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In this paper we analyse a finite buffer fluid queue with an on-off Markov Modulated
Fluid Process (MMFP) as the arrival process. We call each on-period of the arrival process
a message/burst. The queue incorporates a threshold message discarding policy. We work
within the framework of Poisson Counter Driven Stochastic Differential equations and
obtain the moment generating function and hence the probability density function of the
stationary workload process. We then comment on the stability of this fluid queue.

1. Introduction

In this paper we analyse a finite buffer fluid queue having some selective message
discarding policy. Fluid arrive at the queue in bursts whose sizes are exponentially dis-
tributed. The intervals between the end of a burst and the beginning of the next burst are
independently exponentially distributed. The queue employs a threshold discarding pol-
icy in the sense that only those messages at whose commencement epoch !, the workload
(i.e., the amount of fluid in the buffer) is less then some preset threshold are accepted.
The input to the queue can be modelled as an on-off Markov modulated source with
constant fluid arrival rate in the on-state.

One particular motivation for our model is the performance analysis of selective message
discarding policies, which have been proposed [3] and implemented in routers (e.g., in
Cisco BP 8600 series) to prevent network congestion. This is particularly the case with
the router supporting UBR (Unspecified bit rate) service class of ATM where message (i.e.,
a frame) discarding is employed to achieve the twin goals of reduced network congestion
and increased goodput [6]. Message discarding is based on the idea that loss of a single
packet results in the corruption of the entire message (to which it belongs) and hence
it is advantageous to discard the entire remaining message. Two discarding mechanisms
are frequently used: the partial discarding, in which packets that belongs to an already
corrupted message is discarded, and the early discarding, in which an admission control
is applied to reject an entire message if upon arrivals of its first packet, the queue exceeds
some value K [6]. We have focused both on discrete as well as on fluid analysis of the
first mechanism in [1]. Here we focus on the second mechanism and also present the
combination of both.

!By commencement epoch of a message we mean the time instant when the modulating process goes
from off to on state.



Also as a special case of our model we can obtain the probability density function of
the workload process in an MMFP/D/1 queue with constrained workload. Modelling
of PCM (pulse code modulation) coded voice sources as a two state Markov Modulated
Poisson Process (MMPP) is a standard acceptable practice and also there have been
works on modelling the aggregate arrival due to the superposition of ATM traffic as a two
state MMPP (see [5],[7]). In such scenarios our model will be handy in fluid analysis of
corresponding queues with message discarding.

In Section 2 we describe the selective discarding model and state the main results, which
we prove in Section 3. The infinite buffer case along with its stability analysis is presented
in Section 4. Section 5 presents the combination of the two discarding mechanisms. Finally
we conclude in Section 6.

2. Model and Main Results

Our fluid source is a Markov modulated on-off source. The fluid arrival rate is h in on-
state and 0 in off-state; the server has a constant capacity c. Let the buffer size be B and
the threshold be K, K < B. Let 6 denote the state of the Markov chain. The source sends
fluid at rate h when in on (6 = 1) state and at rate 0 when in off (6 = 0 state). The off and
on periods are exponentially distributed with rates A\; and A, respectively. The sojourn
time in the on-state corresponds to the length of a burst 2. Thus the message lengths are
exponentially distributed with parameter Ay and the silence-period (off-period) between
messages is exponentially distributed with parameter A\;. The discarding policy is such
that if at the commencement epoch of a message the workload process v(t) is less than K,
the message is admitted, otherwise not. In [2| we analysed the same system with infinite
buffer. We extend the analysis here to the finite buffer case and obtain expressions for
the stationary distribution of the workload process. We assume that ¢ < h 3.

We write the dynamics of the system in terms of Poisson Counter Driven Stochastic
Differential Equations [4]. Let Ny and N, be Poisson counters with parameters \; and
As. We define a new variable 2 € {0, 1} as the indicator of virtual arrival-process to the
buffer. z(t) captures the behaviour of the discarding policy. The dynamics of z(t) and
v(t) is,

dz(t) = (—z(t) +1)dNiI(v(t) < K) — z(t)dN, (1)
dv(t) = —cI(v(t) > 0)dt + hz(t)I(v(t) < B)dt (2)

Remark 1 6(t) is a two-state MMFP with rates Ay and \y. Since the policy does not
accept those batches at whose commencement epoch the workload process is greater than
or equal to K, hence even if at time t, 6 shifts from off to on state but v(t) > K, the
workload process will continue evolving as if @ = 0. Thus, we define a virtual arrival
process x(t) which captures this effect. In fact x is the arrival process being admitted to
the queue and is not Markovian. A sample of 0(t), z(t) and v(t) is provided in Fig. 1.

We proceed to find a recursive formula for the moments E[v"] for all positive integers
n. The Laplace-Stieltjes transform (LST), V(s)(= Ele*"]) of v will then be obtained

2In the subsequent discussion he terms message and burst are used interchangeably.
3For the case ¢ > h the workload will always be 0 w.p. 1
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Figure 1. A realization of 6(t), z(t) and v(¢).

from which we shall obtain the stationary probability density function, p(v) of v. We first
present our main results.

Proposition 1 V(s) is given by
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Corollary 1 The stationary probability density function p(.) of v(t) is given by
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3. Model Analysis and Proofs of the Main Results

Observe that the fluid level v never remains steady at K (visiting it only at isolated
points in time) and hence we take the density function of v to be continuous at K. Note
that the density function need not be differentiable at K. However, the density function
has a mass at v = B due to the buffer size being finite. Observe that, by using the result
from stochastic calculus we can write from Egs. (1) and (2),

dvi(t) = —2co(®)I(v(t) > 0)dt + 2v(t)hz(t)I(v(t) < B)dt
d(v(t)z(t)) = v(t)dz(t) + z(t)dv(t)
= o(t) ((—=z(t) + 1)dN:I{v(t) < K) — x(t)dNq) + z(t) (—cI(v(t) > 0)dt
+hal(v(t) < B)dt)

Note that P(v = B) = 1 — p,. From the last two equations we get *,
dE[v®] = —2cE[v]dt + 2hE[vz|v < Blpydt (9)
dE[vz] = MdtE[v(—z + 1)I(v < K)] = \dtE[vz] — cE[z]dt + hE[z*|v < B]p,dt

Observe that, E[z%|v < Blps = E[z*] — E[z®|v = B](1 — p;) = E[z] — 1 + p,. This is

because v = B only when z = 1 and also E[z?] = E[z]. Thus we get,

dE[vz] = (h—c¢)Elz]dt — h(1 —py)dt + E[vjv < K|p1\dt — Elvz|v < K]\ipdt
—Evz|v < B]Aspadt — BAo(1 — po)dt (10)

4For notational convenience we shall not henceforth show ¢ in parentheses



By total probability argument, we can write,

Evlv < Blps = E|lv< K]|p1 + E[v|K <v < B|(p2 — p1)
E[vz|v < Blpy = FElvzlv < K|p1 + E[vz|K < v < Bl(p2 — p1)

Thus we can write Egs. (9) and (10) as,

dE[v?] = —2cE[v]dt+ 2h(Evz|v < K]p; + Elvz|K <v < B](py — p1)) dt
dEvz] = (h—c)Ez]dt — h(1l —py)dt+ Ejvjv < K|piAidt — Efvz|v < K]\ip1dt
— (Evz|v < K|p1 + Efvz|K < v < B](ps — p1)) Aadt — BAo(1 — po)dt

Thus if a steady state exists then

E(v|v < K)
( P11 0 —p1(A+ X)) =X (p2 —p1) > E(w|K <v < B)
—cp1 —c(p2 —p1) hp h(p2 — p1) E(vzlv < K)
E(vz|K <v < B)
n ( (h—c)E[a:_]c—B((lliiz))(h—l—B)Q) ) _0 (11)

Thus we shall have two equations in six unknowns (the four conditional expectations
and p; and p;). However an important observation to be made here is the fact that
E[v|K < v < B] and E[vz|K < v < B] can be calculated alternatively as shown below.

3.1. Calculation of E[v|K < v < B] and E[vz|K <v < B|

When v > K and the state of the modulating process changes from 0 to 1 for the first
time (and succeeding times) then the incoming fluid is not accepted. This is done until
v < K. Also even if the current on-period started when v < K (and hence accepted)
but v reaches the level B before the on-period ends, then the excess fluid corresponding
to this on-period(which arrives when v = B) is rejected. Thus we have a probability
mass at v = B. A realization of the queue length evolution process under this policy is
shown in Figure 2. The queue length can only cross the threshold of K at any time ¢, if
z(t) = z(t~) = 1. Since the sojourn time in a state is exponentially distributed, the excess
time the Markov chain spends in state 1 after time ¢ is again exponentially distributed
given that the chain was in state 1 at time ¢. The fluid level will rise steadily with a rate
(h — ¢) from ¢t until the Poisson process N, causes x to change from 1 to 0 or until v = B
(whichever occurs earlier). Then either v will stay at B (if the excess time the Markov
chain spends in state 1 after time t is greater than %) or v will start decreasing at
a steady rate of ¢ until the buffer level is K. During this period (when v > K), even if
a new message arrives (with fluid arriving at rate h), the fluid is not accepted (the fact
highlighted by the presence of an indicator function I(v < K) in Eq. (1)) and even if
the current on-period started when v < K (and hence accepted) but v reaches the level
B before the on-period ends, then the excess fluid corresponding to this on-period(which
arrives when v = B) is rejected(the fact highlighted by the presence of an indicator
function I(v < B) in Eq. (2)). Let T;, i = 1,2,... be the random variable denoting
the time spent by v after crossing K at the i¢th cross and during which the condition
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Figure 2. A realization of the queue length evolution process

K < v < B is true. Thus,

Y;(h —
Yith =) = Y;ﬁ where Y; = min (%,Xi). (12)

T, =Y,
+ c c h—

and X is the excess sojourn time in state 1. Notice that the condition v(¢) > K implies
that at the time of crossing the level K, say at time ¢; < ¢, z(¢;) = 1. Thus, the sequence
{T;} is independent and identically distributed (since X; ~ exp \)

B-K B-K B-K
ElY:] = E|XI|X; I{X;
¥ [ ( <h—c)+<h—c) ( >h—c>]
which gives Eq. (4). Observe that we can write,

Eju|K <v<B] = E[U|K<U<B,%:(h—c)]P(fl—::(h—c)\K<v<B)
+ E[U|K<U<B,%:—C]P(%:—C|K<U<B) (13)

But observe that, from Eq. (12) we have Y; = £7;. Thus we have, P(% = (h — ¢)|K <
v<B)=fand P(£L = <K <v<B)=1-P%® =(h-¢|K<v<B)=1-¢.
Thus from Eq. (13) we can write,
d d
E[|K < v < B] =E[U‘K<U<B,d—: - (h—c)]%+E[U|K<U <B,d—: :—01(1-%)
Now, observe that when the condition (£ = h — ¢, K < v < B) is true, then v(t) :=
Y
vit) = (h — )t + K. Thus we have, E[o|K < v < B,% = (h— )] = 2th 204 gy
Renewal Reward Theorem|9] we can show that,
dv E[Y?] dv

Elv|K B,—=(h—-c¢)|=K+(h— L. — Ep|K B,— =— 14

oI << B = (=0 = K+ (h— o)t = oK <v< B.G =~ (19



We proceed to evaluate Flvz|K < v < B]. By similar arguments, it is given by

dv c dv c
i (h— c)]ﬁ + Efvz|K <v < B’% = —c](1 - E)

z =1 when (‘fi—gzh—c,K<v<B) andx:OWhen(%z—c,K<v<B). Thus,

Elvz|K <v < B,
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Having obtained E[v|k < v < B] and Efvz|K < v < B], we now return to the steady-state
conditions (Eq. (11)). They imply

FEvz|K <v< B] = FEvz|K <v < B,

—cE[v] + h (Elvz|v < Klp1 + Ejvz|K <v < B](po —p1)) = 0

(h—c)E[z] — h(1 = pa) + Ejv|v < K|p1A1 — E[vz|v < K]|(A1 + A2)p1
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In the next Lemma we obtain an expression for E[z] in terms of p; and p,.

Lemma 1 E[z] is given by

/\1 &
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The equivalence follows as z = 0 for the case (K <wv < B, % = —c). From Egs. (17) and
(18) we get Eq. (16).

3.2. Proof of Proposition 1

From the steady state equations, after some calculations we get,
h (Elvz|K <v < BJAi(p2 — p1) + (h = ¢)E[z] — (BA + h)(1 — p»)
c AL+ A
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Replacing the left hand side of the last equation by p;* (E[v] — E[v|K < v < B](py —p1) —
B(1 —p,)) and using E[vz|K < v < B] = E[v|K < v < B]# from Eq. (15), we get

[ am=-0 M\
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Elz]|+ Ev|K < v < B](ps — p1)

Proceeding similarly, we will next write the steady state relation between FE[v"] and
E[v"|K < v < B] for any n > 1. From Egs. (1) and (2) we have

dv" = (n+ 1v"(—cI(v > 0)dt + hal(v < B)dt) (20)
dv"r = znv"'dv +v"dx
= " la(—=cI(v > 0)dt + hal(v < B)dt) + v"[(—z + 1)dN,1(v < K) — xd Ny
= dE[v"z] = —ncE[v" 'z]dt + nhEV" ' z|v < Blpydt — E[v"z|v < K]pi A1 dt
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Thus for the existence of steady state, the following should vanish.
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P1AL 0 —(M+A)pr —Aa(p2 — p1) E(w"|K <v < B)
—cpr —c(p2 — p1) hp, h(ps — p1) E(v"z|v < K)

E(Ww"z|K <v < B)

n(h — ¢)E[v" tz] — (1 — po)(nhB™! + B"),)
* ( LB~ ) )

Equating the last expression to 0, we get in steady state, after some calculations
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Similar to Eq. (15) we can show that for any n > 1, E[v"|K < v < B] = 2E[y"z|K <
v < B]. Thus from Eq. (21) we get
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Again replacing the left hand side of the last equation by py'(E[v"] — Ev"|K < v <
B](ps — p1) — B"(1 — ps)) we get the following expression for E[v"]:

ngLE[Un_l.Z‘] + g2(p2 — p1)E[v"|K < v < B| 4 g3(1 —p2)B" + g4n(1 — pQ)B”_1 (22)
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and g, = C(/\%imgo. We can find the expressions for E[v"|K < v < B] and E[v"z|K <
v < B] for any n > 1 by arguments similar to that for the case of n =1 in Section 3.1.
(K +Yi(h—c))""" — Kt

(n+1)(h—c)

Also with E[v"z] = E[v"zI(v < B)] + B™(1 — py), from the steady state behaviour of
Eq. (20), we can write (for n > 1)

Ejv"z] = %E[v"]-&-B”(l—pz) (24)

Thus E[v"|K < v < B] (E[Y]) ™ (23)

From Egs. (23), (24) and (22) we get, for n > 2

E[v"] = gsnEL™ ]+ gi(1 - po)nB" + gﬁ%E [(K + Yi(h— )" — K™*]
+93(1 — p2) B™ + g4(1 — py)nB™ ! (25)
And for n =1 from Eqgs. (14) and (19) we have
EQ"] = mﬂﬂ+%%%%%ERK+EM—@W“—K”1+mﬂ—mwn (26)
where g5 = g1 and g5 = s (E[Y1] being obtained earlier in Eq. (4)) and ¢g; =
[1 - (w + 1) ] Thus we have a recursive relation between E[v"] and E[v"!].
c 1+A)

With these we will proceed to find the LST of the stationary workload. Further multi-
plying both the sides of Eq. (25) by ¢ ns!) and summing from n = 2 to oo, we can write

(with gs = g1 + g4)

> g - ZE[v“ =) - pa) () D B
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Adding to Eq. (27), (—s)x Eq. (26) we get
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Also observe that,
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Furthermore, V(s) = 3,50 (_s):!Evn, thus we get from Eq. (28)

V(s) =1 = —g55(V(s) = 1)+ gs(p2 — 1) l% (6_KS — 6_336%>
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which implies Eq. (3).

3.3. Proof of Corollary 1
Taking inverse LST of Eq. (3), we get, for 0 < v < K, Eq. (5). And for K < v < B the
inverse LST implies,

1 (p2 —p1)gs(h — c)e™™*
V) = v) = v)+ L1 ( 59
AN = ) = i) <(1+953)()\2+(h—c)s) (29)
where £~ denotes the inverse LST °. Thus (with * denoting convolution operator)
1 -1 —Agv 1 —Agv -1
(5+57)(5 + 52%) (95_1 - (hAfa)

Egs. (30) and (29) implies (6). Observe that [ p;(v)dv = p; and [Z p2(v)dv = py — p1.
Thus we get from integrating Eqgs. (5) and (6) with limits [0, K] and [K, B] respectively,
we shall get two linear equations in two unknowns p; and p, Egs. (7) and (8), which gives
explicit closed form solutions for p; and p,.

4. Infinite Buffer Case: the Workload Process and the Stability Analysis

Taking B — oo in Corollary (1) we have

SFor a random variable X with distribution F(z) and LST L(s)(= [, e **dF(x)) we mean by £™!, the
probability density of X, i.e., L71[L(s)] = dF (z)/dx



Corollary 2 ([2], Prop. 2) The stationary probability density function p(.) of v(t) is
p1(m) foro<m< K
— _ ) 922 A
p(m) kz((l p)}\(h )c) (e—ﬁ(m—K) _ e—a(m—K)) + pl(m) fO'I" m>K
D)

where, py(m) = 8(m) (1 _ %E[x]) + ( " Bla] - @(1 —p)) e,
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Next we establish the stability of the queue for the infinite buffer case. In particular we
show that the workload process is a renewal process. To that end we consider the Markov
chain V,, which is the workload process at the nth transition of 8(¢) from state 0 to state
1. In other words, it is the workload as seen by the commencement of the nth potential
arriving message. We shall show that V,, is a Harris recurrent Markov chain, and that the
empty state is recurrent whenever ¢ > 0. This will then imply that the original workload
process is a renewal process. To that end, we recall the following sufficient condition for
the Harris recurrence which follows from ([8], Theorem 14.0.1, p. 330).

Lemma 2 Assume that V,, is V-irreducible (for some V) and aperiodic. Let there be a
function f, some € > 0, and some small set C such that

Elf(Vasr) = fF(Vo)[Va = 0] < —e+ T{v ¢ C}. (31)

Then the Markov chain V,, s positive recurrent, it has a stationary probability w, and the
n-step transition probabilities P™ converges to the w in total variation as n — oo.

In the above Lemma, a set C' is small if there exists some integer n, a constant g > 0
and a probability measure ¢ over the state space R such that

[P"2a > g¢(A) for all z € C and measurable set A C R. (32)
Theorem 1 Assume that ¢ > 0. Then the process V,, is Harris recurrent.

Proof: Define C = [0, K] and f(v) = v. Let T be an exponentially distributed random
variable with parameter Ay. Then forallv ¢ C, E[V,41—V,|V, = v] < —cE[min(T, K/c)| =:
—e. Thus (31) holds. Next we check that C is indeed a small set. Let Z; be an expo-
nentially random variable with parameter A;, 1 = 1,2. Viewing Z; as the length of the
off-period and Z, as the length of the on-period, we have for any v € C' and measurable
ACR, P?,0> P(% < Zy < }ff Zy > 3K)P0A. Thus, (32) holds with ¢(A) = Py4 and
g = P(Z) where Z = {5~ < Z, < 5,7, > 3£} Note on Z, a message starts to arrive
when v < K and then no more messages are accepted until the system empties.

Observe that V,, is ¢-irreducible ([8], pp. 70,87) since the probability of eventually
reaching any measurable set A C R from any state x is greater that g¢(A). Finally, the
aperiodicity follows since the probability to go from state 0 to state 0 is strictly positive.




5. Combining partial and selective discarding

The difference between our previous model and the one in which we combine both
discarding policies is that now when B is reached, immediately discarding begins. Hence
the probability mass that we had at B disappears. Consider a sample path of v(¢) in our
previous model. Let 7; be the ith time v(¢) hits B and let o; be the ith time it leaves B.
Define S;,i = 1,2, .. to be the time interval (7;, 0;]. We now construct a new sample 0(t)
that is obtained by eliminating the periods S; from v(t) (by simply "cutting" them out).
Then it is easy to see that ©(t) has the same distribution as the process in the new model
that combines both discarding mechanisms. We conclude that the stationary probability
density function of the new model is given by p(.)/ps where p and p, (the probability of
not being at B) are given in Corollary 1; We thus have also the probability distribution
of the model with combined discarding mechanisms.

6. Conclusion

In this paper we have analysed a fluid queue fed by an on-off fluid process and incorpo-
rating selective (and partial) burst discarding policy. We obtain expressions for the LST
of the stationary workload process and hence the stationary distribution of the workload
process. We also discussed the stability of the fluid queue for the infinite buffer case.
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