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Stability of ABR congestion control using the theory of
delayed differential equations

O. AIT-HELLALy* and E. ALTMANz§

The stabilities of the Fixed Point, ERAQLES and ERICAþ ABR congestion control

algorithms were investigated. By using the stability theory of delayed differential

equations, the stability conditions for each algorithm are obtained and examples

where these algorithms are not stable (the stability definition is given below)

are given. Parameters are proposed for which ERICAþ is always stable. It is shown

that for a range of control parameters, neither the Fixed Point nor ERAQLES

algorithms are stable, whatever the parameters are (round trip times, etc.).

1. Introduction

Adaptive mechanisms for congestion control have a

central role in the efficient sharing of the network

resources between many users. These mechanisms also

have the role of preventing congestion in the network

(Brakmo and Peterson 1995, Van Jacobson 1988).

When control is performed by the sources (as is the

case in the Internet) and not by the network, it makes

it hard to protect the network from applications that

might not use such mechanisms, e.g. from video confer-

ences that use UDP (User Datagram Protocol, an

Internet protocol that does not include any congestion

control). In contrast, ATM networks (ATM Forum

1996) that offer guarantees on quality of service

(delays, loss rates), need control (or police) mechanisms

for which the network is responsible.This paper focuses

on flow control problems arising in ATM. Note that

guaranteeing quality of service could become a marginal

control issue if available bandwidth becomes abundant.

This would also marginalize the role of ATM networks.

However, in view of the ongoing deployment of the

third generation multimedia wireless networks, ATM

becomes again central in networks (Holma and Toskala

2001: Section 5.4.1): radio resources are scarce and

network-controlled protocols are needed to prevent

congestion.

In ATM networks, the Available Bit Rate (ABR)

service (ATM Forum 1996) has been defined for sup-

porting best-effort applications, in which the control

decisions are taken by the network in the switches,

ensuring that one achieves fairness among the active

connections and controlling the loss cell ratios. This ser-

vice manages the bandwidth left over by applications

that have guaranteed performance: Variable Bit Rate

(VBR) and Constant Bit Rate (CBR), and shares it

between the ABR sources by signalling to them their

allowable transmission rate. (In ATM Forum (1996),

the ATM forum has standardized four transfer capaci-

ties (i.e. service types): the VBR and CBR, which are

designed for real-time applications or for other services

requiring some guarantees on delays and cell loss ratio,

the ABR and Unspecified Bit Rate (UBR) which are

best-effort service classes.) The behaviour of the source

and destination is specified in ATM Forum (1996) as

well as the manner in which feedback information

should be conveyed back to the source (ATM Forum

1996, Jain et al. 1996). The behaviour of the switches,

however, is left to the designer of the switch.

Several controllers have been proposed for the

switches. They are either based on (1) the Explicit

Forward Congestion Indication (EFCI) bit which

originates from the approach of the DEC (Digital

Equipment Corporation) bit (Ramakrishnan and Jain

1988); it indicates whether the congestion is detected

or not, or (2) on Explicit Rate (ER), which informs

the source on the bandwidth that is available (see
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Section 2 and (Chang et al. 1995, Charny et al. 1995,

Jain et al. 1995, Jain 2003, Ohsaki et al. 1995b, Siu

and Tzeng 1995), and references therein).

In the present paper, the stabilities of the widely

known algorithms in each class are investigated. It is

shown that for a range of parameters, there are always

instabilities resulting in losses for both ERAQLES and

Fixed Point algorithms. The stability domain is com-

puted for the latter as well as for ERICAþ (Explicit

Rate Indication for Congestion Avoidance) algorithm

and examples of instability are given. In choosing

the ABR algorithms to study, we did not attempt

to be exhaustive or to study the algorithms with the

best-known stability performance. Rather, we chose

some important algorithms that seem to have had

significance (in terms of implementations, standardiza-

tion or discussions) in the ATM forum. (Examples

of other algorithms known to be stable at steady-state

are Altman et al. (1999), IEEE/ACM (1993), Chong

et al. (2001), and Fulton et al. (1997)). (The importance

of the algorithms is not necessarily in terms of their

performance, but rather in the fact that they have

been widely discussed in more industrial context. For

example, ERICAþ is explicitly presented in the ATM

specifications; ATM Forum 1996).

We should finally mention that there has been some

related research on the stability of congestion control

in networks with delayed information (Hollot et al.

2001, Johari and Tan 2001, Mossoulie 2003, Paganini

et al. 2001, Shakkottai et al. 2001, Vinnicombe 2003)

yet in the context of the the Internet, using also tools

from delayed differential or difference equations.

The paper is structured as follows. Section 2 gives the

mathematical tools used in the paper (stability definition

and theorems related to the stability). EFCI queue

length-based algorithms (Fixed Point) are presented in

Section 3. In Section 4, ERAQLES and ERICA algo-

rithms are presented and analysed. Finally, we conclude

with some remarks and future work in Section 5.

2. Background

In what follows, we shall use the stability theory

of delayed differential equations (also known as

differential-difference equations). We are interested in

this method, because an exact evaluation of such equa-

tions (differential equations with delay) is not known

in many cases; hence only the stability can be analysed

in some cases. This method is sufficient to discuss the

stability of many rate based flow control algorithms

(ERICAþ Jain et al. 1996; ERAQLES Moret and

Fdida 1997; Fixed Point Kim et al. 1996), etc.).

We begin by stating the definition of the stability of

a solution (Bellman and Cooke 1963) (local stability).

We will illustrate this for the following delayed

differential equation

dxðtÞ

dt
¼ f ðxðtÞ, xðtÿ �Þ, tÞ: ð1Þ

Definition 2.1: Let w(t) be a function, continuous for

t > 0, which satisfies the equation in (1) for t > �. This

solution is said to be stable as t!1 if, given two

positive numbers t0 and �, there exists a corresponding

positive number � such that every continuous solution

x(t) of the equation in (1) which satisfies

max
t0�t�t0þ�

xðtÞ ÿ wðtÞ
�

�

�

� � � ð2Þ

will also satisfy

max
t0�t

xðtÞ ÿ wðtÞ
�

�

�

� � �: ð3Þ

The solution is said to be uniformly stable if, given �,

there exists a � such that for any t0 > 0 and any solution

x(t) which satisfies (2) will also satisfy (3).

The solution w(t) is said to be asymptotically stable if

. it is stable; and

. for each t0 � 0 there is a � such that every solution

x(t) which satisfies (2) will also satisfy

lim
t!1

xðtÞ ÿ wðtÞ½ � ¼ 0: ð4Þ

Theorem 2.1: Consider the following delayed differential

equation

dxðtÞ

dt
þ �

dxðtÿ �Þ

dt
þ �xðtÞ þ 
xðtÿ �Þ ¼ 0:

Then the following statements are true:

. If �j j > 1, then the zero solution is unstable for all

positive delay �.

. If �j j < 1, 
2 < �2, or 
 ¼ � 6¼ 0, then increasing

� does not change the stability of the zero solution.

. If �j j < 1, 
2 > �2, and

(i) 
 þ � < 0, then the zero solution is unstable for

all positive delay �; and

(ii) 
 þ � > 0, then the zero solution is uniformly

asymptotically stable when � < �0 and unstable

when � > �0, where �0 ¼ �=w, and

w ¼ 
2 ÿ �2
ÿ �

1ÿ �2
ÿ �ÿ1

� �1=2

,

� ¼ arccot ÿ
�w2 þ �


w 
 ÿ ��ð Þ

� �

:

576 O. Ait-Hellal and E. Altman
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Next we state a generalization of the Poincaré–

Lyapunov theorem (Bellman and Cooke 1963) to

delayed differential equations.

Theorem 2.2: Consider the following nonlinear equation

a0
duðtÞ

dt
þ b0uðtÞ þ b1uðtÿ �Þ ¼ f ðuðtÞ, uðtÿ �ÞÞ, t > �,

ð5Þ

where a0 6¼ 0, b0, b1 are constants, with initial condition

uðtÞ ¼ gðtÞ, 0 � t � �: ð6Þ

Suppose that

(a) every continuous solution of the linear part

a0
duðtÞ

dt
þ b0uðtÞ þ b1uðtÿ �Þ ¼ 0; ð7Þ

approaches zero as t!1;

(b) f ðu, vÞ is a continuous function of u and v in a neigh-

bourhood of the origin uj j þ vj j � c1; and

(c)

lim
uj jþ vj j!0

f ðu, vÞ
�

�

�

�

uj j þ vj j
¼ 0: ð8Þ

Then, provided max0�t�� gðtÞ
�

�

�

� is sufficiently small

(depending on c1, a0, b0 and b1), any solution of the

nonlinear equation (5), can be continued over the interval

0 � t <1, and each such solution satisfies

lim
t!1

uðtÞ
�

�

�

� ¼ 0: ð9Þ

The proofs of the Theorems can be found in Kuang

(1993), respectively, Bellman and Cooke (1963)

(Theorem 3.2, pp. 82 resp. Theorem 11.2 pp. 336).

Remark 2.1: We will encounter equations where

xðtÞ ¼ 0 is a solution, which we call the ‘zero-solution’.

We shall analyze the stability of such a solution. If the

zero solution is uniformly asymptotically stable, this

means that all solutions converge to xðtÞ ¼ 0.

Remark 2.2: We shall ignore the delay between conse-

cutive Resource Management (RM) cells, and consider

that the Allowable Cell Rate (ACR), i.e. the rate at

which the source is allowed to transmit is continuously

updated. (It is through RM cells that the sources are

informed of the congestion in the network. These cells

are used as signalling mechanism to convey to the

source information from the switches along the route

from source destination, for updating the trasmission

rate.)

3. EFCI, queue length-based algorithms

Several algorithms based on the congestion notifi-

cation were proposed: PRCA, EPRCA, etc. (Brooillet

and Madhow 1996, Ohsaki et al. 1995a,b, Siu and

Tzeny 1995). Most of them translate the congestion to

the buffer occupancy, so that the congestion is signalled

depending on whether the buffer is larger or smaller

than a given threshold. Theoretical approach in study-

ing these schemes always considers a single bottleneck

node.

In a recent study (Ait-Hellal and Altman 1999) where,

mainly, the EFCI scheme was considered, it was shown

that the maximum buffer size, necessary for avoiding

overflow, strongly depended on the number of switches

in the path when considering a single source; it may be

even larger in case of multiple sources. This is because

the notion of congestion differs from a switch to another

if the switches have different thresholds, and the infor-

mation about the congestion is binary (there is a conges-

tion or there is not). Hence, continuous information

(rather than a single bit information) on the buffer occu-

pancy is quite desirable.

Indeed, other algorithms based on queue length

have been proposed. The information conveyed by

the switches back to the source are a function of the

queue length at a time a backward RM cell is received.

In Kim et al. (1996), a simple queue length-based

scheme, called a Fixed Point algorithm, was presented.

The scheme showed interesting features: convergence,

and smoothness in the rate at the source. However, no

extensive simulations or stability analysis were given.

We present this algorithm as an example of the queue-

length-based algorithms and analyse its stability. It is

shown that for a range of parameters, the scheme is

not stable whatever the round trip time.

3.1. Fixed Point algorithm

This algorithm is essentially based on the queue size at

the intermediate switches. More precisely, it is based on

the degree of saturation of each switch (i.e. the fraction

of the queue size over a certain threshold, which is some

given parameter, and which may be the maximum buffer

size at the switch). The aim is to keep the queue length

close to the threshold by varying the rate at which the

source sends its data, inversely proportional to the

buffer occupancy.

It is obvious that this algorithm is better than those

based on the linear increase exponential decrease of

the rate, namely EFCI-based switch algorithms in all

Stability of ABR congestion control 577
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performance criteria. It has the same complexity while it

requires fewer buffers and allows different sources to get

relatively the same bandwidth (fairness is achieved in the

long run).

In this algorithm, RM cells are sent following the

recommendation of ATM Forum (1996). The source is

allowed to send data at a rate not greater than PCRi

(PCR stands for Peak Cell Rate). (The use of several

letters to donote a single variable is standard in indus-

trial community and in particular in the ATM Forum

(1996).) At the beginning the source i sends its data

at rate ICRi (ICR stands for Initial Cell Rate).

In our analysis we do not take into account the initial

conditions (note that even if the system is uniformly

asymptotically stable, stability is not guaranteed for all

initial conditions!). The rate at the source may increase

or decrease according to the information carried in the

backward RM cells (yðtÞ=Q). Each time an RM cell is

received at the source, the source adjusts its allowable

cell rate ACR as follows:

ACR :¼ ACRþAIR �Nrm 1ÿ
ACR

PCR

� �

ÿ TQ �ACR,

ð10Þ

where Nrm is some constant (defined as the maximum

number of cells a source may send for each forward

RM cell. (According to ATM Forum (1996) in an

ABR connection, the source is responsible for creating

RM cells (called forward) and sending them (along

with the rest of its packets) to the destination. When

they reach the destination, the RM cells are sent back

to the source after being marked by congested nodes

to signal to the source how to update its transmission

rate.) AIR is defined as the Additive Increase Rate

(ATM Forum 1996); in the absence of congestion, it

defines the allowable increase in the transmission rate.

TQ is a field in the coming RM cell; when a backward

RM cell is received at the switch, the field TQ is set to

the queue size at the switch divided by the maximum

queue size (buffer capacity).

TQ :¼
queue size

maximum queue size
: ð11Þ

3.2. Analytic approach

Here we aim to analyse this algorithm and find

out its insufficiencies. We use the delayed differential

equations to model it. We consider several equal

saturated sources sending to the same sink and sharing

a bottleneck node whose capacity is �, as constant.

The round trip time for an RM cell is �. The buffer

size is of Q buffers.

Define:

�i ¼
�

time it takes a cell from the bottleneck (queue)

to reach the source i,


i ¼
�

time it takes a cell from source i to reach the

bottleneck (queue),

�i ¼
�

�i þ 
i,

yðtÞ ¼
�

queue size at time t,

xðtÞ ¼
�

rate of the source at time t,

�yy¼
�

queue size when the system stabilizes.

We suppose that the queue never empties and fairness

is guaranteed among the N sources. (The mode in which

the queue never empties is the one corresponding to the

desirable operation of the flow control, since it guaran-

tees full utilization; the assumption on fairness among

the sources is required by the ATM Forum (1996). We

shall thus make these two assumptions in the sequel.)

From equations (10) and (11), we have the following:

xiðtÞ ¼ xiðt
ÿÞ þAIR �Nrm 1ÿ

xiðt
ÿÞ

PCR

� �

ÿ
yðtÿ �iÞ

Q
xiðt
ÿÞ

dyðtÞ

dt
¼
X

N

i¼1

xiðtÿ 
iÞ ÿ �

,

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

ð12Þ

where tÿ is the last time the ACR was updated (the

last time an RM cell has arrived). In the above delayed

differential equations, each variable depends on the

delayed value of the other one. We shall use some heur-

istic to simplify the first equation, which would allow us

to study a one-dimensional delayed differential equation

instead. Although this would only be an approximation

that might not always be valid, it will allow us to get

a simple characterization of the stability region. This

would then help us find, when using simulations, a

more accurate characterization of the stability region.

Our approach is based on replacing the first equation

by a fixed-point approximation, setting xðtÞ ¼ xðtÿÞ.

The approximation can be justified and understood,

for example, if we assume that y(t) varies sufficiently

slow with respect to x(t) so that in the second equation

in (12). It is then related to the boundary layer approach

for differential equations which have two time scales

(e.g. Khalil 1996, Kanniyur and Srikant 2001). The

latter is based on first studying the behaviour of the

fast changing variable assuming that the slow variable

is frozen. This amounts on focusing on the first equation

in (12), and taking y there to be a constant. It is then

easily seen that x(t) is asymptotically stable under this

assumption and converges to some limiting value.

(In spite of the above motivation, we do not attempt

578 O. Ait-Hellal and E. Altman
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to provide a rigorous justification for our approxima-

tion. Our approach is rather to use it as a heuristic in

order to help us in guessing the stability region, which

is then obtained more precisely using simulations.)

Therefore, for a fixed y in that equation, we approxi-

mate x by its limiting value (which is a function of

that y(t), and is denoted by x(t) with some abuse of

notation). We then substitute this value in the second

equation in (12) and obtain

xiðtÞ ffi AIR �Nrm�

PCR �Q

AIR �Nrm �Qþ PCR � yðtÿ �iÞ

� �

dyðtÞ

dt
¼
X

N

i¼1

xiðtÿ 
iÞ ÿ �

:

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

ð13Þ

Substituting in the first equation of tÿ 
i instead

of t, multiplying both sides by the denominator, and

summing over i, we obtain

X

N

i¼1

AIR �Nrm ¼
AIR �Nrm

PCR

X

N

i¼1

xiðtÿ 
iÞ

þ
1

Q

X

N

i¼1

yðtÿ �iÞxiðtÿ 
iÞð Þ:

Hence,

dyðtÞ

dt
¼
X

N

i¼1

xiðtÿ 
iÞ ÿ �

¼
X

N

i¼1

xiðtÿ 
iÞ þ
X

N

i¼1

AIR �Nrm

ÿ
AIR �Nrm

PCR

X

N

i¼1

xiðtÿ 
iÞ

ÿ
1

Q

X

N

i¼1

yðtÿ �iÞxiðtÿ 
iÞð Þ ÿ �

¼ 1ÿ
AIR �Nrm

PCR

� �

dyðtÞ

dt

þ
ðN � PCRÿ �ÞAIR �Nrm

PCR

ÿ
1

Q

X

N

i¼1

yðtÿ �iÞ xiðtÿ 
iÞ ÿ
�

N
þ

�

N

� �� �

: ð14Þ

Let

HðtÞ ¼
�
yðtÞ ÿ

ðN � PCRÿ �ÞAIR �Nrm �Q

� � PCR

and

dHiðtÞ

dt
¼
�

xiðtÿ 
iÞ ÿ
�

N
¼)

X

N

i¼1

dHiðtÞ

dt
¼

dHðtÞ

dt
:

Then from (14), we have

dHðtÞ

dt
þ

�2

N2 �AIR �Nrm �Q

X

N

i¼1

Hðtÿ �iÞ

¼ ÿ
�

N �Q �AIR �Nrm

X

N

i¼1

Hðtÿ �iÞ
dHiðtÞ

dt
: ð15Þ

A sufficient condition for uniform asymptotic stability

is now presented.

Proposition 3.1: For homogeneous sources ð�i ¼ � 8iÞ, if

� < �0 ¼
� �

2

N �Q �AIR �Nrm

�2

then the zero-solution of (15)

HðtÞ ¼ 0() yðtÞ ¼
ðN � PCRÿ �ÞAIR �Nrm �Q

� � PCR

� �

is uniformly asymptotically stable.

Proof: The proof follows from Theorems 2.1 and 2.2

after remarking that for homogeneous sources, we have

ð15Þ ()
dHðtÞ

dt
¼ ÿ

�2

N �AIR �Nrm �Q
Hðtÿ �Þ

�
N �AIR �Nrm �Q

N �AIR �Nrm �Qþ �Hðtÿ �Þ

� �

()
dHðtÞ

dt
þ

�2

N �AIR �Nrm �Q
Hðtÿ �Þ

¼
1

N �AIR �Nrm �Q

�
�3 Hðtÿ �Þð Þ2

N �AIR �Nrm �Qþ �Hðtÿ �Þ

¼
�
f ðHðtÿ �ÞÞ: ð16Þ

From Theorem 2.1, if � � �0, then the zero-solution of

the linear part of equation (16) is asymptotically

stable. Hence, every solution of the linear part of equa-

tion (16) approaches zero as t goes to 1. This means

that condition (a) of Theorem 2.2 holds. We note that

lim
juj!0

j f ðuÞj

juj
¼ 0,

Stability of ABR congestion control 579
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so that condition (c) of Theorem 2.2 holds. Condition

(b) clearly holds as well. We can thus apply Theorem

2.2 to equation (16), and conclude that the zero solution

of that equation is asymptotically stable. œ

Figure 1 shows that the turning point between the

stability and instability regions of the Fixed Point

algorithm is very close to �0 (� > �0). The figure was

obtained using simulations of the exact dynamics of

the flow control mechanism (implemented on the

REAL simulator) with the following parameters. We

considered one source going through a single switch

where the available bandwidth is �¼ 5000 cells/s

(1.272 Mbp). AIR¼ 128, PCR¼ 33333.3250 cells/s¼

14.13Mbp Q¼ 200 and ICR¼ 2000 cells/s. From

Proposition 3.1, we get �0¼ 0.05147 s. Thus, the trivial

solution of (16) is stable for � � �0. Figure 1 shows

that for the Fixed Point algorithm, the system is not

stable for that value (�¼ 0.050 s). However, it is stable

for values, lightly, smaller (� ¼ 0:044 s > �0 ÿ 1/AIR).

In fact the value obtained in Proposition 3.1 is opti-

mistic (since it predicted stability for � < �0, whereas

we see that at � ¼ 0:05 < �0 the system is still unstable).

Yet the unstable region for the Fixed Point algorithm

is, indeed, very close to that value (since we see that

for � ¼ 0:044 it is already stable). The small error in

predicting the stability region is probably due to the

approximation used in deriving (13). The following

heuristic is generally true: for the Fixed Point algorithm,

the system is stable for � < �1 and unstable for � > �1
where �1 satisfies �0 > �1 > �0 ÿ 1=AIR.

Now suppose that the system is stable (the rate at the

sources stabilizes as well as the queue length), then (after

setting Q ¼ �B, � < 1), from Proposition 3.1 we get

�yy ¼
ðN � PCRÿ �ÞAIR �Nrm �Q

� � PCR
ð17Þ

¼
ðN � PCRÿ �ÞAIR �Nrm � �B

� � PCR
: ð18Þ

This result can be found in Kim et al. (1996). Note that

the buffer size when the system stabilizes can exceed the

maximum buffer size for some values of �.

Remark 3.1: The switch may experience losses (there is

no stability), if

� <
N � PCR

1þ PCR=ðAIR �Nrm � �Þ

in which case the sufficient stability condition of

Proposition 3.1 does not hold (setting �yy > B). The

limitation due to the smaller available bandwidth con-

stitutes the main inconvenience for the proposed

algorithm, even if a fraction of the maximum queue

size (a certain threshold) is considered rather than the

maximum queue size itself. On the other hand, large

available bandwidth may cause instability.

4. ER-based algorithms

4.1. ERAQLES algorithm

The ERAQLES algorithm (Moret and Fdida 1997)

(Explicit Rate Algorithm using Queue Length States)

proposes to evaluate the leftover CBR VBR bandwidth

in an another manner than ERICA, by using the varia-

tion of ABR queue length. In the sequel, we suppose

that the available bandwidth is well estimated (as in

the ERICA algorithm). This algorithm is close to the

ERICA algorithm, since the attributed rate to each

source is proportional to its ratio in the total incoming

ABR traffic CCRi=CCR (utilization of the Load Factor

0
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Figure 1. Buffer occupancy (cells) and the rate (cells/s), for

s ¼ 0:044 s (stable) and s ¼ 0:050 s (non-stable), for the fixed

point algorithm.

580 O. Ait-Hellal and E. Altman



D
o
w

n
lo

a
d
e
d
 B

y
: 
[I
n
g
e
n
ta

 C
o
n
te

n
t 
D

is
tr

ib
u
ti
o
n
] 
A

t:
 0

2
:3

9
 4

 J
a
n
u
a
ry

 2
0
0
8
 

in ERICA; see the next section for the ERICA descrip-

tion). Here CCRiðtÞ is the rate of source i at time t and

CCR(t) is the sum of the rates of all sources. It can be

summarized, briefly, as follows (at the source, the rate

is updated according to the ER field in incoming RM

cells to the source):

4.1.1. At the switch

The explicit rate for source i is computed using

ERiðtÞ ¼ ERðtÞ � siðtÞ,

where siðtÞ is the fair share function, it is computed using

siðtÞ ¼ ð1ÿ s0Þ
CCRiðtÿ TÞ

CCRðtÿ TÞ
þ s0

0 < s0 < 1 and T is the time between the source and the

switch.

ER(t) is the bandwidth not used by other higher

priority (CBR, VBR) traffics plus the bandwidth able

to fill up the buffer capacity during a feedback (�):

ERðtÞ ¼ C� þ h
Qÿ yðtÞ

T
,

where C� is the leftover CBR VBR traffic, and y(t) is the

queue length at time t. Q is a given threshold (Q ¼ �B,

� < 1 and B is the maximum buffer size). h is an impor-

tant parameter in ERAQLES (Moret and Fdida 1997:

equation (2)). The larger it is, the slower the convergence

is (Moret and Fdida 1997: Section 3.2). Note that in the

case of low ABR buffer utilization, the sources are

allowed to exceed the capacity C� by a value equal to

hQ=T (Moret and Fdida 1997: Section 3.2).

4.1.2. Analytic approach

Consider the same model and parameters as pre-

viously, then the evolution of x(t) and y(t) is given by:

xiðtÞ ¼ 1ÿ s0ð Þ
xiðtÿ �iÞ

PN
‘¼1 x‘ðtÿ 
‘ ÿ �iÞ

þ s0

 !

� �þ h
Qÿ yðtÿ �iÞ

T

� �

yðtþ �tÞ ¼ yðtÞ þ
X

N

i¼1

xiðtÿ 
iÞ ÿ �

 !

�t

 !þ

:

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

ð19Þ

Let

HðtÞ ¼
�

yðtÞ ÿQÿ
ðN ÿ 1Þs0�T

ððN ÿ 1Þs0 þ 1Þh
: ð20Þ

After some calculations, considering that the buffer

never empties, taking homogeneous sources, and by

following the same steps as previously, we get

dHðtÞ

dt
þ h
ðN ÿ 1Þs0 þ 1

T
Hðtÿ �Þ ¼ 0: ð21Þ

From Theorem 2.1, the zero solution of (21)

HðtÞ ¼ 0() yðtÞ ¼ Qþ
ðN ÿ 1Þs0�T

ððN ÿ 1Þs0 þ 1Þh

� �

is uniformly asymptotically stable if and only if

� < �0 ¼
�T

2hððN ÿ 1Þs0 þ 1Þ
:

Hence, the scheme is not stable for all parameters, its

stability depends, mainly, on h and s0. If h satisfies

(s0 ¼ 1=N, 2T ¼ �)

�

4hððN ÿ 1Þs0 þ 1Þ
< 1 ¼)

�

4ððN ÿ 1Þs0 þ 1Þ
� 0:785 � h,

ð22Þ

then no stability is guaranteed. However, the parameters

recommended in Moret and Fdida (1997) (s0 ¼ 1=N and

h ¼ 0:1839) ensure the stability in all cases. Figure 2

illustrates the case of one source for h ¼ 0:785 (unstable)

and 0.70 (stable). The parameters considered are the

same parameters as previous (Fixed Point algorithm,

unstable case T ¼ 0:05 s).

As we can see from equation (20), when the system

stabilizes, the queue length depends on the available

bandwidth, as is the case for the Fixed Point algorithm.

After some calculations (we consider that Q ¼ �B where

B is the maximum buffer size; � < 1), in the same

manner as for the Fixed Point algorithm we prove the

following lemma (using equation (22)).

Lemma 4.1: The switch experiences losses (there is no

stability) for

�

2
�
ð1ÿ �ÞBððN ÿ 1Þs0 þ 1Þh

ðN ÿ 1Þs0�
¼) � �

�

2

ð1ÿ �ÞB

ðN ÿ 1Þs0�
:

We can consider s0 ¼ 0 to get a stable system in all

cases. However, the proof of the fairness Moret and

Fdida (1997) (even the proof was stated, only for equi-

distant sources) will not be valid. In fact for s0 being too

small, fairness is achieved in a relatively long time, and

for s0 being large, the stability might be non-guaranteed;

additionally the queue length might exceed the maxi-
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mum buffer size (see Lemma 4.1). This is the main dis-

advantage of this algorithm.

4.2. ERICA(+) switch algorithm

ERICAþ, proposed by Jain et al. (1996), is an algo-

rithm based on the available bandwidth together with

the buffer occupancy at intermediate switches. It is the

most referenced switch algorithm. Extensive simulations

were done and many enhancements proposed. In all

simulations, the scheme is reported as being stable.

The present section aims to investigate the stability of

the scheme by considering different parameters.

The ERICA switch algorithm works as follows. (For

the lack of space many parameters were neglected, and

only a sketch of the algorithm is presented in this

paper. For more details see Jain et al. (1996).)

The switch determined periodically on each link is the

load factor, z, the available capacity and the number (N)

of active Virtual Connections (VCs). The load factor is

computed as:

z 
ABR input rate

ABR capacity
,

where

ABR capacity target utilization� link bandwidth

ÿ VBR usageÿ CBR usage:

In order to use 100% of the available bandwidth,

ERICA introduces the buffer occupancy as a control

parameter (ERICAþ) and Target Utilization is set

to 1, so that ABR capacity is revised as (we consider a

constant threshold (Q)):

ABR capacity ABR capacity� fn ðQueue lengthÞ,

where

fn ðQueue lengthÞ ¼
� b �Q

ðbÿ 1Þ � queue lengthþQ
,

where the recommended values for b are

b ¼ 1:15 if queue length > Q; b ¼ 1:05 otherwise

Finally the rate for each connection is updated as

follows (recall that the load factor also is changed):

ER calculated 

max
ABR capacity

number of active sources
,
CCR½VC�

z

� �

,

CCR½VC� is the rate in the incoming forward RM cell

of the VC, if the per VC counting is not supported;

otherwise it is the input rate of that VC (number of

input cells/averaging interval).

4.2.1. Analytic approach

To analyse the stability of ERICAþ, we considered

the case where ERICA aims a 100% utilization, and

we used a constant queue threshold (Q). The rate and

the buffer size update in ERICAþ can be summarized

in the following equations (we neglect the delay between

RM cells).

Consider the same model and parameters as

previously:

xiðtÞ ¼ max
1

N
,

xiðtÿ �iÞ
PN

‘¼1 x‘ðtÿ 
‘ ÿ �iÞ

 !

�
�bQ

ðbÿ 1Þyðtÿ �iÞ þQ

yðtþ �tÞ ¼ yðtÞ þ
X

N

i¼1

xiðtÿ 
iÞ ÿ �

 !

�t

 !þ

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

, ð23Þ
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Figure 2. Rate in cells/s for h ¼ 0:70 and 0.785, for the

ERAQLES algorithm.
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where b takes two values, as discussed above, depending

on whether the queue length is larger or smaller than Q

(the recommended values are 1:15 respectively 1:05). In

the analysis, we consider the value as being unique and

we will identify the stability domain in the worst case

(which will correspond to the smallest value of b).

Let

HðtÞ ¼
�

yðtÞ ÿQ:

Proceeding in the same manner as in the above section,

after some calculations for the case of homogeneous

sources, we get from (23)

dHðtÞ

dt
þ
ðbÿ 1Þ�

bQ
Hðtÿ �Þ ¼ ÿ

ðbÿ 1Þ

bQ
Hðtÿ �Þ

dHðtÞ

dt
:

ð24Þ

Proposition 4.1: If

� < �0 ¼
�

2

bQ

ðbÿ 1Þ�
,

then the zero solution of (24) (HðtÞ ¼ 0() yðtÞ ¼ Q) is

uniformly asymptotically stable.

Proof: The proof is similar to that of Proposition 3.1,

after remarking that

ð24Þ ()
dHðtÞ

dt
¼ ÿ
ðbÿ 1Þ�

bQ
Hðtÿ �Þ

�
bQ

bQþ ðbÿ 1ÞHðtÿ �Þ

� �

()
dHðtÞ

dt
þ
ðbÿ 1Þ�

bQ
Hðtÿ �Þ

¼
� ðbÿ 1ÞHðtÿ �Þð Þ2

ðbQÞ2 þ bQðbÿ 1ÞHðtÿ �Þ

¼
�

f ðHðtÞ,Hðtÿ �ÞÞ:

Figure 3(a) illustrates an example where the

ERICAþ algorithm is not stable. The parameters con-

sidered in this example are the following: the available

bandwidth is � ¼ 100 000 cells=s, the threshold Q is set

to 200 cells and � ¼ 0:064 s. From Proposition 4.1, we

get �0 ¼ 0:06597 for b ¼ 1:05, and �0 ¼ 0:02408 for

b ¼ 1:15. Hence, we deduce that the instability region

is between these two values. In many examples, we

found that ERICAþ is unstable if � > �0, where �0 is

the value obtained for b ¼ 1:05. Figure 3(a) confirms

these claims.

With a slight modification of the ERICAþ algorithm,

we can choose the parameters to ensure stability in all

cases. (The stability proof is as in Proposition 4.1). For

example, instead of fnðQueueÞ ¼
�

bQ=ððbÿ 1Þ yðtÞ þQÞ,

we define fn(Queue) as:

fnðQueueÞ ¼
� Q

byðtÞ þ ð1ÿ bÞQ
,

where

b¼
�

min 0:05,
�Q

6 � ER � �max

� �

if queue size < Q

min 0:15,
�Q

2 � ER � �max

� �

otherwise

:

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

We call this version enhanced ERICAþ. Figure 3(b)

shows the effects of the new function fn(Queue) and b.
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Figure 3. Buffer occupancy (100� cells) and the rate (cells/s),

for s ¼ 0:064 s, l ¼ 100 000 cells=s and Q ¼ 200 cells for

ERICAþ (before and after introducing a new function

fn(Queue)).
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The rate as well as the queue length are constant rather

than oscillatory (as it was the case in ERICAþ).

5. Conclusion

In the present work, the stability of different ABR

congestion control algorithms was studied, and the

stability domain of each was stated. Although the

Fixed Point algorithm was, fair and very simple,

it guaranteed no stability under some configurations.

The ERAQLES algorithm allowed a very fast conver-

gence, however, the buffer size at intermediate switches

could be very large (very aggressive). Finally, we

showed that even for ERICAþ there were situations

where the algorithm was not stable, and proposed

values for parameter b, which enabled one to get

better performances.

ERICAþ is known for the multiplicity of parameters.

For the fairness purpose and full utilization, ERICAþ

has to store the Last_Allocated_rate for each active

connection, its contribution, the average active sources,

CCR for each connection, and so on. This constitutes

the main inconvenience of ERICA. We are currently

working on a new explicit rate scheme that enables

us to get better performance than ERICAþ. This

scheme only requires information on the CCR of

each connection and the number of established ABR

connections.
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