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We consider a processor-sharing service system. where the senice rate to individual customers decreases as the load increases. Each 
arriving customer may observe the current load and should then choose whether to join the shared system. The alternative is a 
constant-cost option, modeled here for concreteness as a private server (c.g.. a personal computer that sen7es as an alternative to a 
central mainframe computer). The customers wish to minimize their individual service times (or an increasing function thereof). 
However. the optimal choice for each customer depends on the decisions of subsequent ones. through their effect on the future load 
in the shared sen7er. This decision problem is analyzed as a noncooperative dynamic game among the customers. We first show that 
any Nash equilibrium point consists of threshold decision rules and establish the existence and uniqueness of a s\'n~metricequilibrium 
point. Computation of the equilibrium threshold is demonstrated for the case of Poisson arrivals, and some of its properties are 
delineated. We next consider a reasonable dynamic learning scheme. which converges to the symmetric Nash cquilibrium point. In 
this model customers simply choose the better option based on available performance history. Convergence of this scheme is 
illustrated here via a simulation example and is established analytically in subsequent work. 

The quality of service experienced by an individual cus- expected service time at MF she must take into account 
tomer in a shared service system often depends on the the possible load on this computer throughout her service 

current load. Thus. in order to estimate the expected ser- time. which in turn is affected by the decisions of subse- 
vice quality, a user must consider not only the current load quent users. This leads us to consider the resulting deci- 
at her arrival instant, but also how this load might develop sion problem in a game theoretic framework and to 
throughout her service period. We study in this paper the explore the Nash equilibrium solution for the resulting 
implications of this observation for self-optimizing users dynamic game. 
who consider joining the shared system. The model we Although we find it convenient to refer to this PC-MF 
consider is motivated in part by the following scenario. application, the basic model is relevant to a wide range of 

Potential computer users, each requiring the use of a application areas that involve shared service. ranging from 
computer to execute a given job, arrive sequentially at a transportation and recreation to computing and telecom- 
computer facility. Each user, upon arrival, may choose be- munications. We mention here two relevant applications in 
tween the following two options: either connect to a cen- 

the latter area: 
tral mainframe computer (MF). which is normally sercing 
many users in parallel; or use a personal computer (PC). 

(1) Consider a situation where users can communicate 

Each user is solely interested in minimizing her own ser- with each other either through a Local Area Network 
(LAN) or through the Yublic network, e.g., by connecting vice time (which coincides here with the sojourn time). . 

Service at the MF computer is performed according to to the telephone network vla a modem, which is typically 

the Processor Sharing discipline (e.g., Jaiswal 1982, Ra- slower. However, the throughput available to each user on 

maswami 1984), where available computing power is the LAN decreases as the total workload increases. This is 

equally divided among all users present. Consequently, the especially the case in LANs where a single channel should 

sen-ice rate to each user decreases as the load increases be shared between all users, e.g., the FDDI (Fiber Distrib- 

(although the total service rate may actually increase). An uted Data Interface). The LAN can thus be approximated 
arrlving user may observe the current load, namely the by a processor sharing queue. whereas the public network 
number of users already in MF. However, to evaluate her can be viewed as assigning a private server to each session. 

Suhjrci class@catin~~s:Queues. optimization: proce\sor \haring. Games. \tocha\tic: dynamic equilihriuni and learning. 
.iirc,m of ret,feir: STOCHASTICMODELS. 

Operat~ona Research 
Vol 16. No 6, No\emher-Decenihe~ 1998 



(2) Consider a non-real-time application, such as data 
transfer, on an ATM (Asynchronous Transfer Mode) net- 
work (see ATM Forum 1996). ATM networks support 
both guaranteed services as well as best-effort services. 
Guaranteed services are CBR (Constant Bit Rate), in 
which a fixed amount of bandwidth is assigned to a session, 
and VBR (Variable Bit Rate), in which some average and 
peak bit-rates are assigned to a session. Best effort services 
are ABR (Available Bit Rate) and UBR (Unspecified Bit 
Rate); in both cases, some available bandwidth is shared 
among the connections that use these services. At a session 
level, ABR and UBR services can be approximated by a 
processor sharing queue, whereas CBR and VBR services 
can be approximated by a single server, dedicated for one 
session. 

Our study focuses on two main issues. In the first part of 
the paper, we explore the properties of the Nash equilib- 
rium solution. The main results here are the existence, 
uniqueness. and structural characterization of a symmetric 
equilibrium policy. The required analysis of the processor- 
sharing queue relies on stochastic coupling arguments 
rather than explicit calculations, which facilitates the con- 
sideration of both general interarrival times and of state- 
dependent total service rates. 

The second issue concerns the descriptive power of the 
Nash equilibrium solution. The question arises as to what 
extent the Nash equilibrium actually describes the system 
operation under realistic conditions, and what mechanism 
might lead to this equilibrium. We consider a dynamic 
learning scenario, where users make simple decisions 
based on past performance statistics. Since the observed 
statistics depend on past decisions, this leads to a closed- 
loop adaptive decision problem. We discuss certain issues 
that are pertinent to the convergence of this scheme to 
that Nash equilibrium point and illustrate this convergence 
via a simulation experiment. Analysis and proof of conver- 
gence can be found in Altman and Shimkin (1997). 

Dynamic control of queueing systems has been the sub- 
ject of considerable research, and surveys can be found in 
Stidham (1985) and Walrand (1988). Social optimization 
of a processor-sharing queue has been considered in de 
Waal (1988). Individual optimality has been studied and 
compared to social optimality in various models, under the 
first-come-first-served (FCFS) service discipline; see Naor 
(1969), Yechiali (1972), Bartroli and Stidham (1992), and 
the above-mentioned surveys. Under a FCFS discipline the 
expected sojourn time of any single customer is completely 
determined by the queue length at her arrival. so the indi- 
vidually optimal decision policy is trivial in that case. 

There has been some work on the Nash equilibrium 
concept for the study of individually optimal dynamic con- 
trol of queueing systems; see Glazer and Hassin (1986) 
and Hassin and Haviv (1994). Game theoretical analysis 
has been applied to other queueing control problems- 
e.g., Kulkarni (1983), Lee and Cohen (1985). Bovopoulos 
and Lazar (1987), Shenker (1990). Hsiao and Lazar 
(1991), Altman (1992), Altman and Koole (1992), Altman 

and Hordijk (1995), and Shimkin and Shwartz (1993)- 
where the last five consider dynamic problems. Finally, 
results related to our work have been obtained in Assaf 
and Haviv (1990), Haviv (1991), and Xu and Shantikumar 
(1993). 

The organization of the paper is as follows. The model is 
presented in Section 1. In Section 2 the Nash equilibrium 
is studied, assuming i.i.d. interarrival times, possibly state- 
dependent service rate, and exponential service require- 
ments. It is shown that in any equilibrium point, the 
decision rule of each user is a threshold rule. Existence 
and uniqueness of a symmetric equilibrium point are then 
established. using certain monotonicity and continuity 
properties of the service time at MF. (The proofs of these 
results are established in the Appendix using stochastic- 
coupling arguments.) Section 3 concerns the actual calcu- 
lation of the symmetric equilibrium. Formulas are derived 
for the case of Poisson arrivals and are illustrated by nu- 
merical examples. In Section 4 the (individually optimal) 
Nash solution is compared with the socially optimal one. 
Section 5 considers the proposed dynamic learning 
scheme. We close with some concluding remarks in Sec- 
tion 6. 

1. THE MODEL 

Consider a service system that consists of two service facil- 
ities, Q,, and Q,,. Customers (users) arrive at this system 
sequentially. with interarrival times that are independent 
and identically distributed and have finite mean A-' .  Si-
multaneous arrivals are excluded. Each arriving customer 
observes the number of customers in QIwFat her arrival 
instant, and should choose whether to join Q,wFor Qpc. 

We assume that Q ,  has a buffer size B, which may be 
finite or infinite. A customer that arrives when the buffer is 
full cannot be admitted and must turn to Q,,. 

The service at Q ,  is exponential with rate p(x), where 
x 2 1 is the number of customers in Q,w,. The service 
discipline is processor sharing, so the service intensity for 
each customer equals v(x) p(x)/x. The alternative Q,, 
offers a fixed expected service time 0-I.  In both queues. 
service commences immediately upon admission, so the 
sojourn time coincides with the service time. 

We make the following assumptions on the service rate 
at Q.,,: 

(i) 	0 < p(x) G p,,, for every x 3 1 (bounded service 
rate); 

(ii) v(x) 	 = p(x)/x is strictly decreasing in x. Thus, the 
service rate applied to each customer decreases as the 
load increases. 

Let X(t) denote the number of customers at Q,w, at time 
t, and suppose that the system starts at t = 0 with initial 
state X(0) = x,. Let Tk, k 3 0, denote the arrival time of 
customer Ck, where 0 = T, < T, < T2 < . . . . Hence t = 

0 is the arrival time of customer C,. 



Upon arrival. customer C, observes the current queue 
length X(T,). and should then decide which queue to join. 
A randomized decision rule for customer C, is therefore 
defined by u, = {u,(.r), 0 -Ss < B}, where uk(s )E [0,11 
is the probability o f  joining Q,, i f  a queue length X(T,) = 

s is observed. Let U denote the collection o f  such decision 
rules, and let TI  = (u,,, 1 1 , .  . . . ) E rI A U" denote the 
vector o f  decision rules o f  all the customers, to which we 
refer as a policy. 

Denote by Wk the service duration o f  customer C,, and 
let w,(x, T I )  be the expected value o f  W, given that x 
customers are present at Q,, upon arrival o f  C,, and that 
all customers (including C,) follow the policy TI. Then 

where I/,(s, T I )  is the expected service duration o f  C, at 
Q, under the same conditions. W e  observe that T/, de-
pends on TI  through {u,. 1 > k } ,  the decision rules o f  
subsequent customers. 

W e  assume that the customers are self-optimizing, so 
that each wishes to minimize her own service time. To  this 
end. she should obviously evaluate her expected service 
time at the two queues, namely I/,(s, T I )  and o P ' ,  and 
choose the lower one. 

The dependence o f  I/, on the decisions o f  other users 
leads us to study this problem within a game theoretic 
framework. 

2. NASH EQUILIBRIUM SOLUTION 

W e  now consider the system as a noncooperative game in 
which each customer wishes to minimize her own expected 
service time. The main results o f  this section concern the 
characterization o f  the equilibrium points o f  this game. 

For each policy TI  = (LL,,. u , .  . . . ), let rPkdenote the 
collection o f  all decision rules in TI. excluding the u,, and 
let [ T I ~ ~ ~ L L ; ]be the policy which replaces uk by u i .  

Definition 1. A decision rule L L ,  is rtn optimal response for 
C, against a policy TI  if 

Definition 2. A policy TI  = (u,, L L , ,  . . . ) is rt Nosh equilib-
ric~mpolicy if uk is arz optimul response for C, against TI. 

for evey k k 0. 

Thus, in equilibrium no one can gain by a unilateral 
change o f  her decision rule. Since the queue length s is 
observed prior to decision, we require this to hold for 
every possible value o f  x. 

In the sequel we shall take special interest in equilib-
rium policies that are symmetric, namely the decision rules 
of all customers are identical. Such policies are natural 
here. since the specificationso f  all customers are the same, 
and they all face the same decision problem. (In the termi-
nology o f  Schelling 1960, symmetric equilibria are the nat-
ural candidates for the focal equilibri~~mof  the game.) 

W e  define next a special class o f  decision rules. namely 
threshold rules. For any 0 =S q =S 1 and integer L 2 0,  the 
decision rule u is an [L ,q]-threshold rule i f  

A customer who employs this rule joins Q,, i f  the queue 
length s is smaller than L ,  while i f  x = L she does so with 
probability q. Otherwise she joins Q,,. An [L.q] threshold 
rule will be denoted by [L ,q ] ,or more compactly by [g ]  
with g = L + q. Note that [L ,  11 and [L + 1. 01 are 
identical. When the buffersize is finite, any [g ]with g > B 
is equivalent to [B] .  

W e  now turn to the main results o f  this section. 

Theorem 1. ( i )  For any equilibri~~rnpolicy TI" ((u,,, 

u , ,  . . . ). each decision rule u, is a threshoM rule. 
(ii) A symmetric eql~ilibri~lrnpolicy TI" ( (11", ri *. . . . ) 

exists, is urzique, and u" is a threshold rzrle. 

The proof proceeds through some lemmas. The first two 
establish basic monotonicity and continuity properties o f  
the service time in Q,,,. 

Recall that T/,(s. T I )  denotes the expected service time 
at Q LIT. 

Lemma 1. For evelypolicy TI  and k 3 0. I/,(x, T I )  is strictly 
increasirzg irz x. In frtct. for every x 2 0, V,(x + 1, T I )  -

V,(x, T I )  > 6 ,  for sorne positive 6,,independerzt of TI .  

A detailed proof, based on stochastic coupling argu-
ments, is given in the Appendix. The idea is  simple. Con-
sider two cases. the first when a customer (say C,,)enters 
at queue length x. and the second when she enters at x + 
1. Since the queue lengths change by at most one customer 
at a time. the queue length in the second case will be 
higher than in the first one, until such a time T (possibly 
infinite) when they coincide. From then on the queue 
lengths will remain equal. since the decision policies for 
incoming customers are the same in both cases. It then 
follows that the service rate applied to C, throughout her 
stay is higher in the first case than in the second, and 
strictly so up until 7. This implies a lower expected service 
time. 

Recall that [g ]stands for a threshold rule. and let [g]" 
denote the stationary policy TI  = ( [ g ] ,[g ] .. . . ). Thus 
T/,(x,[g] ' ) is the expected service time o f  customer C, i f  
she joins Q,, at queue length x, while all subsequent 
customers are using the threshold rule [ g ] .  

Lemma 2. For every k 2 0 a d  x 2 0, Vx( s ,[ g ] ^ )is: 
( i )  strictly ir~creasirzgirz g E [O.  B],rtnd 

( i i )  co~ztin~lousit7 g E [0 ,  B]. 

The proof, again using stochastic coupling arguments, is  
presented in the Appendix. 



Lemma 3. Let T be an arbitrary policy. and let UE be the 
set of decision rules for Ck tlzat rtre optimal against T. 

(i) Any u ;  E UE is a threshold rule, witlz finite tlzresh-
old, and is given by: 

wlzere 0 s q, s 1 is arbitrary. (Recall thrtt 0-' is the 
expected service time in QPc.) 

(ii) Consequently, the set U: is given as follows. Let L *  
be tlze smrtllesr nonnegative integer such that I/,(L*, T) 3 

0-l. ~f T/,(L*, T) = 8-', tlzerl UE = {[L*. q]:0 -S q s 1).  
Otherwise. U;  consists of the single threslzold rule [L*, 01. 

Proof. Assume that C, observes s customers in QMFat her 
arrival. She should now choose to join either Q,. where 
her expected service time would be l/,(s, T), or Qpc, 
where her expected service time is 0-l. Obviously. the 
optimal decision is to choose the lower one and is thus 
given by (3). By Lemma 1, I/,(x, T )  is strictly increasing in 
x. so that (3) is indeed a threshold rule. Finiteness of the 
threshold should be checked for B = x ;  it follows from the 
easily verified fact that Vk(.\-,n-) -+ x as s+x.Thus (i) is 
established, and (ii) follows immediately from (i) after not-
ing again that I/,(x. n-) is increasing in .\-. 

Proof of Theorem 1. (i) Let T* = (u,, u , ,  . . . )  be an 
equilibrium policy. By Definition 2 each 11, must be opti-
mal against T*, and from Lemma 3 it follows that u, is a 
threshold rule. 

(ii) By (i). a symmetric equilibrium policy n-* must con-
sist of identical threshold policies, i.e., T* = [g]" for some 
g E [0, B]. It remains to establish existence and unique-
ness of a threshold g* E [O. B] such that [g*] is optimal 
for C, (hence, by symmetry, for any customer C,) against 
[g*]". 

Define the point-to-set mapping G* :[0, B] + 2['"], 
which associates with every threshold g E [O, B] the set of 
"optimal thresholds" against [g]". namely 

~ * ( g )= { g '  E [0, B ] : [ g l ]  isoptimalagainst[glX). (4) 

Thus, it is required to prove that G" possesses a unique 
fixed point. i.e.. a unique g x  E [O. B] such that g" E 

G*(g*). In essence, the required existence and uniqueness 
follow, respectively, from continuity and monotonicity 
properties of G*. In fact. existence may be deduced by 
applying the Kakutani fixed point theorem, which is com-
monly used to establish existence of Nash equilibria; see, 
e.g., B a ~ a rand Olsder (1995). However. it will be more 
instructive to construct explicitly the graph of G*. 

By Lemma 3(ii), the set GX(g)  can be expressed as 
follows. Let P(g) denote the minimal integer L 3 O for 
which I/,(L. [g]") > 0-I (note that t ( g )  is finite since 
V,(x, [g]") -+ x as x -+ x) .  If P(g) 3 B then Gx(g)  = 

{B): otherwise. 

I 

91 92 93 
9 

Figure 1. The optimal thresholds. 

We next argue that the graph of GX(g)has the "stair-
case" form depicted in Figure 1. Recall from Lemmas 1 
and 2 that I/,(x. [g]") is strictly increasing in x and g and 
is continuous in g. This implies that, as g increases from 0 
to B. the map g + t ( g )  is nonincreasing, piecewise con-
stant. left continuous, and its downward jumps are of ex-
actly one unit. Let J 3 0 be the number of jumps of ((.), 
and, provided J 3 1. let O < gl  < . . . < gJ be the jump 
points of P(.). By the above-mentioned properties of V,(x, 
[g]") it also follows that I/,(4(gl), [g,]") = 8-' at each 
jump point g,. Defining for notational convenience g, = 0 
and gJ+, = x. P(.) is given by: P(g) = ((0) - j for g, < 
g s g,,,, j = 0, . . . ,J. It then follows from (5) that (see 
Figure 1) 

G * ( g )  

{1 ' (0 ) )  if g < g , ,  

[[(O) - j ,  t ( 0 )  - j  + 11 i f g  = g,, 1 s j s J .  

{P(O) -1 )  if g, < g < g J t l ,  1 s j - ~ J .  

(6) 

Obviously, the graph of G* is intersected exactly once by 
the line with unit slope. say at point (g*,  g*). It follows 
that g* is the unique fixed point of g +G*(g),  and there-
fore n-* & [g*I2 is the unique symmetric equilibrium 
point. 

Remark. It is interesting to note that the equilibrium 
threshold g* can be either an integer or a noninteger (cor-
responding to a deterministic or a randomized equilibrium 
policy), with neither case being generic. This observation, 
which is clearly illustrated in Figure 5, may be understood 
with the help of Figure 1, where the line of unit slope may 
intersect the graph of G*(g) in its horizontal (integer) or 
vertical (noninteger) part. 



W e  close this section by pointing out some interesting 
generalizations. 

1. For concreteness we used for the performance crite-
rion the expected service time; however, our sample path 
proofs actually show that the waiting times in equilibrium 
are optimized in the sense o f  stochastic dominance, imply-
ing in particular that the cost could be defined as the 
expected value o f  any increasing function o f  the waiting 
time. 

2. W e  can allow for a certain fraction (realized via ran-
dom splitting) o f  the arrivals to be uncontrolled, in the 
sense they must join Q ,  whenever its buffer is not full. 
W e  shall find these useful in Section 5 .  

3. Lemma 1. and consequently part ( i )  o f  Theorem 1, 
hold even i f  the interarrival times are not identically dis-
tributed, and the expected service times in Q,, are differ-
ent for differentcustomers. 

3. COMPUTATION OF THE EQUILIBRIUM 
THRESHOLD 

Given the existence and uniqueness o f  the symmetric equi-
librium, we consider in this section the computation o f  the 
corresponding equilibrium threshold. In the following sub-
section we characterize this threshold in terms o f  the ex-
pected waiting times in Q f c  under threshold policies. The 
computation o f  the equilibrium threshold, and in particu-
lar o f  the random part q*, requires in general the numeric 
solution o f  an implicit equation. W e  then specialize our 
discussion to the case o f  Poisson arrivals and constant total 
service rate at Q,wF.Closed-formsolutions are derived for 
this case, and the results are illustrated through a numeri-
cal example. 

Our computations involve the expected service times 
V,(x, [L ,q]") in Q,. By symmetry these do not depend 
on the customer index k ,  which will be omitted. 

3.1. Characterization 

Lemma 4. The equilibrium threshold [L* ,q*]rxay be de-
termined by the following procedure. 

(a)  ~f V (B  - 1, [BI" )  < 0-' then L* = B, q* = 0. 
Otherwise, 

(b )  L* = min { L  3 o : I / ( L ,  [L ,  11") > 8-'1. 
( b l )  If I/(L*, [L*,  01") 2 0-I, tlzen tlze equilibri~rrrt 

tlzreshold is [La*, 01. 
(b2) If &L*, [L*,  01") < OP1,tlzen the equilibrium 

tlzreshold is [L* ,q*] ,where 0 < q* < 1 is the c~nique 
solc~tionof 

I / ( L * ,  [ L * ,q * I X )= 0.' .  (7 )  

Proof. For (L" ,  q " )  as defined above, it is required to 
show that T" := [L*,q 7" is an equilibrium policy, namely 
that the threshold rule [L* ,q*] is an optimal response 
against T*.Case (a) is straightfonvard and follows from 
Lemma 3(ii).As for (b),note first that L* is well defined 
even for B = x .  since lim,,, I / ( L ,  [L ,  11") = x .  In case 
(b l ) .Lemma 3 implies that [L* ,01 is an optimal response 

against [L* ,01" if  ( i )  I / (L* - 1, [L* ,01") -S 0 - '  and (ii) 
I / (L* ,  [L* ,01") 3 0 - ' .  But ( i ) follows by the definition o f  
L* (note that [L*,01 and [L* - 1 ,  11 are the same), and 
( i i )  is the defining condition for case (b l ) .Concerning case 
(b2),note first that existence and uniqueness o f  the solu-
tion q* to Equation (7)  follow from the continuity and 
monotonicity o f  I/ in q. Now, Lemma 3 implies that [L*. 
q*]  is an optimal response against [L* ,  q*]" i f  (7)  is  
satisfied. 

3.2. Some Explicit Calculations 

W e  now specialize our discussion to the case o f  Poisson 
arrivals and constant total service rate at Q, (p(.x) = p). 
For this case we determine the service times V(L,[L ,q]")  
and obtain the solution q* o f  Equation (7). 

Fix [L ,q] ,and define I/(x) := V(x ,[L ,q]").Then I/(s). 
0 < s < L,  is the solution o f  the following set o f  L + 1 
linear equations: 

where a = p + A. These equations follow from the memo-
ryless property o f  the system, which implies that V (x )  
equals the expected remaining service time o f  any cus-
tomer present at queue length x + 1. Thus, V (x )  equals 
the expected time till the next transition (ap '  in the first 
equations), plus the expected remaining service time after 
that transition. These equations can obviously be solved 
numerically for each given [L ,  q] ;  however, in order to 
obtain the optimal threshold in closed form we derive a 
more explicit solution. By (8) ,I/(s)can be expressed as 

where the coefficientsu (x )  and b(x)  are obtained recur-
sively by substituting (11)into (8), which yields 

,I- 2 1, 

with initial values a(0) = 1, u(1) = ( p  + A) /A ,  b(0) = 0, 
b(1) = A-'.  Note that these coefficientsdo not depend on 
L and q. Next we obtain I/(o,[L ,q]) .By substituting I / ( L )  
from (10) into (9)  and then substituting I / (L  - 2) and 
I / (L  - 1 )  from (11).we obtain after some algebraic ma-
nipulation 



Figure 2. I/(x[15, 11) as a function of x for different values 
of A. 

V(x) can now be obtained from (11)-(13). 
We can now calculate the equilibrium threshold. We 

first compute L *  by Lemma 4. If we are in case (a) or (bl)  
of Lemma 4 then q* = 0. Otherwise, in case (b2), we 
compute 0 < q* < 1 as the unique solution of (7). Using 
(lo), ( l l ) ,  and (14) to express I/(L*, [L*, q]") as a func- 
tion of q, rearranging and canceling terms we obtain a 
linear equation for q*,  whose solution is 

where C A p-.' - 9-'l(L* + 1). 

3.3. A Numeric Example 

We illustrate these results and some properties of the rel- 
evant quantities through a numerical example. We con-
sider the parameters B = x,0 = 10 and p = 100. 

In Figure 2 we depict I/(x, [15, 11) as a function of x for 
different values of A. It can be seen that V(x, [15, 11) is 
bounded by 0.16 for any h and x and that it increases with 
both x and A. Indeed, for h +x we have I/(x, [15, 11) -+ 

0.16 since in that case there will always be 16 customers in 
the queue, and therefore the expected service time of each 
one of them is [p/16]- '  = 0.16. 

In Figures 3 and 4 we depict V(3, [L, 11) and I/(L, [L, 
11) as a function of L for different values of A. As ex-
pected, both are monotone increasing in L and in A. 

Finally, Figure 5 presents the equilibrium threshold [L*, 
q*] as a function of h. In that figure, a real number of the 
form 10.34 means L *  = 10 and q* = 0.34. L *  can be 
obtained from Figure 4 as the first integer for which I/(L, 
[L, 11) exceeds 9-' = 0.1 (see Lemma 4). Note that L*  is a 

'0 2 4 6 8 10 12 14 16 18 20 

Figure 3. 	V(3, [L, 11) as a function of L for different val- 
ues of A. 

decreasing function of A and approaches pi0 = 10. Indeed, 
for A + X. and threshold [L, 01, the queue length ap- 
proaches a constant L ,  and therefore the expected service 
time increases toward (plL)-'. Comparing with OP1, the 
individually optimal threshold decreases to L *  = p9- ' .  
Figure 5 also compares the equilibrium threshold to the 
socially optimal one. This will be discussed in the following 
section. 

4. SOCIAL, INDIVIDUAL, AND NAWE OPTlMALlTY 

Depending on the nature and goals of the decision makers 
in the system, different solution concepts might be appro- 
priate under different circumstances. Here we briefly com- 
pare the Nash equilibrium solution with the socially 
optimal one and also touch upon individual optimality un- 
der simplified (nayve) assumptions. 

Consider the social optimization problem, where the 
goal is to minimize the expected average sojourn time per 
customer. Here each customer's decision is evaluated not 
only for its effect on her own performance, but also for its 
effect on the others (the externality cost). Observing that 
this social cost does not depend on the service discipline in 
Q ~ , (PS, FCFS, etc.), the problem becomes a standard 

I 
5 	 10 15 20 25 

Figure 4. 	I/(L, [L, 11) as a function of L for different val- 
ues of A. 
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Nash equilibrium threshold 

Socially optirnal threshold 

Figure 5. g" = L* + q" as a function of A. 

one in queueing control and is known to possess an opti- 
mal nonrandomized threshold policy (see, e.g., Stidham 
1985). Let L,, be the value of this optimal threshold. 

We assert that L,, is not larger than the Nash equilib- 
rium threshold g* .  This is a direct consequence of the 
presence of externality costs in Q,, and their absence in 
QpC. Indeed, if we increase the threshold beyond g* ,  then 
any customer entering QlWF (rather than QpC) at queue 
size larger than g* increases both her own sojourn time, by 
definition of g* ,  and the sojourn time of others in Q~, by 
increasing the load there. Therefore such a threshold is 
socially worse than g*. 

Let us calculate L,, for the case of Poisson arrivals and 
constant service rate p .  Suppose that the threshold [L ,0] 
is used. Denoting p = Alp, and using standard results for 
finite-buffer queues, the expected sojourn time in the sys- 
tem is given by 

L,, is obtained as the integer that minimizes E[WL]. 
As discussed above, it is seen from Figure 5 that the 

socially optimal threshold is indeed lower than the Nash 
equilibrium threshold. The threshold L,, decreases as A 
(and thus p) grows, and it reaches asymptotically L,, = 1; 
our calculations show that L,, = 1 for A 3 815. We al- 
ready saw that as A grows, the Nash equilibrium threshold 
tends to [lo, 01, i.e., 10 times higher than the socially opti- 
mal threshold. The expected sojourn time in Q,,, is thus 
10 times higher when the individual (equilibrium) criterion 
is used. It is obvious that individual users will have a strong 
incentive to deviate from the socially optimal policy in this 
case. 

Finally, it should be of interest to consider the case of 
naive individual optimality. Here we have self-optimizing 
customers, who make the simplifying assumption that the 
load perceived at their arrival will not change throughout 
their service periods. While false in general, this assump- 
tion may often be adopted in practice. Thus, a customer 
who sees x customers in Qpc assumes that her expected 

sojourn time there will be p(x + 1)1(x + 1) and compares 
this time to 8-'. (Observe that for state-independent p, 
this coincides with the case of a simple FCFS queue.) The 
resulting threshold is independent of the arrival rate A, 
which indicates its deficiency for the processor sharing 
problem. In our example we obtain L = p/O = 10. It is not 
hard to verify that the nalve individual threshold will be 
lower than the individually optimal equilibrium threshold 
(as long as p(x) is nondecreasing in x and there are no 
uncontrolled arrivals to Q,,). This follows, since for a 
customer who enters just below the threshold, the assump- 
tion that the queue length will not change is the worst 
possible one. 

5. LEARNING AND EQUILIBRIUM 

The Nash equilibrium solution is defined from a normative 
viewpoint. It sets the "rational" choice for a sophisticated 
decision maker, who has global information about the sys- 
tem and can reason about the choices of others. 

This section examines the relevance of the Nash equilib- 
rium solution derived above from a different, descriptive 
viewpoint. We demonstrate that it naturally emerges in a 
dynamic learning scenario, which is a reasonable one for 
the system at hand. In the scenario considered here, cus- 
tomers base their decisions on statistical data that are ac- 
cumulated by the server. No prior information is assumed 
regarding service in or arrivals to Q,,, nor do customers 
employ game theoretic considerations to arrive at their 
decisions. 

Other dynamic schemes with partially rational behavior 
that give rise to the Nash equilibrium have been exten- 
sively studied within the game theoretic and engineering 
literature, mostly for the case where the underlying game 
is static. See, e.g., Li and B a ~ a r  (1987), Hsiao and Lazar 
(1991). Lakshmivarahan (1981). and Fudenberg and Le- 
vine (1998). 

We consider the system of Section 1 and assume that 
the server monitors the average sojourn times of custom- 
ers in Q,,,,, depending on the queue length at their arrival 
instants. Newly arriving customers have access to these 
accumulated data, in addition to the queue length at their 
arrival, and may use it to assess their performance at Q~, 
before deciding which queue to join. 

The system starts at time 0 without any prior data or 
operating statistics regarding Q~,. For every t 3 0, let 
N,(x) denote the number of customers who had joined 
Q ~ ,  at queue length x and already left it by time t .  Let 
I<(x) denote the (empirical) average service time of these 
N,(x) customers. A customer who arrives at time t may 
inspect the current vector vr. 

Consider then a customer who arrives at time t ,  observes 
X,customers in Q~,, and has to choose between Q,wF and 
Q,,,. A natural decision rule for a customer who seeks to 
minimize her service time is: 

join Q l I F  if Pr(xi) < H I ,  and join Qpc otherwise. (17) 



Figure 6. vr(x) as a function of time. 

Under some mild modifications, it can be established that 
this learning decision rule, and consequently the relevant 
system performance measures, converges to the Nash 
equilibrium solution. An essential requirement for conver- 
gence is the existence of some fraction of uncontrolled 
arri~>als, and thus make which always decide to enter Q~,, 
sure that learning will continue at all relevant queue sizes. 
For further details and convergence analysis, which relies 
on the theory of the stochastic approximations algorithm, 
the readers are referred to Altman and Shimkin (1997). 
Further analysis of some related schemes may be found in 
Buche and Kushner (1998). 

We illustrate the learning behavior using a simulated 
example. This simulation was performed with a constant 
service rate = 100 and buffer size B = 20 at Q~,, 0-I = 

0.1, and Poisson arrivals with rate A = 120, of which A, = 

100 are controlled arrivals and A,, = 20 are uncontrolled. 
The Nash equilibrium threshold for these parameters 
equals g* = 11.288, as calculated numerically using the 
obvious extension of Equations (8) to include uncontrolled 
arrivals. Furthermore, to create complete correspondence 
with randomized Nash policies we incorporated a small 
uncertainty interval in the decision rule (17), meaning that 
when the difference V~(X,) - 0-I is very small (E = 0.001 
was taken here), controlled customers take a randomized 
decision with the probability of entering QjWFdecreasing 
proportionally to that difference. For the above choice of 
parameters, randomized decisions will be taken whenever 
?is in the range (8-' - E ,  0-' + E) = (0.099, 0.101). 

The equilibrium values I/(x, [g*]") for queue lengths 
x = 10, 11 and 12 are (0.9750, 0.1000, 0.1030) respectively. 
The equality V(11, [g*]) = 8-' is, of course, expected 
because of the equilibrium threshold value. 

The system was simulated over a time interval of 4000 
time units (where each time unit corresponds to 120 ex- 
pected external arrivals). The behavior of the average wait- 
ing time statistics pr(x) during the initial 100 time units is 
depicted in Figure 6, for entries at queue lengths x = 10, 
11. and 12. We can see that fairly large average waiting 
times were obtained initially. This was caused mainly by 
the choice of null initial conditions for v,, which encour- 

Figure 7. 	u , ( l l ) ,  the entry probability at queue size x = 

11 as a function of time. 

aged customers to initially join Q,, at all queue sizes. 
However, as soon as these unfavorable statistics were ob- 
served, controlled arrivals temporarily stopped even at rel- 
atively low queue sizes, which caused low waiting times for 
those who did enter, and balanced the average statistics. 

Beyond that initial period, reasonable convergence may 
be observed. The variable ?[(lo) was the last to leave the 
band 8-I -t E ,  around time 130, and beyond that time all 
arrivals at queue sizes other than x = 11 behaved exactly 
according to the Nash policy. As to the latter (x = l l ) ,  we 
can see in Figure 7 the value of the randomized decision at 
queue length X, = 11 over the full simulation period. The 
dashed line denotes the equilibrium value q" = 0.288. 
Good agreement is seen here also. 

6. CONCLUDING REMARKS 

The fundamental issue that was considered in this paper is 
the effect of expected load buildup on individual user de- 
cisions, and consequently on system performance, in 
shared service facility. Assuming symmetric users, we have 
shown the existence of a unique Nash equilibrium point 
and how this equilibrium might emerge as a result of a 
simple learning scenario. 

We conclude by pointing to some issues that deserve 
further investigation. An important extension of the model 
would be to the case of multiple customer classes (for 
example, corresponding to different cost parameters). In 
this case, customers of different classes are expected to 
employ different decision rules, and the question of 
uniqueness of the equilibrium policy becomes multidimen- 
sional and harder to resolve. See Ben-Shahar et al. (1998) 
for some results regarding this problem. 

The learning framework suggested here seems quite 
general and applicable to other similar models. In the 
present context, an important extension would be to the 
case of user-based learning. We have assumed that keep- 
ing record of the performance statistics is handled by a 
central entity (the server), which monitors all customers, 
and makes this information available to all. In certain sit- 
uations it might be more appropriate to consider learning 
by (a finite number of) users who repeatedly use the >dnle 



service facility, and each one learns out of its own personal 
experience. Convergence of this distributed learning 
scheme is currently under investigation. More complicated 
distributed learning scenarios that incorporate partial in- 
formation sharing between users (see, e.g., Kushner and 
Yin 1987) might be similarly considered. 
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APPENDIX 

The appendix can be found at the Operations Research Home 
Page: http://opim.wharton.upenn.edu~harker/opsresearch. 
html in the Online Collection. 
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