). Thus the only possible
equilibrium is that of 
i = 0 for all i. To overcome this
problem, we consider the following “punishing mechanism”.
in order to incite mobiles to cooperate.
Definition: Consider a given set of policies 
 = (
; 
; 
; :::).
If some mobile deviates and uses some 
 0 < 
, we define the
punishing policy �(
 0; 
) as the policy in which all mobiles
decrease their forwarding probability to 
 0.

When this punishing mechanism is enforced, then the best
strategy of a mobile i when all other mobiles use strategy 


is 
0 that achieves

J(
) := max

0�


Ui(

0) (2)

where 
0 = (
0; 
0; 
0; ::::).
Definition: If some 
� achieves the minimum in (2) we call
the vector 
� = (
�; 
�; 
�; :::) the equilibrium strategy (for
the forwarding problem) under threats. J(
) is called the
corresponding value.
Remark: Note that 
� = 0 is still a Nash equilibrium, a
fact that will be used frequently in Section V where we
obtain some structural properties of equilibrium strategy
under threats.

III. UTILITIES FOR SYMMETRICAL TOPOLOGIES

By symmetrical topology we mean the case where f i,
gi and �i are independent of i. This implies that for any
source-destination pair (s; d), there are two nodes s 0 and
d0 such that the source-destination pairs (s 0; s) and (d; d0)
are identical to (s; d) in the sense that there view of the
network is similar to that of (s; d). This implies that, under
the punishment mechanism where all nodes have same



forwarding probability, we have p(s; d; 
) = p(s 0; s; 
). Thus
we can replace the rewards fi + gi by another function that
we denote f(�).

Consider 
 where all entries are the same and equal to

, except for that of mobile i. For a path �(s; d) containing
n intermediate nodes, we have p(s; d; 
) = 
n. Also, if a
mobile i is n+ 1 hops away from a source, n = 1; 2; 3; :::,
and is on the path from this source to a destination (but is
not itself the destination), then p(s; d; i; 
) = 
n. We call
the source an “effective source” for forwarding to mobile i

since it potentially has packets to be forwarded by mobile
i. Let h(n) be the rate at which all effective sources located
n+1 hops away from mobile i transmit packets that should
use mobile i for forwarding (we assume that h is the same
for all nodes). Let �(n) denote the rate at which a source s

creates packets to all destinations that are n+ 1 hops away
from it. Then we have

Ui(
) =

1X
n=1

�(n)f(
n)� aEf

1X
n=1

h(n)
n: (3)

The equilibrium strategy under threat is then the value of 

that maximizes the r.h.s.
Remark: If we denote by �(z) =

P1
n=1 z

n�(n) the gen-
erating function of �(n) and H(z) :=

P1
n=1 z

nh(n) the
generating function of h. Then

max



�
�(
)� aEfH(
)

�

is the value of the problem with threats in the case that f is
the identity function.

IV. EXAMPLES

In this section we present, by means of two examples, the
effect of imposing the proposed punishment mechanism.

A. An Asymmetric Network

Consider the network shown in Figure 1. For this case
nodes 1 and 4 have no traffic to forward. Note also that if
we assume that g3(�) � 0 in Equation 1 then node 3 has no
incentive even to invoke the punishment mechanism for node
2. This will result in no cooperation in the network. Assume
for the time being that f2(x) = g3(x) = x, i.e., f2 and g3
are identity functions. In this case it is seen that the utility
functions for nodes 2 and 3 are, assuming �13 = �24 = 1,
U2(
2; 
3) = 
3 � aEf
2 and U3(
2; 
3) = 
2 � aEf
3.
When we impose the punishment mechanism, it turns out
that the equilibrium strategy for the two nodes is to always
cooperate, i.e., 
2 = 
3. This is to be compared with the
TFT strategy of [3] which would imply 
2 = 
3 = 0.

B. A Symmetric Network: Circular Network with Fixed
Length of Paths

We consider here equally spaced mobile nodes on a circle
and assume that each node i is a source of traffic to a node
located L hops to the right, i.e. to the node i+ L.
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Fig. 1
An asymmetric network.

Let the rate of traffic generated from a source be �. For
this case, h(n) = �Ifn�L�1g. Also, �(n) = �Ifn=Lg, for
some �. It follows from Equation 3 that the utility function
for mobile i is

Ui(
) = �f(
L�1)� aEf�

L�2X
n=0


n:

For f(�) an identity function, we see that Ui(
) =
�
�

L�1 � aEf (


L�2 + 
L�3 + : : :+ 
 + 1)
�
. Note that if

L = 2 and a = 1
Ef

, the utility function is independent of

 hence in this case the equilibrium strategy is any value
of forwarding probability. Also, if aEf � 1, the equilibrium
strategy is 
 = 0. We will have more to say on this in th next
section where we study the structure of equilibrium strategy
for symmetric network.

V. STRUCTURE OF EQUILIBRIUM STRATEGY FOR

SYMMETRIC NETWORK

In this section we undertake the study of dependence of
the equilibrium strategy on the various system parameters.
We restrict ourselves to the case of symmetric topologies.
Symmetry of the problem along with the imposed punish-
ment mechanism implies that the equilibrium strategy (the
forwarding probabilities) will be same for all the nodes in
the network. We denote this probability by 
 �.

This is to be understood as follows. When a node i com-
putes its equilibrium strategy 
i, it must consider the fact that
the other nodes will respond with a punishing mechanism to
its strategy. Thus, the problem faced by node i is not that
of optimizing Equation 3 with respect to 
 i considering 
�i

fixed (which will lead to the trivial solution of 
i = 0 as
seen before). Owing to the punishment mechanism, node i

should apriori assume that all the forwarding probabilities
are same, i.e., 
�i = (
i; : : : ; 
i). This makes the problem
faced by node i a single variable optimization problem.

Though f(�) is concave in its argument (p(
), which is a
polynomial in 
), f(p(
)) may not be concave as a function
of 
. For example, in the case of circular network above,
f(p(
)) = p(
) = 
L�1, convex in 
. Thus obtaining a
direct structural result for 
� seems to be hard for general
f(�) and p(�). We can get some interesting insights using
some approximations; this is the aim of present section.
In particular, we study how 
 � depends on the system
paramaters, L, f(�), p(�), a and Ef .

It is clear from the expression of the utility function that

� will depend on a and Ef only through their product. Let
us introduce the notation K := aEf .



It is also clear from the definition of utility function
(Ui(
)) that if either K or L is large, the equilibrium strategy
of the game is at smaller 
. It is also intuitive that for
small values of K (or L), a node may forward most of the
requesting packets. In the following we characterize what
value of K or L can be considered as large or small. Clearly
this characterization will depend on f(�) and the network,
i.e., p(�) and H(�). If we fix K and increase the hop-length
L, it is intuitive that 
� will eventually start decreasing as
a function of L. This is established in [9]. The effect of
varying K for a general network is also presented in [9].
For this case we obtain the following,

Result 5.1: For a fixed L, if the network topology and
f(�) satisfy f 0(0)p0(1) � Kh(1), then equilibrium strat-
egy is 
� = 0.
Remark: Above result shows that if K, i.e., the energy spent
in reception and transmission is larger than a threshold (say
K� = f 0(0)p0(1)(h(1))�1), it is best for the nodes to not
forward packets at all even under the punishing mechanism.
This is to be compared with the fact proved below that 
 =
0 is always a local maximum for L > 2 for the circular
network. Thus the above result gives a criteria when 
 = 0
is also a global maximum.

The effect of varying K for the special case of circular
network is presented in [9] where existence of a similar
threshold is established.

VI. ALGORITHM FOR COMPUTING THE EQUILIBRIUM

STRATEGY IN A DISTRIBUTED MANNER

It is interesting to design distributed algorithms which can
be used by the mobiles to compute the equilibrium strategy
and simultaneously enforce the proposed punishment mech-
anism. The obvious desirable features of such an algorithm
are that it should be decentralised, distributed scalability and
should be able to adapt to changes in network.

We propose such an algorithm in this section. We present
it, for ease of notation, for the case of symmetric network.
Assume for the moment that f(�) is the identity function.
In this case each node has to solve the equation (recall the
notation of Section III)

U 0(
) = �0(
)�KH 0(
) = 0; (4)

where the primes denote the derivatives with respect to 
.
In general this equation will be nontrivial to solve directly.
For the case of more general network, one needs to compute
the derivative of the utility function of Equation 1, the rest
of procedure that follows is similar.

Note that in the above expression we first assume that
the forwarding probabilities of all the nodes in the network
are same (say 
) and then compute the derivative with
respect to this common 
. This is because in the node must
take the effect of punishment mechanism into account while
computing its own optimal forwarding probability, i.e., a
node should assume that all the other nodes will use the
same forwarding probability that it computes.

Thus, solving Equation 4 is reduced to a single variable
optimization problem. Since the actual problem from which
we get Equation 4 is a maximization problem, a node
does a gradient ascent to compute its optimal forwarding
probability. Thus, in its nth computation, a node i uses the
iteration



(n+1)
i = 


(n)
i + a(n)(�0(


(n)
i )�KH 0(


(n)
i )); (5)

where a(n) is a sequence of positive numbers satisfying
the usual conditions imposed on the learning parameters
in stochastic approximation algorithms [8], i.e.,

P
n a(n) =

1 and
P

n a(n)
2 <1:

The relation to stochastic approximation algorithm here
is seen as follows: the network topology can be randomly
changing with time owing to node failures/mobility et cetera.
Thus a node needs to appropriately modify the functions �(�)
and H(�) based on its most recent view of the network (this
dependence of �(�) and H(�) on n is suppressed in the above
expression).

Though the above is a simple stochastic approximation
algorithm, it requires a node to know the topology of the
part of network around itself. This information is actually
trivially available to a node since it can extract the required
information from the packets requesting forwarding or using
a neighbour discovery mechanism. However, in case of any
change in the network, there will typically be some delay
till a node completely recognizes the change. This transient
error in a node’s knowledge about the network whenever
the network changes is ensured to die out ultimately owing
to the assumption of finite second moment for the learning
parameters.

It is known by the o.d.e. approach to stochastic approxima-
tion algorithm that the above algorithm will asymptotically
track the o.d.e. [8]:

_
i(t) = �0(
i(t))�KH 0(
i(t)); (6)

and will converge to one of the stable critical points of o.d.e.
of Equation 6. It is easily seen that a local maximum of the
utility function forms a stable critical point of Equation 6
while any local minimum forms an unstable critical point.
Thus the above algorithm inherently makes the system
converge to a local maximum and avoids a local minimum.

However, it is possible that different nodes settle to
different local maxima. The imposed punishment mechanism
then ensures that all the nodes settle to the one which
corresponds to the lowest values of 
. This is a desirable
feature of the algorithm that it inherently avoids multiple
simultaneous operating points. An implementation of the
punishment mechanism is described next.

A. Distributed Implementation of the punishment mechanism

An implementation of punishment mechanism proposed
in Section II requires, in general, a node to know about the
misbehaving node in the network, if any. Here we propose a



simple implementation of the punishment mechanism which
requires only local information for its implementation.

Let N (i) be the set of neighbours of node i. Every node
computes its forwarding policy in a distrubuted manner using
the above mentioned stochastic approximation algorithm.
However, as soon as a neighboring node is detected to
misbehave by a node, the node computes its forwarding
policy as follows:


�i = minf
i; min
j2N (i)


̂jg (7)

where 
i and 
̂j represents, respectively, the forwarding
policy adopted by node i and the estimate of node j’s
forwarding probability available to node i. 
 �i represents
the new policy selected by node i. Note here that 
 i is
still computed using iteration of Equation 5. We are also
assuming here that a node can differentiate between a
misbehaving neighbouring node and the failure/mobility of
a neighbouring node.

This punishment propagates in the network until all the
nodes in the network settle to the common forwarding
probability (corresponding to that of the misbehaving node).
In particular, the effect of this punishment will be seen by
the misbehaving ndoe as a degradation in its own utility.
Suppose now that the misbehaving node, say n i, decides
to change to a cooperative behavior: at that point, it will
detect and punish its neighbors because of the propagation
of the punishment that induced its neighbouring nodes to
decrease their forwarding policy. Thus, the intial punishment
introduces a negative loop and the forwarding policy of
every node of the network collapses to the forwarding policy
selected by the misbehaving node. Since now every node
in the network has same value of forwarding probability,
none of the nodes will be able to increase its forwarding
probability even if none of the node is misbehaving now.

An example of this phenomenon can be seen from the
network of Figure 1. Assume that 
2 = 
3 = 
 and now
node 2 reduces 
2 to a smaller value 
 0. Owing to the
punishment mechanism, node 3 will respond with 
3 = 
0.
This will result in a reduced utility for node 2 which would
then like to increase 
2. But, since 
3 = 
0, the punishing
mechanism would imply that 
2 = 
0 as well. This lock-in
problem is avoided by the solution proposed below.

We modify our algorithm to account for the above men-
tioned effect. Our solution is based on timers of a fixed
duration. When a node enters in the punishing phase (starts
punishing some of its neighbour) the local timer for that node
is set and the forwarding policy is selected as in equation
7. When the timer expires, the punishing node evaluates
its forwarding policy as if there were no misbehaving
nodes, then uses some of standard mechanism to detect
any persistent misbehavior (this also helps distinguishing
between a misbehaving node and a failed/moved node). In
the case no misbehaviors are detected, depending on the
choice of the learning parameter of the stochastic apporx-

imation algotithm, the forwarding policy of the network
eventually returns to the optimal value for the network. If
the neighboring node continues to misbehave, the timer is
set again and the punishment mechanism is re-iterated. We
assume that the sequence of learning parameters by a node
is restarted each time the timer is set.

See [9] for remark on computational and storage complex-
ity of the above algorithm. Some numerical results from an
implementation of the proposed algorithm are also presented
in [9].

VII. CONCLUSION

We use the framework of non-cooperative game theory to
provide incentives for collaboration in the case of wireless
Ad-hoc networks. The incentive proposed in the paper is
based on a simple punishment mechanism that can be imple-
mented in a completely distributed manner with very small
computational complexity. The advantage of the proposed
strategy is that it results in a less “aggressive” equilibrium
in the sense that it does not result in a degenerate scenario
where a node either forwards all the requested traffic or does
not forward any of the request.

REFERENCES

[1] D. Dutta, A. Goel and J. Heidemann, “Oblivious AQM
and Nash Equilibria”, IEEE Infocom, 2003.

[2] J. Crowcroft, R. Gibbens, F. Kelly, and S. Ostring.
Modelling incentives for collaboration in mobile Ad-
hoc networks. In Proceedings of WiOpt’03, Sophia-
Antipolis, France, 3-5, March 2003.

[3] M. Félegyházi, L. Buttyán and J. P. Hubaux, “Equi-
librium analysis of packet forwarding strategies in
wireless Ad-hoc entworks – the static case”, PWC
2003 Personal Wireless Communications, Sept. 2003,
Venice, Italy.

[4] P. Michiardi and R. Molva. A game theoretical ap-
proach to evaluate cooperation enforcement mecha-
nisms in mobile Ad-hoc networks. In Proceedings of
WiOpt’03, Sophia-Antipolis, France, 3-5, March 2003.

[5] L. Samuelson, ”Subgame Perfection: An Introduction,”
in John Creedy, Jeff Borland and Jrgen Eichberger, eds.,
Recent Developments in Game Theory, Edgar Elgar
Publishing, 1992, 1-42.

[6] V. Srinivasan, P. Nuggehalli, C. F. Chiasserini and R.
R. Rao, “Cooperation in wireless Ad-hoc networks”,
Proceedings of IEEE Infocom, 2003.

[7] A. Urpi, M. Bonuccelli, and S. Giordano. Modelinig
cooperation in mobile Ad-hoc networks: a formal de-
scription of selfishness. In Proceedings of WiOpt’03,
Sophia-Antipolis, France, 3-5, March 2003.

[8] H. J. Kushner and G. Yin, ”Stochastic Approximation
Algorithms and Applications,” Springer-Verlag, 1997.

[9] E. Altman, A. A. Kherani, P. Michiardi, and R. Molva.
Non-cooperative Forwarding in Ad-hoc Networks.
Technical Report INRIA Report No. RR-5116, 2004.


