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Abstract. We study a class of noncooperative stochastic games with unbounded cost functions
and an uncountable state space. It is assumed that the transition law is absolutely continuous with
respect to some probability measure on the state space. Undiscounted stochastic games with expected
average costs are considered first. It is shown under a uniform geometric ergodicity assumption that
there exists a stationary ε-equilibrium for each ε > 0. The proof is based on recent results on uniform
bounds for convergence rates of Markov chains [S. P. Meyn and R. L. Tweedie, Ann. Appl. Probab.,
4 (1994), pp. 981–1011] and on an approximation method similar to that used in [A. S. Nowak, J.
Optim. Theory Appl., 45 (1985), pp. 591–602], where an ε-equilibrium in stationary policies was
shown to exist for the bounded discounted costs. The stochastic game is approximated by one with
a countable state space for which a stationary Nash equilibrium exists (see [E. Altman, A. Hordijk,
and F. M. Spieksma, Math. Oper. Res., 22 (1997), pp. 588–618]); this equilibrium determines an
ε-equilibrium for the original game. Finally, new results for the existence of stationary ε-equilibrium
for discounted stochastic games are given.
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1. Introduction. This paper treats nonzero-sum stochastic games with general
state space and unbounded cost functions. Our motivation for studying unbounded
costs comes from applications of stochastic games to queuing theory and telecommu-
nication networks (see [2, 3, 4, 38]). We assume that the transition law is absolutely
continuous with respect to some probability measure on the state space. For the ex-
pected average cost case, we impose some stochastic stability conditions, considered
often in the theory of Markov chains in general state space [25, 26]. These assump-
tions imply the so-called ν-geometric ergodicity condition for Markov chains governed
by stationary multipolicies of players. Using an approximation technique similar to
that in [29], we prove the existence of stationary ε-equilibria in m-person average cost
games satisfying the mentioned stability conditions and some standard regularity as-
sumptions. A similar result is stated for discounted stochastic games, but then we
do not impose any ergodicity assumptions. To obtain an ε-equilibrium, we apply a
recent result by Altman, Hordijk, and Spieksma [4] given for nonzero-sum stochastic
games with countably many states. Completely different approximation schemes for
stochastic games with a separable metric state space were given by Rieder [39] and
Whitt [48]. As in [29], they considered only (bounded) discounted stochastic games.

The passage from finite (or even countably infinite) state space with possibly
unbounded cost turns out to be quite a tough problem. In fact, the question of
the existence of stationary Nash equilibria in nonzero-sum stochastic games with un-
countable state space remains open even in the discounted case. Only some special
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classes of games are known to possess a stationary Nash equilibrium. For example,
Parthasarathy and Sinha [37] proved the existence of stationary Nash equilibria in
discounted stochastic games with finitely many actions for the players and state in-
dependent nonatomic transition probabilities. Their result was extended by Nowak
[30] to a class of uniformly ergodic average cost games. There are papers on cer-
tain economic games in which a stationary equilibrium is shown to exist by exploit-
ing a very special transition and payoff structure; see, for example, [5, 7]. Mertens
and Parthasarathy [24] reported the existence of nonstationary subgame-perfect Nash
equilibria in a class of discounted stochastic games with norm continuous transition
probabilities. Some results for nonzero-sum stochastic games with additive reward
and transition structure (and, in particular, games with complete information) are
given by Küenle [19, 20]. Finally, Harris, Reny, and Robson [13] proved the existence
of correlated subgame-perfect equilibria in a class of stochastic games with weakly
continuous transition probabilities. We would like to point out that the only papers
which deal with nonzero-sum average cost stochastic games with uncountable state
space are [20] and [30]. In the zero-sum case, the theory of stochastic games with
uncountable state spaces is much more complete. Mertens and Neyman [23] provided
some conditions for the existence of value, and Maitra and Sudderth [21, 22] devel-
oped a general theory of zero-sum stochastic games with limsup payoffs. Stationary
optimal strategies exist in the average cost zero-sum games only if some ergodicity
conditions are imposed in the model; see, for example, [31, 34, 15, 17, 18].

In this paper, we make use of an extension of Federgruen’s work [11] given by Alt-
man, Hordijk, and Spieksma [4]. Other approaches (based on different assumptions)
to nonzero-sum stochastic games with countably many states can be found in [6, 40]
and [33]. Some results on sensitive equilibria in a class of ergodic stochastic games
are discussed in [33, 16, 35]. To close this brief overview of the existing literature, we
note that the theory of stochastic games is much more complete in the case of finite
state and action spaces. On one hand, many deep existence theorems are available at
the moment; see [23, 22, 44, 45] and some references therein. On the other hand, a
theory of algorithms for solving special classes of stochastic games with finitely many
states and actions is also well developed [12].

In order to study the uncountable state space, we make use of Lyapunov-type
techniques [25] (which also allows us to treat unbounded costs) and of approxima-
tions based on discretization. Unfortunately, the discretization to a countable state
space does not directly yield a setting for which we can apply the existing theory for
stochastic games with a countable state [4]. For example, the Foster (or Lyapunov)-
type conditions that have been used for countable Markov chains always involved the
requirement of a negative drift outside a finite set, whereas our discretization provides
a negative drift outside a countable set. Also, ensuring that the approximating game
maintains the same type of ergodic structure as the initial game turned out to be a
highly complex problem. The fact that our model allows us to handle unbounded
costs is very useful in stochastic games occurring in queueing and in networking ap-
plications; see [2, 3, 4, 38], in which bounded costs turn out to be unnatural.

The involved process of discretization given in our paper, which requires assump-
tions that may be restrictive in some applications, may suggest that, when possible,
other equilibrium concepts might be sought instead of the Nash equilibrium. Indeed,
some results on the existence of stationary correlated equilibria are available at the
moment [36, 30, 10]. This type of equilibrium allows for some coordination between
players, and the proof of existence is considerably simpler.
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This paper is organized as follows. In section 2, we describe our game model.
Section 3 is devoted to studying the average cost games. In section 4, we examine
discounted stochastic games. An appendix is given in section 5, which contains some
auxiliary results on piecewise constant policies in controlled Markov chains.

2. The model and notation. Before presenting the model, we collect some
basic definitions and notation. Let (Ω,F) be a measurable space, where F is the
σ-field of subsets in Ω. By P(Ω) we denote the space of all probability measures on
(Ω,F). If Ω is a metric space, then F is assumed to be the Borel σ-field in Ω. Let
(S,G) be another measurable space. We write P (·|ω) to denote a transition probability
from Ω into S. Recall that P (·|ω) ∈ P(S) for each ω ∈ Ω, and P (D|·) is a measurable
function for each D ∈ G.

We now describe the game model:
(i) S—the state space, endowed with a countably generated σ-field G.
(ii) Xi—a compact metric action space for player i, i = 1, 2, . . . ,m. Let X =

X1 ×X2 × · · · ×Xm. We assume that X is given the Borel σ-field.
(iii) ci : S ×X → R—a product measurable cost (payoff) function for player i.
(iv) Q(·|s, x)—a (product measurable) transition probability from S ×X into S,

called the law of motion among states.
We assume that actions are chosen by the players at discrete times k = 1, 2, . . ..

At each time k, the players observe the current state sk and choose their actions
independently of one another. In other words, they select a vector xk = (x1

k, . . . , x
m
k )

of actions, which results in a cost ci(sk, xk) at time k incurred by player i, and in
a transition to a new state, whose distribution is given by Q(·|sk, xk). Let H1 = S
and let Hn = S×X×S×X× · · · ×S (2n − 1 factors) be the space of all n-stage
histories of the game, endowed with the product σ-field. A randomized policy γi for
player i is a sequence γi = (γi

1, γ
i
2, . . .), where each γi

n is a (product measurable)
transition probability γi

n(·|hn) from Hn into Xi. The class of all policies for player
i will be denoted by Γi. Let U i be the set of all transition probabilities ui from S
into Xi. A Markov policy for player i is a sequence γi = (ui

1, u
i
2, . . .), where ui

k ∈ U i

for every k. A Markov policy γi for player i is called stationary if it is of the form
γi = (ui, ui, . . .) for some ui ∈ U i. Every stationary policy (ui, ui, . . .) for player i can
thus be identified with ui ∈ U i. Denote by Γ =

∏m
i=1 Γi the set of all multipolicies,

and by U the subset of stationary multipolicies. Let H = S ×X × S ×X × · · · be the
space of all infinite histories of the game, endowed with the product σ-field. For any
γ ∈ Γ and every initial state s1 = s ∈ S, a probability measure P γ

s and a stochastic
process {Sk, Xk} are defined on H in a canonical way, where the random variables
Sk and Xk describe the state and the action, respectively, chosen by the players on
the kth stage of the game (see Proposition V.1.1 in [28]). Thus, for each initial state
s ∈ S, any multipolicy γ ∈ Γ, and any finite horizon n, the expected n-stage cost of
player i is

J i
n(s, γ) = Eγ

s

(
n∑

k=1

ci(Sk, Xk)

)
,

where Eγ
s means the expectation operator with respect to the probability measure

P γ
s . (Later on we make an assumption on the functions ci that assures that all the

expectations considered in this paper are well defined.)
The average cost per unit time to player i is defined as

J i(s, γ) = lim sup
n→∞

J i
n(s, γ)/n.
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If β is a fixed real number in (0, 1), called the discount factor, then the expected
discounted cost to player i is

Di(s, γ) = Eγ
s

( ∞∑
k=1

βk−1ci(Sk, Xk)

)
.

For any multipolicy γ = (γ1, . . . , γm) ∈ Γ and a policy σi for player i, we define
(γ−i, σi) to be the multipolicy obtained from γ by replacing γi with σi.

Let ε ≥ 0. A multipolicy γ is called an ε-equilibrium for the average cost stochastic
game if for every player i and any policy σi ∈ Γi,

J i(s, γ) ≤ J i(s, (γ−i, σi)) + ε.

We similarly define ε-equilibria for the expected discounted cost games. Of course, a
0-equilibrium will be called a Nash equilibrium.

To ensure the existence of ε-equilibrium strategies for the players in the stochas-
tic game, we will accept some regularity conditions on the primitive data, and in
the average expected cost case we will also impose some general Lyapunov stability
assumptions on the transition structure.

In both the discounted and average cost cases, we make the following assumptions.

C1: For each player i and s ∈ S, ci(s, ·) is continuous on X. Moreover, there
exists a measurable function ν : S → [1,∞) such that

L
def
= sup

s∈S,x∈X,i=1,...,m

|ci(s, x)|
ν(s)

< ∞.(2.1)

C2: There exists a probability measure ϕ ∈ P(S) such that

Q(B|s, x) =

∫
B

z(s, t, x)ϕ(dt)

for each B ∈ G and (s, x) ∈ S ×X. Moreover, we assume that if xn → x0 in X, then

lim
n→∞

∫
S

|z(s, t, xn) − z(s, t, x0)|ν(t)ϕ(dt) = 0,

where ν was defined above (2.1).

Remark 2.1. Let w be a measurable function such that 1 ≤ w(s) ≤ ν(s) + δ for
all s ∈ S and for some δ > 0. If xn → x0 in X as n → ∞, then

∫
S

|z(s, t, xn) − z(s, t, x0)|w(s)ϕ(dt) → 0.

This follows from C2, since ν ≥ 1 implies that

∫
S

|z(s, t, xn) − z(s, t, x0)|ϕ(dt) → 0.
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3. The undiscounted stochastic game. To formulate our further assump-
tions, we introduce some helpful notation. Let s ∈ S, u = (u1, . . . , um) ∈ U. We
set

ci(s, u) =

∫
X1

· · ·
∫

Xm

ci(s, x1, . . . , xm)u1(dx1|s) · · ·um(dxm|s),

and, for any set D ∈ G, we set

Q(D|s, u) =

∫
X1

· · ·
∫

Xm

Q(D|s, x1, . . . , xm)u1(dx1|s) · · ·um(dxm|s).

By Qn(·|s, u), we denote the n-step transition probability induced by Q and the
multipolicy u ∈ U.

C3 (Drift inequality): Let ν : S → [1,∞) be some given measurable function.
There exists a set C ∈ G such that ν is bounded on C and for some ξ ∈ (0, 1) and
η > 0 we have ∫

S

ν(t)Q(dt|s, x) ≤ ξν(s) + η1C(s)

for each (s, x) ∈ S ×X. Here 1C is the characteristic function of the set C.
C4: There exist a λ ∈ (0, 1) and a probability measure ζ concentrated on the set

C such that

Q(D|s, x) ≥ λζ(D)

for any s ∈ C, x ∈ X and for each measurable set D ⊂ C.
For any measurable function w : S → R, we define the ν-weighted norm as

‖w‖ν = sup
s∈S

|w(s)|
ν(s)

.

We write L∞
ν to denote the Banach space of all measurable functions w for which

‖w‖ν is finite.
Condition C3 implies that, outside a set C, the function ν decreases under any

stationary multipolicy u; i.e.,

Eu
s (ν(Sk+1) − ν(Sk)|Sk) ≤ −(1 − ξ)ν(Sk) ≤ −(1 − ξ).(3.1)

This is known as a drift condition. If (i) the state space is countable, (ii) the set C
is finite, and (iii) the state space is communicating under a stationary policy u, then
(3.1) implies that the Markov chain (when using u) is ergodic. (This is the well known
Foster criterion for ergodicity; see, e.g., [27].)

In the uncountable infinite state space, the same drift condition should be used
to obtain the ergodicity condition. However, the finiteness of the set C is replaced by
a weaker assumption. Namely, C has to be a small set or a petite set [25]; condition
C4 is a simple sufficient condition for the set C to be small.

Beyond the ergodicity of the Markov chain {Sk} under a stationary multipolicy,
Foster-type criteria (i.e., conditions C3–C4) also ensure the finiteness of the expec-
tation Eu

s ν(Sk) in steady state, as well the finiteness of the expected cost Eu
sw(Sk)
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for every potential cost function w ∈ L∞
ν ; moreover, they provide a geometric rate

of convergence of the expected costs at time k to the steady state cost for w ∈ L∞
ν .

These statements will be made precise below.
Note that C3–C4 provide uniform conditions for ergodicity; i.e., ξ, ζ, C, and λ

do not depend on the actions (or on the policies). This will be needed in order for
approximating games (with countable state space) to have stationary Nash equilibria
[4].

Lemma 3.1. Assume C3–C4. Then the following properties hold.
C5: For every u ∈ U , the corresponding Markov chain is aperiodic and ψu-

irreducible for some σ-finite measure ψu on G. (The latter condition means that if
ψu(D) > 0 for some set D ∈ G, then the chance that the Markov chain (starting at
any s ∈ S and induced by u) ever enters D is positive.) Thus the state process {Sn}
is a positive recurrent Markov chain with the unique invariant probability measure
denoted by πu.

C6: For every stationary multipolicy u,
(a) ∫

S

ν(s)πu(ds) < ∞.

(b) {Sn} is ν-uniformly ergodic; that is, there exist θ > 0 and α ∈ (0, 1) such that∣∣∣∣∣∣
∫
S

w(t)Qn(dt|s, u) −
∫
S

w(t)πu(dt)

∣∣∣∣∣∣ ≤ ν(s)‖w‖νθαn

for every w ∈ L∞
ν and s ∈ S, n ≥ 1.

Proof. C3–C4 imply that for any stationary u, the chain is positive Harris
recurrent (see Theorem 11.3.4 in [25]). It is thus ψu-irreducible (see Chapter 9 of [25]).
The aperiodicity (and, in fact, strong aperiodicity) follows from condition C4 (see [25,
p. 116]). This establishes C5. C6 follows from Theorem 2.3 in [26].

Remark 3.1. From Lemma 3.1 it follows that for any player i and u ∈ U we have

J i(u) :=

∫
S

ci(s, u)πu(ds) = J i(s, u);

that is, the expected average cost of player i is independent of the initial state. The-
orem 2.3 in [26] implies that the constants α and θ in Lemma 3.1 depend only on
ξ, η, λ, and νC = sups∈C ν(s) (and, in particular, they do not depend on u). C1, C3,
and C4 imply that the expected costs considered in this section are well defined for
any multipolicy γ ∈ Γ; see [34] or [14].

In what follows, whenever we assume C1–C4, we shall take the same function ν
in C1 as in C3. We are now ready to state our first main result.

Theorem 3.1. Consider an undiscounted stochastic game satisfying C1–C4.
Then for any ε > 0 there exists a stationary ε-equilibrium.

The proof of this result is based on an approximation technique and consists of
several steps which will be described later on. Before proving the result, we briefly
mention the approach and the steps we are using, the difficulties, and the way we
overcome these difficulties.

Basic idea behind the proof. Our basic goal is to approximate our game by a
sequence of m-person games with countable state spaces and compact action spaces
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and which have equilibria in stationary policies; based on such approximating games,
we shall construct a stationary policy which is an ε-equilibrium for the original game.
The basic idea here is similar to the one already used in [29] for the problem with
discounted cost. However, the situation here is much more involved; indeed, in the
discounted case one does not need to bother about the ergodic structure of the approx-
imating games in order to show that they possess equilibrium in stationary policies.
Here, in contrast, we need to carefully construct the approximating games so as to
ensure that they not only have the required ergodic property but also are uniform
ergodic and have some additional “good” properties for the cost. Our first step in
the proof will be to construct such approximating games, which will also satisfy con-
ditions C1–C4. The function ν, as well as the other objects that appear in these
assumptions, will be approximated as well. (We will have to show, for example, that
the approximation of ξ is indeed within (0, 1), etc.) The approximation of the game
in a way that allows conditions similar to C1–C4 to hold is done in the next two
subsections.

Properties similar to C2–C4 were used in [4] to establish the existence of equilib-
ria in stationary policies for games with countable state space; the properties imply,
for example, that the costs are continuous in the policies. Unfortunately, the counter-
part of property C4 that is used to establish ergodicity in the literature of countable
state Markov chains (or for Markov decision processes, or for Markov games) requires
that the set C that appears in conditions C3–C4 be finite. Unfortunately, we were
not able to come up with a direct approximation scheme for which C is finite. To
overcome this problem, we first use some results from [26] to obtain uniform ergodic-
ity results for the approximating chains. Using a key theorem from [41], this will be
shown to imply that there exist some function (instead of the original approximation
of ν) and constants for which properties C3–C4 hold and for which C is a singleton.
This is done in subsection 3.3.

3.1. Transition operators and their ν-weighted norms. If f ∈ L∞
ν and σ

is a finite signed measure on (S,G), then for convenience we set

σ(f) =

∫
S

f(s)σ(ds),

provided that this integral exists. Let P1 and P2 be transition subprobabilities from
S into S. Define

‖P1 − P2‖ν = sup
s∈S

sup
|f |≤ν

|P1(f |s) − P2(f |s)|
ν(s)

.(3.2)

We will also use the definition (3.2) in the case in which P1 and P2 are probability
measures on (S,G), or when one of them is zero. Note that if P2 = 0 and P1 is a
transition probability, then it follows from (3.2) that

‖P1‖ν = sup
s∈S

P1(ν|s)

ν(s)
.

If P1 and P2 are transition probabilities and ‖P1 − P2‖ < ∞, then P1 − P2 induces
a bounded linear operator from L∞

ν into itself, and ‖P1 − P2‖ν is its operator norm
(see Lemma 16.1.1 in [25]).

We now come back to our game model and accept the following notation. For any
u ∈ U , we use Q(u) to denote the operator on L∞

ν defined by Q(u)f(s) = Q(f |s, u),
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s ∈ S, and f ∈ L∞
ν . By C3, we have

‖Q(u)‖ν ≤ ξ + η.(3.3)

Clearly, (3.3) implies that Q(u) is (under condition C3) a bounded linear operator
from L∞

ν into itself. By Π(u) we denote the invariant probability measure operator
given by

Π(u)f = πu(f),

where πu is the invariant probability measure for Q(·|s, u), u ∈ U , and f ∈ L∞
ν .

3.2. Approximating games. We define ΓA to be the class of stochastic games
that “resemble” stochastic games with countably many states and can be used to
approximate the original game. The games in ΓA will depend on some parameter
δ > 0. The transition probability in a game belonging to ΓA is denoted by Qδ, and
the cost function of player i is denoted by ciδ.

We introduce some notation:
• N—the set of positive integers,
• C(X)—the Banach space of all continuous functions on X, endowed with the

supremum norm ||·||,
• L1

ν = L1
ν(S,G, ϕ)—the Banach space of measurable functions f : S → R such

that
∫
S
|f(s)|ν(s)ϕ(ds) < ∞.

We assume that each game Gδ ∈ ΓA corresponds to some sequences {Yn}, {cin},
{zn}, and {νn}, where n belongs to some subset N1 ⊂ N and {Yn} is a measurable
partition of the state space such that Yn ⊂ C or Yn ⊂ S \ C for each n ∈ N1 (the set
C is introduced in assumption C3),

ciδ(s, x) = cin(x), and Qδ(B|s, x) =

∫
B

zn(t, x)ϕ(dt)

for all s ∈ Yn, x ∈ X, and n ∈ N1. Moreover, νn are rational numbers and νn ≥ 1 for

all n ∈ N1. Define νδ(s)
def
= νn if s ∈ Yn.

We will show that for each δ > 0 it is possible to construct a game Gδ such that
cin ∈ C(X) and zn(·, x) ∈ L1

ν while zn(s, ·) ∈ C(X) for all n ∈ N1, x ∈ X, and s ∈ S.
Because in our approximation we need to preserve (in some sense) condition C4,

we consider the following subset ∆ ⊂ L1
ν: φ ∈ ∆ if and only if φ is a density function

such that ∫
D

φ(s)ϕ(ds) ≥ λζ(D)(3.4)

for each D ∈ G such that D ⊂ C. Our assumption C4 implies that ∆ �= ∅. It is
obvious that ∆ is convex. Suppose that φn ∈ ∆ and φn → φ ∈ L1

ν . Since ν ≥ 1, then
φn → φ in L1. By Scheffe’s theorem, φ is a density function. Moreover, φ satisfies
(3.4). Thus, we have shown that ∆ is a closed and convex subset of L1

ν .
Let V be the space of all continuous mappings from X into ∆ with the metric ρ

defined by

ρ(φ1, φ2) = max
x∈X

∫
S

|φ1(x)(s) − φ2(x)(s)|ν(s)ϕ(ds).(3.5)

Since G is countably generated, L1 is separable. As in [47, Theorem I.5.1], we can
prove the following.
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Lemma 3.2. V is a complete separable metric space.

Note that the proof of Theorem I.5.1 in [47] makes use of the convexity of the
range space of the continuous mappings involved. In our case, the range space ∆ is
also convex.

For each s ∈ S, the transition probability density z of the original game induces
elements φ(s, ·) of V by

φ(s, x) = z(s, ·, x).

From the product measurability of z on S × S × X, it follows that s → φ(s, ·) is a
measurable mapping from S into V .

We introduce the following notation:

• {φk}—a countable dense subset of V (see Lemma 3.2),
• {ck}—a countable dense set in C(X),
• {rk}, rk ≥ 1, where {rk} is the set of all rational numbers satisfying rk ≥ 1.

Let 0 < δ < 1 be fixed. Define for any k, k1, . . . , km, l

B(k, k1, . . . , km, l) =

{
s ∈ S : ρ(φ(s, ·), φk) +

m∑
i=1

∣∣∣∣ci(s, ·) − cki

∣∣∣∣+|ν(s) − rl| < δ

}
.

Let τ be a (fixed) one-to-one correspondence between N and N×· · ·×N = N
m+2.

Define Tn
def
= B(τ(n)), n ∈ N. Next, set Ȳ1

def
= T1 and Ȳk

def
= Tk − ∪j<kȲj for k ≥ 2.

Let {Yn} be the enumeration of all nonempty sets Ȳk. Clearly, {Yn} is a measur-
able countable partition of the state space, and n belongs to some N1 ⊂ N.

If necessary, we can modify (trivially) this partition in such a way that Yn ⊂ C
or Yn ⊂ S \C for each n. Note that for each n ∈ N1 and each set Yn there correspond
some zn ∈ V and cin ∈ C(X), so that we obtain a game Gδ ∈ ΓA. Moreover, we have

ρ(φ(s, ·), zn) < δ

(φ(s, x) = z(s, ·, x), by definition) for each n ∈ N1 and s ∈ Yn. This implies that

||Q(u) −Qδ(u)||ν < δ(3.6)

for every u ∈ U . Next, we have

∣∣∣∣ci(s, ·) − cin
∣∣∣∣ < δ

for each n ∈ N1 and s ∈ Yn. If we set ciδ(s, x) = cin(x) for s ∈ Yn, x ∈ X, we obtain

sup
s∈S

sup
x∈X

|ci(s, x) − ciδ(s, x)| ≤ δ.(3.7)

We also have

|ν(s) − νδ(s)| < δ(3.8)

for every s ∈ S.
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3.3. Equivalence with a game with a countable state space. Next, we
shall show that the Gδ game has an equilibrium in the class of stationary multi-
policies. This will be done in the proof of the following lemma.

Lemma 3.3. Assume that the stochastic game satisfies C1–C4 and ξδ
def
= 3δ+ξ <

1. Then
(i) the game Gδ satisfies C3 with ξ and ν replaced by ξδ and νδ, respectively, and

it satisfies C4; moreover,
(ii) it has a Nash equilibrium in the class of stationary multipolicies.
Proof. (i) From (3.6), it follows that

Qδ(ν|s, x) ≤ Q(ν|s, x) + δν(s)

for every s ∈ S and x ∈ X. Since C3 holds for the original game, this implies that

Qδ(ν|s, x) ≤ (δ + ξ)ν(s) + η1C(s).(3.9)

From (3.8) and (3.9), we conclude that

Qδ(νδ|s, x) ≤ δ + (δ + ξ)δ + (δ + ξ)νδ(s) + η1C(s).

Hence

Qδ(νδ|s, x) ≤ ξδνδ(s) + η1C(s)(3.10)

for every s ∈ S and x ∈ X; i.e., a condition of the type C3 holds. Condition C4
follows from the construction of ∆ (above (3.4)).

(ii) Consider the approximating games under the further assumption that every
player i restricts to the class U i

0 of policies that are piecewise constant: ui belongs
to U i

0 if and only if s → ui(·|s) is constant on each set Yn of the partition {Yn}
of S. Denote by U0 the set of all stationary piecewise constant multipolicies. Every
game Gδ with the above restriction is equivalent to a stochastic game denoted by Ḡ
with the countable state space N1 (defined in our approximation procedure). Because
every stationary multipolicy in Ḡ corresponds to a multipolicy in U0, we will use U0

also to denote the set of all stationary multipolicies in Ḡ. The cost functions in Ḡ are
cin ∈ C(X), where n ∈ N1. The transition probabilities in Ḡ are given by

Pmn(u) = Qδ(Yn|s, u)

for all s ∈ Ym, u ∈ U0, and m,n ∈ N1. Let P (u) denote the transition probability
matrix corresponding to any u ∈ U0. Finally, the piecewise constant function νδ
induces a function µ : N1 → [1,∞) by µ(n) = νδ(s), s ∈ Yn, n ∈ N1. (Sometimes we
will identify µ with the column vector, and µ(n) with its nth coordinate.)

Fix δ such that ξδ < 1. Applying Lemma 3.1 to the game Gδ, we conclude that
it satisfies C5. By part (i) and Theorem 2.3 in [26], this game also satisfies C6 (with
possibly different constants θ1 and α1). A simple translation of C5 to the game Ḡ
with countably many states says that for any u ∈ U0 the Markov chain with the
transition probability matrix P (u) has a single ergodic class and is aperiodic. On
the other hand, a translation of C6 and the fact that ||Qδ(u)||νδ

≤ ξδ + η (which
follows from (3.10)) mean that the Markov chain is µ-uniform geometric ergodic; see
[9, 41]. By Key Theorem II and Lemma 5.3(ii) in [41], there exist a nonempty finite
set M ⊂ N1, a function µ̃ : N1 → [1,∞), and some b ∈ (0, 1) such that∑

n/∈M

Pkn(u)µ̃(n) ≤ bµ̃(k)(3.11)
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for every k ∈ N1 and u ∈ U0. This property is called the µ̃-uniform geometric
recurrence (see [8, 9, 41]) and is Assumption A2(1) in [4]. The function µ̃ is given by

µ̃(k) = µ(k) + sup
u∈U0

( ∞∑
n=1

MPn(u)µ

)
(k),

where k ∈ N1 (MP (u) is the matrix P (u) in which we replace the columns correspond-
ing to states m ∈ M by zeros); see [4, pp. 99–100]. Note that this new function µ̃
is µ-bounded (i.e., supn∈N1

µ̃(n)/µ(n) < ∞) and vice versa. Indeed, µ(k) ≤ µ̃(k) for
each k. On the other hand, by (3.11), we have (MP (u)µ̃)(k) ≤ bµ̃(k) for any k ∈ N1

and u ∈ U0. Hence

µ̃(k) = µ(k) + sup
u∈U0

( ∞∑
n=1

MPn(u)µ

)
(k) ≤ µ(k) + sup

u∈U0

(MP (u)µ̃)(k) ≤ µ(k) + bµ̃(k).

Thus, µ̃(k) ≤ µ(k)/(1 − b) for every k ∈ N1. Since µ̃ is µ-bounded and vice versa,
this implies the µ̃-continuity of the immediate costs (recall C1) and of the transition
probabilities (recall C2 and Remark 2.1). This is Assumption 1∗ in [4]. Since both
assumptions 1∗ as well as 2(1) in [4] hold, it follows that the game Ḡ has a stationary
Nash equilibrium u∗ ∈ U0, and consequently Gδ has a stationary equilibrium (also
denoted by u∗) in the class U0 of all stationary piecewise constant multipolicies. It
now follows from Lemma 5.1 in the appendix that u∗ is a Nash equilibrium for the
game Gδ in the class U of all stationary multipolicies.

3.4. Uniform convergence of the steady state probabilities and costs,
and proof of the main result. Let J i

δ(u) be the expected average cost for player i
in the game Gδ when a stationary multipolicy u is used (see Remark 3.1 and Lemma
3.3(i)).

Let Qδ(u) and Πδ(u) denote the transition probability and the invariant probabil-
ity measure operators under any stationary multipolicy u ∈ U in the approximating
game.

Lemma 3.4. Under C1–C4,
(i)

lim
δ→0

||Πδ(u) − Π(u)||ν = 0

uniformly in u ∈ U .
(ii)

lim
δ→0

∣∣J i
δ(u) − J i(u)

∣∣ = 0

uniformly in u ∈ U .
Proof. (i) If ξδ = 3δ + ξ < 1, then (by Lemma 3.3) the games Gδ satisfy C4 and

C3, with ξ replaced by ξδ. By (3.10), we have ||Qδ(u)||νδ
≤ ξδ + η for all u ∈ U . This

and Theorem 2.3 in [26] (applied to the games Gδ) imply that there exists a δ0 such
that

sup
δ≤δ0

sup
u∈U

||Πδ(u)||νδ
< ∞.

Hence

K0
def
= sup

δ≤δ0

sup
u∈U

||Πδ(u)||ν < ∞.(3.12)
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The rest of the proof is an adaptation of the proof of Proposition 1 in [42]. By
Lemma 3.1 and Remark 3.1, there exist some θ > 0 and α ∈ (0, 1) such that

sup
u∈U

||Qn(u) − Π(u)||ν ≤ θαn

for every n. Hence, there exists an n0 such that

sup
n≥n0

sup
u∈U

∣∣∣∣∣
∣∣∣∣∣ 1n

n−1∑
i=0

Qi(u) − 1

n
(I −Q(u)) − Π(u)

∣∣∣∣∣
∣∣∣∣∣
ν

< 1;

Q0 = I is the identity operator. Therefore for each n ≥ n0 there exists a ν-bounded
transition operator

Φn(u)
def
=

(
I + Π(u) − 1

n

n−1∑
i=0

Qi(u) +
1

n
(I −Q(u))

)−1

and

K1
def
= sup

n≥n0

sup
u∈U

||Φn(u)||ν < ∞.(3.13)

Define

Zn(u)
def
= I +

1

n

n−1∑
i=1

i−1∑
j=1

(Qj(u) − Π(u)).

We have

K2
def
= sup

n≥n0

sup
u∈U

||Zn(u)||ν < ∞.(3.14)

A direct calculation yields

(I −Q(u) + Π(u))Zn(u)Φn(u) = I.(3.15)

Clearly, (3.15) implies that

Πδ(u)(I −Q(u) + Π(u))Zn(u)Φn(u) = Πδ(u),

so that

Πδ(u)(I −Q(u))Zn(u)Φn(u) + Π(u)Zn(u)Φn(u) = Πδ(u).(3.16)

From (3.15), we infer that

Π(u)(I −Q(u) + Π(u))Zn(u)Φn(u) = Π(u).

Therefore

Π(u)Zn(u)Φn(u) = Π(u).

Substituting into (3.16), we obtain

Πδ(u)(I −Q(u))Zn(u)Φn(u) = Πδ(u) − Π(u),
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and consequently

||Πδ(u) − Π(u)||ν = ||Πδ(u)(Qδ(u) −Q(u))Zn(u)Φn(u)||ν .
Combining this with (3.6) and (3.12)–(3.14), we obtain

||Πδ(u) − Π(u)||ν ≤ ||Qδ(u) −Q(u)||ν K0K1K2 < δK0K1K2.

The proof of statement (i) is finished.
(ii) Using L defined in (2.1) and (3.7), we obtain

|J i(u) − J i
δ(u)| = |Π(u)ci(·, u) − Πδ(u)ciδ(·, u)|

≤ |Π(u)ci(·, u) − Πδ(u)ci(·, u)| + |Πδ(u)(ci(·, u) − ciδ(·, u))|
≤ Lν(s0) sup

|w|≤ν

|Π(u)w − Πδ(u)w|
ν(s0)

+ δ

≤ Lν(s0) sup
s∈S

sup
|w|≤ν

|Π(u)w − Πδ(u)w|
ν(s)

+ δ

= Lν(s0) ||Π(u) − Πδ(u)||ν + δ,

where s0 is an arbitrary state. Now (ii) follows from (i).
A version of Lemma 3.4 corresponding with a bounded function ν was established

by Stettner [42]. When ν is bounded, an elementary proof of Lemma 3.4 (stated as
an extension of Ueno’s lemma [46]) is possible [32].

Proof of Theorem 3.1. Choose some ε > 0. According to Lemma 3.4 there exists
some δ such that for all u ∈ U , ∣∣J i(u) − J i

δ(u)
∣∣ ≤ ε.(3.17)

Let u∗ ∈ U be a Nash equilibrium for the game Gδ in the class U of multipolicies
(its existence follows from Lemma 3.3). It then follows from (3.17) that u∗ is an ε-
equilibrium (in the class U) for the original game. The fact that u∗ is an ε-equilibrium
in the class Γ of all multipolicies follows from Theorem 3 and Remark 1 in [34] (or
[18, 14] in the Borel state space framework).

4. The discounted stochastic game. In this section, we drop conditions C3
and C4. However, in the unbounded cost case, we make the following assumption.

C7: There exists α ∈ [β, 1) such that

βQ(ν|s, x) ≤ αν(s)

for each s ∈ S and x ∈ X.
Using C7, we can easily prove that, for any s ∈ S, any multipolicy γ ∈ Γ, and

any number of stages k, we have

|βk−1Eγ
s (ci(Sk, Xk))| ≤ βk−1Eγ

s (|ci(Sk, Xk)|) ≤ Lβk−1Eγ
s (ν(Sk)) ≤ Lαk−1ν(s),

where L is the constant defined in C1. This gives us the following lemma.
Lemma 4.1. Assume C1 and C7. Then for every player i the expected discounted

cost Di(s, γ) is well defined (absolutely convergent) for each s ∈ S and γ ∈ Γ.
We are ready to formulate our main result in this section.
Theorem 4.1. Any discounted stochastic game satisfying conditions C1, C2,

and C7 has a stationary ε-equilibrium for any ε > 0.



1834 ANDRZEJ S. NOWAK AND EITAN ALTMAN

Before we give the proof of this theorem, we state some auxiliary results. Let
∆1 be the set of all density functions in L1

ν . Clearly, Lemma 3.2 holds true if ∆ is
replaced by ∆1. Applying the approximation scheme from section 3 to the present
situation, we construct a game Gδ for any δ > 0 such that (3.7) holds and, moreover,
we have

sup
|f |≤ν

|Q(f |s, u) −Qδ(f |s, u)| ≤ δ(4.1)

for each s ∈ S and any stationary multipolicy u ∈ U.
Fix player i and set

Kn(s, u) = Eu
s (ci(Sn, Xn)) and Kn

δ (s, u) = Eu
s (ciδ(Sn, Xn)),

where s ∈ S and u ∈ U. Clearly, Kn(s, u) is the nth stage cost for player i under
stationary multipolicy u when the game starts at an initial state s ∈ S.

Lemma 4.2. Assume C1 and C7. Then, for each s ∈ S and u ∈ U, we have

|Kn(s, u) −Kn
δ (s, u)| ≤ δ(1 + (n− 1)L)

(
α

β

)n−1

.

Proof. The proof proceeds by induction. For n = 1 the inequality follows imme-
diately from (3.7). We now give the induction step. Note that

|Kn+1(s, u) −Kn+1
δ (s, u)| = |Q(Kn(·, u)|s, u) −Qδ(Kn

δ (·, u)|s, u)|
≤ |Q(Kn(·, u)|s, u) −Qδ(Kn(·, u)|s, u)|
+ |Qδ(Kn(·, u)|s, u) −Qδ(Kn

δ (·, u)|s, u)|.

Using (4.1), our induction hypothesis, and the obvious inequality

Kn(s, u) ≤ L

(
α

β

)n−1

ν(s),

which holds for every s ∈ S and u ∈ U , we obtain

|Kn+1(s, u) −Kn+1
δ (s, u)| ≤ δL

(
α

β

)n−1

+ δ(1 + (n− 1)L)

(
α

β

)n−1

= δ(1 + nL)

(
α

β

)n−1

≤ δ(1 + nL)

(
α

β

)n

,

which ends the proof.
From Lemmas 4.1 and 4.2, we infer the following result.
Lemma 4.3. Assume C1 and C7. If Di

δ(s, u) is the expected β-discounted cost
for player i in the game Gδ, then

|Di(s, u) −Di
δ(s, u)| ≤ δ(1 + α(L− 1))(1 − α)−2

for each s ∈ S and u ∈ U .
The game Gδ is characterized by the cost functions ciδ, transition probability Qδ,

and the function νδ. Note that if δ is sufficiently small, then the game Gδ satisfies
condition C1 with L replaced by 2L. From our approximation scheme (the new
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definition of the space V) and Remark 2.1, it follows also that C2 is satisfied in our
game Gδ. Since |ν(s) − νδ(s)| < δ for all s ∈ S, we have (by (4.1))

β

∫
S

νδ(t)Qδ(dt|s, x) ≤ ανδ(s) + αδ + 2βδ < α0νδ(s),

where α0 = α + αδ + 2δ and s ∈ S, x ∈ X. Note that β < α0, and if δ is sufficiently
small, then α0 < 1, and thus Gδ satisfies condition C7 with α replaced by α0. Let δ0
be a positive number such that for every δ < δ0 the game Gδ satisfies conditions of
type C1, C2, and C7. In particular, we have β < α0 < 1.

Lemma 4.4. If δ < δ0, then the game Gδ has a Nash equilibrium in the class U
of all stationary multipolicies.

Proof. We use a transformation to bounded cost games similar to that of [43,

p. 101]. One may define the new discount factor β̃
def
= α0 and the functions

c̃i(s, x) =
cin(x)

νδ(s)
, z̃(s, t, x) =

βzn(t, x)νδ(t)

α0νδ(s)
,

where s ∈ Yn, t ∈ S, and x ∈ X. This transformation ensures that the new costs c̃i

are bounded and that

q(·|s, x)
def
=

∫
S

z̃(s, t, x)ϕ(dt)

is a transition subprobability such that q(Yn|s, x) is continuous in x for each n and
s ∈ S. Moreover, it implies that

D̃i(s, u) =
Di

δ(s, u)

νδ(s)
,(4.2)

where D̃i(s, u) is the expected discounted cost for player i under any u ∈ U in the
transformed (bounded) game. Similarly, as in section 3 we can recognize the game
Gδ as a game with countably many states. By [11], such a game has a stationary
Nash equilibrium. In other words, our bounded game has an equilibrium u� in the
class U0 of all piecewise constant multipolicies. It now follows from Lemma 5.2 in the
appendix that u� is an equilibrium for the bounded game in the class U . By (4.2),
we infer that u� is also an equilibrium (in the class U of all stationary multipolicies)
for the game Gδ.

Proof of Theorem 4.1. Fix ε > 0. By Lemma 4.3, there exists δ < δ0 such that

|Di(s, u) −Di
δ(s, u)| ≤ ε/2

for each s ∈ S and u ∈ U . It follows from Lemma 4.4 that the game Gδ has an
equilibrium u� in the class U. Clearly, u� is an ε-equilibrium in the class U for the
original game. The fact that u� is also an ε-equilibrium in Γ follows from Theorem 2
and Remark 1 in [34] (or [14] in the case of Borel state space games).

5. Appendix. In this section we restrict our attention to the approximating
games and state some auxiliary results on sufficiency of piecewise constant policies in
the sense that they can be used to dominate any other policy. Related statements
are proven in [1] for countable state space models. Their extension to the present
situation would require new notation and some additional measure theoretic work.
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Therefore, in this section we restrict ourselves to stationary policies, and in such a
case we can use different methods which are based on some standard arguments from
the dynamic programming literature [14].

Let Gδ be an approximating game corresponding to a partition of the state space.
Fix player i and a stationary piecewise constant multipolicy u−i for the other players.
For any s ∈ S and f ∈ U i set

c(s, f) = ciδ(s, (u−i, f)) and q(·|s, f) = Qδ(·|s, (u−i, f)).

Recall that U i
0 denotes the set of all piecewise constant stationary policies for player

i.
Consider the Markov decision process (MDP) with the state space S, the action

space Xi, the cost function c, and the transition probability q.
The average cost case. We assume that δ is sufficiently small so that the MDP

satisfies conditions C1–C4 (restricted to the one-player case). Let Jn(s, f) (J(f))
denote the expected n-stage (expected average) cost (in the MDP) under stationary
policy f.

Lemma 5.1. Assume C1–C4, and consider the average cost MDP described
above. Then for each f ∈ U i there exists some f0 ∈ U i

0 such that

J(f0) ≤ J(f).

Proof. Let f ∈ U i and g = J(f). By Lemma 3.1, our MDP satisfies condition C6
with ν replaced by νδ and possibly different constants. It is well known that in such
a case the function

h(s)
def
= Ef

s

[ ∞∑
n=1

(c(Sn, X
i
n) − g)

]

is well defined and h ∈ L∞
νδ

. Moreover, we have

g + h(s) = c(s, f) + q(h|s, f) for each s ∈ S.

For the details, see [14] and [25]. Our approximating game (and thus the MDP)
satisfies continuity conditions C1–C2. Because the cost function c and the transition
probability correspond to a partition of the state space (and, in addition, the other
players use stationary piecewise constant multipolicy u−i), this implies that one can
find some f0 ∈ U i

0 such that

c(s, f0) + q(h|s, f0) ≤ c(s, f) + q(h|s, f) = g + h(s)

for all s ∈ S. Iterating this inequality, we obtain

Jn(s, f0) + qn(h|s, f0) ≤ ng + h(s)

for all s ∈ S. Hence

Jn(s, f0)

n
+

qn(h|s, f0)

n
≤ g +

h(s)

n

for each n, and consequently

J(f0) ≤ g = J(f).
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For a detailed discussion of the fact that C3 implies that qn(h|s, f0)/n → 0 as n → ∞,
consult [14] or [34].

The discounted cost case. We now assume that the stochastic game satisfies C1,
C2, and C7. If δ is sufficiently small, then both Gδ and the aforementioned MDP
satisfy C1, C2, and C7, but with different constants (see section 4). Let f ∈ U i. By
Dn(s, f) (D(s, f)) we denote the expected n-stage discounted (total discounted) cost
in the MDP under policy f .

Lemma 5.2. Assume C1, C2, and C7, and consider the discounted MDP de-
scribed above. Then for each f ∈ U i there exists some f0 ∈ U i

0 such that

D(s, f0) ≤ D(s, f) for every s ∈ S.

Proof. Set d(s) = D(s, f), s ∈ S. Under our assumptions, we have

d(s) = c(s, f) + βq(d|s, f)

for all s ∈ S (see Lemma 4.1). From our compactness and continuity conditions, C7,
and the construction of the approximating game, it follows that there exists some
f0 ∈ U i

0 such that

c(s, f0) + βq(d|s, f0) ≤ c(s, f) + βq(d|s, f) = d(s)

for each s ∈ S. Hence

Dn(s, f0) + βnqn(d|s, f0) ≤ d(s)

for each n and s ∈ S, and consequently

D(s, f0) ≤ D(s, f) for each s ∈ S.

The fact that βnqn(d|s, f0) → 0 as n → ∞ follows easily from C7.
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