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Abstract— We consider competitive routing in multicast
networks from a non-cooperative game theoretical perspec-
tive. IV users share a network, each has to send an amount
of packets to a different set of addressees (each address must
receive the same packets), to do this it has only to send one
copy of a packet, the network making the duplications of
the packets at appropriate nodes (depending on the chosen
trees). The routing choice of a user is how to split its flow be-
tween different multicast trees. We present different criteria
of optimization for this type of games. We treat two specific
networks, establish the uniqueness of the Nash equilibrium
in several networks, as well as the uniqueness of links” uti-
lization at Nash equilibria for specific cost functions in net-
works with general topology.

I. INTRODUCTION

In view of the deregulation of the telecommunication
market, it has been recognized that optimal decision mak-
ing concerning the network operation (such as routing) at
the level of service providers cannot be modeled in the
framework of centralized optimization. The natural frame-
work to study this issue is non-cooperative game theory,
and the optimality concept is the Nash equilibrium (see
e.g. [11], [14]).

Within this framework, we consider in this paper the
optimal routing problems, in which each service provider
(that will be called "user") has to determine which paths
to use and how to split the flow of its subscribers be-
tween these paths. This problem, known as "compteti-
tive routing™ has received much attention in the framework
of point-to-point communications, see e.g. [7], [8], [11].
Related competitive models have also been studied in the
context of road traffic even earlier, see e.g. [5].

The unit entity that is routed is called a packet. There
are infinitely many packets that we approximate by a con-
tinuous flow. A finite number of users share the network.
Each one has to send an amount of packets (possibly of dif-
ferent sessions) from one or more sources to a set of (pos-
sibly source dependent) destinations. The routing decision
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of a user consists of how to split its flow between various
multicast virtual paths which are represented as trees. We
consider in this paper not only the point-to-multipoint sit-
uation but also the case of multipoint-to-multipoint. Yet
even in the latter, we shall assume that the routing from
each source is performed using virtual paths which are rep-
resented as trees.

Into a tree, a user has only to send one copy of each
packet, and the network will duplicate the information at
appropriate nodes: At each node of the tree the network
will duplicate the packets so that a copy of the packet goes
through each out-going links (which belong to the tree) of
this node. This feature makes it impossible to use standard
methods from games that arise in road traffic or in point-
to-point communications (in which there is a single source
and a single destination per each communications) that are
based on flow conservation at each node (such as [11]).

Objective functions to be minimized in multicast com-
petitive routing are also different from those that arise in
unicast communications and in road traffic. We treat the
case when the objective is to minimize a cost function that
is obtained through the sum of link costs. In that case, our
analysis can be used to relate the pricing of links (as a func-
tion of congestion) to the cost obtained at equilibrium. We
also analyze two different types of cost related to delays.
Surprisingly, in the case of multicast, the cost represent-
ing delay cannot be taken as a simple special case of the
previous type of cost, as will be discussed.

The structure of the paper is as follows. After intro-
ducing the mathematical model, we define in Section Il
the optimality concept of Nash equilibrium, establish its
existence in our networking routing game and present ex-
plicetly three different criteria of optimization. We then
study two networks with specific topologies (Sections Il
and V), in which we establish the uniqueness of the Nash
equilibrium for the three criteria presented; in Section IlI,
we also show the convergence to equilibrium of a best re-
ply algorithm in the case where the network is shared by
two users and give an example where there exist several
distinct equilibria if the orthogonality of the strategy sets
does not hold. In Section V, we present an extended ver-
sion of the well known Wardrop equilibria [16], relate it to
Nash equilibrium with specific cost functions. We then ob-
tain uniqueness of the equilibrium for a general topology.
Finally in Section VI we present a numerical example. We
conclude with a section that discusses further extensions
and some remaining open problems.



Il. MODEL

We consider a general network. We denote N the set of
nodes, and £ C N x A the set of unidirectional links. The
unit entity that is routed through the network is called a
packet. Each packet j has a source and a set of addressees,
we call this pair an origin-destinations pair (sD pair). We
denote the origin, or the source by s(j) and the set of des-
tinations by D(j). The network is shared by N users, we
denote 7 the set of users. Each user ¢ € 7 has a set of sD
pairs and for each sD pair a certain amount of packets to
route from s to D, we call this amount the flow demand
of user ¢ for the pair sD and we denote it by gbi,D. A user
with a single source (and several destinations) represents
the, so called, session of point-to-multipoint. When a user
has several sources and several destinations, the scenario
is called a multipoint-to-multipoint communication.

A tree a from s € AN'to D C N is a subnetwork, con-
stituting by a set of nodes and a set of unidirectional links;
an example of a tree belonging to the pair sD is

a = (su,uv,vdy, vds, uw, wx, rds, xdy, vds)

where D = {d1,d2,ds,ds,ds} and u,v,w and x are in-
termediate nodes, in this tree a duplication is made in «, in
v and two in z, Figure 1.
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Fig. 1. Example of a tree

A is the set of all possible trees. Each node of a tree
(except for the source) has only one in-going link belong-
ing to this tree. For a user i € 7 we denote by £° its set
of sD pairs, by A’ its set of possible trees and by A! , its
set of possible trees which go from s to D. Then we have
A= UieI.Ai and A® = UsDEﬁ"'AiD'

Each user has to choose a (set of) tree(s) to route its
packets. Fori € Z and a € A?, we denote by x’('a) the
amount of flow sent into tree a by user ;.

Denoting 'Téa)l the flow that user 7 sends into a tree a
which goes through link [ (this notation will only be used
once), then by definition of our model we have

VieZ, VYae A, Vi€ a, xza)l = Xza)

We introduce the incident indicator é;,,
5 — { 1 iflea
fa 0 otherwise _
.The flowonalinkl € L sentbyuseri € Z is

T =Y e 6laxz('a) and the aggregate flow on link 7 is
m= Y X = D_al
1€Z ac Al 1€T
For every user i € 7, its routing decision
Xt € R™ (n' = #.A") has to satisfy
{x' € R" |VsD € ', Va € Al p,
> Xa = P}

a€A;p

X' eX =

X(a) 2 0,

We denote the set of all admissible flow configuration

x = (X*);ez by X, we call it the total strategy set.

X CX =X xX2x...x XN isconvex, compact and

nonempty. X is called an orthogonal policy space.
Usually X = X, but we may add some extra constraint

as link capacities and then X ¢ X. 1

A. Definition of Nash equilibrium

.The cost function of a user 4 € 7 is denoted J*,
J' i R" — [0,00] (n = ;e ).

The aim of each user 7 € Z is to minimize its cost'func—
tion (according to the strategy set), that is find a x* such
that
Ny e a}

X' € min {J'(x', ..y X)) (X LY X

yiexi

Let (x~%,y*) be the flow configuration where class
j (4 # i) uses strategy x’ and class ¢ uses strategy y*.

Definition: x € X is a Nash equilibrium if and only if
VieI, Yy'st (xLy)e X, J(x)< Ty

B. Cost Functions

We denote the cost function of a link [ € £ for a user
i € Zbyf}, f] :[0,00) — [0,00] depends only of the

!Note that constraints such as link capacities may always be repre-
sented in the orthogonal policy space as well by introducing infinity for
costs of policies that do not satisfy the constraints. But when doing so,
we may loose the continuity of the cost due to jumps to infinity that may
occur. As we shall see, such constraints may result in nonuniqueness
of the equilibrium. However, there are some specific cost functions,
such as that obtained from the expected delay in an M/M/1 queue, that
include capacity constraints (by imposing infinite delays when capac-
ity is attained) but have the property that the cost remains continuous
everywhere. For such costs, we may often obtain the uniqueness of
equilibria, see e.g. [11].



flow which goes through link .

In the kind of model presented in this paper, we may
have different criteria of optimization. Then we have dif-
ferent types of cost functions.

The link’s cost functions may be of two types:

(A) Cost functions similar to toles in road traffic
(B) Cost functions as delay

In case (A) each user wants to minimize its total cost
(that is the sum of the links” cost functions over all the
links which it uses). In the unicast case (one destination
per source) or even in the case of multiple sources and
single destination, there is no essential difference between
"cost" and "delay": the cost can be taken as the delay.

This is not the case in multicast problems, and delay has
to be treated differently. To see that, consider a single user
in a simple network consisting of nodes (s, x,d1, ds); s is
the source, d; and d, are two destinations. The links are
sx,xdy, xds and there is a single tree that contains these
three links. Assume that the (load dependent) cost of using
each link is 1 unit. The total cost is then 3 since there
are three links. But if the cost corresponds to the average
delay then it is 2 units, since the delay between the source
and each destination is 2 units. If we consider the total
delay then it is 4 units (2 units between the source and
each destination).

In case (B) we consider two different criteria of opti-
mization, either each of the users wishes to minimize its
total delay (B.1) (as in the example above) or it wishes
to minimize its maximum delay over paths (B.2) (a path
being a sequence of unidirectional links between a source
and a destinations, any path belongs to a tree). The latter
type of criterion has been advocated and used in the
point-to-point framework for ad-hoc networks, see [4].

For any tree « and all nodes u € a, we denote by ay,

the subtree of of a which begins at node « and by 7, the
number of destinations of the subtree a/,,, where a belongs

to A, 7, = #{d € D(a) | d € D(a},)}.
The different users’ cost functions are
(A) T (X) = 3 ge ui Xéa) Diea fi (1)
(B-1) J*(X) = Fae ai X(a) Cuvea Toaf i (Tun)
(B.2) J*(X) = maXee s pea otep /1 (1)

C. Existence of Nash Equilibrium

When the strategy set is convex, compact and nonempty,
and when for each user ¢ € Z, for all x € X, the cost

function J%(x) is continuous in x and convex in x* for each
fixed value of x?, then a Nash equilibrium exists (see for
example [14, Thm 1]).

Note that in order to obtain the existence of a Nash equi-
librium, the differentiability of the .J*’s is not required.
Then to satisfy conditions of existence of equilibria, the

’s have to be continuous and increasing (resp. convex)
for cases (A) and (B.1) (resp. (B.2)), so that the J*’s be
continuous in x and convex in x* for each fixed value of
X"

In the rest of paper we shall furthermore impose fre-
quently the following assumption to obtain uniqueness of
equilibrium in the cases studied.

Assumption (G): f : [0,00) — [0, 0] is continuously
differentiable (wherever finite), strictly increasing and
Convex.

D. Characterization of the equilibrium

For cases (A) and (B.1), for all a € A, we denote by
K("a) (x) the derivative of J%(x) with respect to x¢ ., i.e.,

()’
Ky (x) = ﬁi)J (x), then

’za)(x) = Z wa (I;va;v(.’I?uv) + f,fw(l‘uv))

uvea

| if J' € (A)
where c, = {rg‘a if J* € (B.1)
derivative with respect to the argument of the function.
In case (B.2), remark that for any 5 € Z, J* is convex in

X?, continuous in x but no more differentiable.

and V denotes the

For cases (A) and (B.1), if X = X, the equilibrium con-
dition is equivalent to

Jo = a(X), o’ = (a}p)icr, speei

such that foralli € Z, sD € £ and a € A,
K{y(x)=aip 205 (K{yy(X)=aip)Xey =0 (3) (1)

Let us denote by 9,.J%(x) the subdifferential (which is
the set of subgradients) of .J¢(x) according to x’@. Then

for case (B.2) (X = X), x is a Nash equilibrium if and
only if it satisfies the condition

3 a=ax), ol = (O‘iD)iEI, sDeEi

3 B=6K), " = (ﬂga))ier, a€Ai

2(1) are Kuhn-Tucker conditions where o, is the Lagrange multi-
plier associated to the constraint ¢:p, = 3

and

i
acaiy X(a):



such that forall i € Z, sD € £*and a € A’
Bay 2 05 BayX{ay-n =0 )

osp — Bay} ©)
Let (X, yz('a)) be the flow configuration x where the coor-
dinate xza) is replaced by yza).
We denote by J;_(x) (resp. J.,(x)) the left (resp.
right) side derivative of .J*(x) according to xza), that is

(resp.

(a convex function has always one-side derivative).

Since the function J* takes values in R, then its subd-
ifferential at the point x with respect to x( X is the set of
vectors

0 € {8, (x) —

JHX, XE ) — JH(x
L Ty) = 0

A—0+ A

JH(X, xéa) +A) — J"(x)>
A

lim
A—0t

{X* [ JL(x) <x* < TL(X)}
(see for example Rockafellar [13, Ch 23,24]).

Remark 1: Case (B.2). For a user i € Z, the decision
of others (x~*) being fixed, for any tree a € A* and for
any path p € a, the cost of p (3¢, fi(ay)) is continuous

and increasing in xéa). If ¥ = X and #E&° = 1, then the
strategy of user 7 which minimize J%(.,x~*) will be a x*

such that . .
Va,b € A, s.t. xza) > 0,

mafol xy) < maXZ fl xy) 4)

p€a
lep leq

(if X # X, this may not hold anymore, since we can have
a link saturated, for example). For this x, typically .J*(x)
will not be differentiable.

Remark 2: If we replace the cost (B.2) by

JHX) = maXee 4i D oupea Teat wo(Tuv), that is instead of
minimizing its maximum delay over paths, a user will min-
imize its maximum delay over trees, then the equation (4)
becomes Va,b € A?,s.t. x’@ > 0,

PR <2.m

uv€a uv€Eb

va uv .I‘m_, (5)

fuv I‘uu

The equation (5) looks as a natural extension of the
characterization of the so called Wardrop [16] equilibrium
to the context of trees in a multicast network. This is
an equilibrium notion adapted from the context of road

traffic in which a decision maker is a single infinitesimal
packet (as opposed of our original definition in which the
decision maker for a large number of packets is the so
called "user™). More details and a result of uniqueness for
theses cost functions are given in Section V.

E. Comments on Bidirectional Links

When we consider a bidirectional link uv, we assume
that for every user i € Z, fi, = fi, and moreover the
cost of this function depends only on the aggregative flow
which goes trough this link, z,, = Tyy— + Tyu—.

With this assumption, we know that a bidirectional link
may be transformed into a network of unidirectional ones
where some are of null cost, see [3, Appendix B]. Hence
the existence of the Nash equilibrium also holds for net-
works with both unidirectional and bidirectional links (the
conditions of existence allow links with constant cost).

I1l. A THREE NODES NETWORK

Consider a network with three nodes u, v and d, a bidi-
rectional link between v and v and two unidirectional ones,
one between « and d and the other between v and d (Fig-
ure 2). N users share this network. Z = Z; U Z;;, where
every user i € Z; has to ship an amount ¢* of packets from
u to v and d, and every user i € Zyr has to ship an amount
¢" of packets from v to u and d. To do this each user has
two possible trees
a user i € Zy has the tree (uv, ud) where the duplication
is made in « and the tree (uwv, vd) where the duplication is
made in v
a user ¢ € Z;; has the tree (vu,vd) where the duplication
is made in v and the tree (vu, ud) where the duplication is
made in u.

d

u \Y

~———

Fig. 2. A three nodes network

With the notations previously introduced, this gives
IT=T;UTI fori € I;, s = u, D' = {v,d},
Al = AT = {(wv,ud), (uv,vd)},
fori € Z;r, s* =v, D' = {u,d},
Al = AT = {(vu,vd), (vu, ud)}
fori € Z, & = {s'D*}, ¢'; i = ¢'



Remark 3: No matter which strategy a user ¢ € Z; (resp.
i € Zyr) chooses, it has to send an amount of flow ¢* from
u to v (resp. from v to u), hence the flow which goes
through the link connecting « and v will be the constant

o= Z'LEI ¢z

A. Uniqueness of Nash Equilibrium

Lemma Ill.1: Assume G and X = X. Then in cases
(A) and (B.1), the Nash equilibrium is unique, and in
case (B.2) for any two Nash equilibria, x, X, we have
Vi € I, JYX) = JX), and moreover the link’s uti-
lization is unique (at equilibrium).

Proof:

(A) From the Remark 3 it follows that our networking
game is equivalent to a classical routing game in a unicast
network with two parallel links between a source s and a
destination d, where a user ¢ € Zy (resp. ¢ € Zys) has to
ship a amount of flow ¢* from s to d with the links’ cost
functions Fi(z) = fi(x), Fi(z) = fi,(@).

In such a network, under the assumption G the equilib-
rium x is known to be unique (see [11, Thm 2.1]).

Then at equilibrium, the cost for a user i € Z; is:

Jz(X) = Xéuv’ud)(,ﬁ;v(muv)+f1id(xud))

+X’éuv,'ud) (f:w (xuv) + f'zvd(xvd))
= ¢Zf’lZL’U(¢) + X’éuvyud) f’lid(l-ud)
+X’éuv,vd) f;'d(f’fvd)

and forauser¢ € Zp;

J,L(X) = d)'L lzl’u,((z)) + X,évu,q)d)f’lfd(x’vd) + Xéq}u,ud)f’l,id(xud)

(B.1) In this case, the game is also equivalent to a clas-
sical routing game in a network of two parallel links, but
due to the specifity of the total delay, we are faced to a
change in the links’ cost functions of the network of paral-
lel links, they have to be for i € Z; Fj(z) = fi,(z) +
i0(9), Fi(z) = fig(x) + 2fi,(¢) and for i € I
Fi(x) = fig() + 2£3,(6), Fi(x) = fiy(2) + fi,(9).
Therefore, in this case again, the equilibrium is unique,
and at equilibrium x the total delay for user i is:
ifi € Z;

JZ(X) = X,éuv,ud)( 1Z1.1)(¢)+f111d(de))

+X1(‘u1),1)d) (Zf:w((b) + fid(xvd))
ifi € Ig
Jz(x) = Xévu,vd)( :/u((ﬁ) +f1§d(xvd))
+X2vu,ud)(2f5u(¢) + féd(wud))

(B.2) The cost function of auser i € Z is

TH(X) = mazee 4i pea Y fi (21)

lep

According to Remark 1 at equilibrium x for i € Z; we have
if x? ) >0

(uv,ud

maX{f’iv((}b)a de(xud)} < f'zzw((ﬁ) + fzd(xvd) (6)

and if x{,, ,q) > 0

Fin(@) + fra(woa) < max{fi,(9), fog(zua)} (7)

Firstly we prove that for any two equilibria, X, X, we
have for all i € Z, J4(X) = Ji(X). Suppose that there
exists i € Zy such that J*(x) > J*(X).

If X{,) > 0 forall a € A’, we obtain that

Fin(9) + Fra(@oa) < fun(®) + foa(Zoa)

and

maz{ fup(0), fua(Fua)} < maz{fuu(), fua(Tua)}
from which it follows that Z,4 > Z,q and Z,q > Tyq. This
is impossible since T,q + Tug = Tvd + Tud-

If there exists a € A’ such that X(q) = 0, assume that

a = (uv,vd) (the other case is similar), then we obtain
that

maz{ fun(0), fua(Fua)} < maz{fuu(), fua(Tua)}

Then Zua > T, fiy(Tua) > fi,(¢) and there exists j €
7 such that & , > & ,, which implies that &, > Z,4 and
&, >, . '

If j € Iy, therefore Xz'uu,v 3 > ng,v d) (we have also
X{vu,u 0 > f({vu’u 4))- Finally we obtain that

JI(%) > max{fJ,(¢), f1y(Twa)} > F(X)  (8)

and
J(R) > fiu(9) + fug(Zua) = T (%) ©9)
A contradiction .
If j € Zy, we obtain a similar result replacing xgw wd)
J J J
by X uv,ud) and X(vu,vd) by X(u’u,vd)'

Therefore for all i € Z; J%(x) < J*(X). Interchanging X
and X we obtain that .J*(X) = J%(X), a similar result holds
for users 7 € Z;;.

The uniqueness of the links utilization at equilibrium is
a trivial implication of J4(X) = J¢(X) foralli € Z. O



Remark 4: For the cases (A) and (B.1), if the links’ cost
functions are the same for all users (f{ = f;) and if all
users has the same amount of packets to ship (¢* = ¢),
it follows from [11, Lem 3.1] applied to the equivalent
unicast networks defined in the proof of Lemma 111.1, that
xéa) = %(q)/#Lm, Ym € {L, I}, i € Iy, a € ATm

B. X # X: An Example With Distinct Equilibria

Consider the previous network shared by two users, I
and 11, each user ¢ has an flow amount of 1 to send from
s* to D* and has the following cost functions:
fio@) = fun@) = 2, fig@) = fualz) =

vq(T) = foa(z) = 2.

Moreover the capacity of the link ud is limited: z,4 <

1. Then we have

z and

X = {xeR"|VieI Yae A X4 >0,
D Xy =¢ wua<1}
ac At
We define the flow configuration X by Xy uay = 1,

X(uv,wd) = 0, X(wuwd) = 1 aNd X(yuuay = 0 and the flow
configuration X by X(ypuq) = 0, X(wv,pd) = 1, X(wu,va) = 0
and X(vu,ud) = 1.

Obviously X and X are both Nash equilibria, since in the
first case user I has no interest to change its flow configu-
ration, and user 11 has no other choice that send all its flow
into the tree (vu, vd) and inversely for the second case (in
fact every convex combination of these two flow configu-
rations is a Nash equilibrium).

Then Lemma I11.1 is false if X' # X.

C. Convergence to Nash Equilibrium

In this subsection we present a classical algorithm of
updating flow configuration based on best reply strategy
(see [11, Sec. 2.4] or [17, Sec. 2] for a detailed description
of this algorithm). We show, under the restriction of
twice-differentiability of the f;’s, that this algorithm
converges to the unique equilibrium.

In the networking game presented previously, each user
has only one decision which is the quantity of flow to send
through tree (uv,vd), X(yv,va), Since the other variable is
(! —X(uv,vd) )» Similarly the decision of user I7is X(yy, va)-
We denote y the strategy of user I and z this of user I7.

Let the sequence (yn, 2n)n>0 be defined as follows:

- step 0: (yo, z0) is a given initial flow configuration

- step 1: I updates its flow in order to minimize its cost
function the strategy of 11, zq, being given, the resulting
flow configuration is (y1,21), where y; is a best reply to
20 (= 21)

-step 2: IT updates its flow in order to minimize its cost
function the strategy of I, y;, being given, the resulting
flow configuration is (y2, 22), where z9 is a best reply to

Y1 (= 22)

- step 2n — 1: I updates, the resulting flow configura-
tion is (y2n—1, 22n—1), Where y9,_1 is a best reply to
Z29n—2 (: ZZn—l)

- step 2n: IT updates, the resulting flow configuration is
(Y2n, 2on ), Where zq,, is a best reply t0 y2, 1 (= yan)-

Remark 5: The function which associates to a flow
generated by a decision g (resp. z) the best reply set for
user I1 (resp. I) is continuous, due to the continuity of
the cost functions.

Assumption:

e O)VVieI, lelL, f;' is twice-differentiable wherever

finite.

Lemma 111.2: Assume G, C and X = X. Given any ini-
tial flow configuration, the sequence generated by a suc-
cession of best reply strategies will converge to equilib-
rium in cases (A), (B.1) and (B.2).

Proof:
(A) It is sufficient to remark that the networking game is
supermodular, i.e.,

d2
dydz

T (y,2) >0 Y(y,z2) €[0,0] x [0,¢"]

And the result follows from Yao [17, Thm 2.3].
The supermodularity of G is trivial. Indeed we have

T (y,2) = y(fan(d) + fialy +2))
(8" = ) (fun(@) + fuald —y —2))
Then
d2

Ty, 2) =Vily+2)+Vii(s—y—2)

+yVi iy +2) + (8 = y)VP Lo —y — 2)
> 0 V(y,z) €[0,¢'] x [0,9"]

where the inequality is due to assumptions G and C (we
obtain the result for J*! by a similar way).

dydz

(B.1) similar to (A).

(B.2) The proof is based on the fact that the sequence
(Yn, 2n)n>2 IS motone, more precisely we have z, >
Zn—1, Yn = Yn+1 O 2n1 2 Zn, Yntl = Yn- Remark
5 and the boundedness of the flows will imply the conver-
gence to equilibrium of the sequence.



We will only only show

Zn 2 Zn_1 = Yn > Ynt1 VN >2(neven) (10)
1) ¢! > yn = yn_1 > 0, due to Remark 1, we have
fan(@) 4 fra@Wn-1+ z01) (11)

= maX{ 1{@(@7 id(d) —Yn-1— Zn—l)}
Recall that v, = y,,—1. By hypothesis, we obtain that
Fun(®) + Fua(yn + 20) > max{fu(9), fua(d6—yn —20)}

If 4,41 = 0, (10) is checked. Suppose that y,41 = ¢/,
then we have

quv(‘ﬁ) + fgd(yrH—l + 2Znt1) > quv(‘ﬁ) + fgd(yn + 2n)
2 ma‘X{ 151;(¢)7 id(@s —Yn — Zn)}
> max{fiv((b)a fid(‘:b — Yn+1 — Zn—l—l)}

but in order to y,,+1 = ¢’ be a best reply to z,, it has to
satisfy (cf.Remark 1)

@)+ fliyns + zt)

S max{ 151;((?)7 fq{d(qs — Ynt1 — Zn-l—l)}
A contradiction.
It rest us to consider the case where ¢! > 4,1 > 0, in
this case in order to y,+1 be a best reply to z,, it is nec-

essary that (11) holds also for n + 1 (where 2,11 = zy,).
Hence (10) is checked.

2) yn = ¢!, (10) is always true.

3) Yn(= Yn_1) = 0, we have

ao(®) + faani1 + 2011)
> fan(®) + faalyn—1 + 201)
> max{fy, (), fra(¢ — Yn-1 — zn-1)}
> max{fyy(®), fua(d = Yni1 — 2n41)¥12)

where the second inequality comes from the fact that
yn—1 = 0is a best reply to z,,—1. If y,+1 > 0, then (12)
holds with a strict inequality, and y,,+1 is not a best reply
to zn+1, then (10) is checked.

Implication (10) holds also when < is substituted to >,
and when we interchange y and z for n odd. The result
follows. O

IV. A FOUR NODES NETWORK

Consider a network with four nodes s, u, d; and ds
and unidirectional links between them, NV users share this

d2

“~

S

Fig. 3. A four nodes network

network, each user i € Z has an amount of packets ¢
to ship from the source s to the destination d; and also
from s to dy. To do this each user has two possible trees
either the tree t; = (sdi,sds) (d for direct) where the
duplication is made in s or the tree ¢, = (su,udy, uds) (s
for split) where the duplication is made in «, we call this
network Ny (Figure 3).

According to our mathematical notations we have
7= {1,...,N}, VieT, s'=s, D' = {dl,dg},

A. Uniqueness of Nash Equilibrium

Lemma IV.1: Assume G and X = X. Then in cases
(A) and (B.1), the Nash equilibrium is unique, and in case
(B.2) for any two Nash equilibria, X, X, we have

VieT, J(X)=JY(X)

and moreover the links’ utilization is unique (at equilib-
rium).
Proof : We only present the proof for case (A), the one for
case (B.1) is similar, and those of (B.2) is identical to the
one of Lemma 111.1 replacing (6) and (7) by
if XZtS) >0

f;u (‘,'Esu) + ma’X{f’l’idl (del )’ f’l,idg (‘rUdz )} (13)

< max{fgy, (Tsar)s foa, (Tsaz) }

and if x{, ) > 0

max { f;dl (xsdl )7 f.;idg ('Tsdz )} (14)
< fou(@su) + max{ fug, (Tudy ) faa, (Tuds)}

where 54, = Zsd, aNd sy = Tyd; = Tud,-

Suppose that there exist two distinct equilibria X and X,
then both of them have to satisfy the conditions: for x =



X, X=X
da = a(x), ol = (ai)iel'

such that forall: e Zand a € A

Kfa) (x)—a'>0; ( ’Z:a)(x) - ai)xéa) =0 (15

Firstly we prove that Va € A, Z(,) = Z(q). Suppose
that there exists a tree a € A such that .y > Z ), there-
fore there exists a user ¢ € Z such that Xéa) > X’('a), de-
noting by b the other tree we have that Z) > %) and
Xipy > >~<_zb) (since X(a) T Xz = @' Vi € 7). But by
construction of our model we have that

Viea, x4 =z and Xéa) =

(and similarly for tree b). Therefore from (15) it follows
that

& = K& =Y (#@Vfi@) + fi@) (6)

l€a

> > (#iVfiz

l€a

)+ fi(z )) > o

due to the strict increase of f; and the increase of V f;.
But from the inequalities on tree b we obtain

a = > (ZV@)+ fizm)
leb
> S (@VF@) + fi@) > &

leb

(17)

(17) contradicts (16), hence for a = t4, ts we have that
T(a) = T(a)

It rests us to show that Vi € Z, a € A, Xéa) = X
which is trivial. Indeed suppose that there exists a user
i € T such that xg’a) > xz('a), then (16) and (17) are still
valid and the conclusion follows. O

(a)

B. Equivalent Unicast Network

The four nodes network presented in this section may be
transformed in a equivalent parallel links unicast network.
One more time we will only treat the case (A), case (B.1)
being similar.

Indeed consider the network N, shared by N users, with
two nodes, a source s and a destination d, and two parallel
links between them I, and [4, each user ¢ € 7 has to ship
an amount of packets

¢' from s to d. The cost functions of the links are

F (z1,) = fiu(@,) + fog, (@1,) + fiay(z1,)

and . . '
F (21y) = foa (@) + foa(21,)

in order that the cost of the link I, (resp. I4) be the same as
the cost of the tree t, (resp. t4) in the original model.
The total cost function for auseri € Z is

J'(z) = 2 F} (z1,) + i, F},(21,)

In such a network the Nash equilibrium is known to be
unique (see Orda, Rom and Shimkin [11, Thm 2.1]) and
moreover if the users are symmetric, that is the links’ cost
functions are the same for all users (f;' = f1) and all users
has the same amount of packets to ship from s to d (¢* =
) then this equilibrium is symmetric, that is x! = x{ for
all i, j € ZTand ! € £ (then we have that x; = %) ([11,
Lem 3.1]).

d1 d2

S

Fig. 4. Equivalent unicast network

Now we construct a new network, N3, by adding to this
network two extra nodes d; and dy and two links dd; and
ddy of null cost (Figure 4). Assume that the packets which
arrive in d are duplicated in order that one copy goes into
ddy and the other one into dds. The results obtained for
N, are still valid in this new network. Since this network
({V3) is equivalent to V1, therefore the results (uniqueness
of the Nash equilibrium and symmetry of this equilibrium
for symmetrical users) are valid for the original network.

V. EXTENDED WARDROP EQUILIBRIUM

Wardrop equilibrium is the concept of optimization in
a network shared by an infinity of users where the deci-
sion of any user has a negligeable influence on the others’
decisions (it is typically the case in road traffic).

We assume that the cost functions on the links are
the same for any user and we group the users in classes
according to their sD pair, therefore into a class ¢ € Z,



any user u € ¢ has the same sD pair and the same set of
possible trees .A*. We denote the cost (or delay) for a user
1 € Z of atree a € A" when the strategy x is used by

F(ia) ().

We define the extended Wardrop equilibrium through
the condition .
Vi € Z,Va,b e A,

X(ay > 0 = F(,y(x) < Fiy(x) (18)

If F(zﬂ)( ) - Zuve(z Tva 'uxu(xuv) we see that equa-

tion (18) is identical to equation (5) (Sec I1I-D,
Rem 2). Hence The equilibrium characterizations
for a Nash equilibrium where the cost functions are
JHX) = maX,c 4i D ypea Toal e (Tuy) and for a Wardrop
equilibrium are the same.

We know that in unicast networks links’ utilization is
unique at Wardrop equilibrium, this can be proved in two
different ways (1) a variational inequalities approach, or
(2) a transformation of the problem into another equivalent
one in which we first transform the cost, and then consider
a single entity that optimizes for everybody; the optimal
routing is then equal to the equilibrium. For more details
see e.g. [12].

We can still use the variational inequalities approach
to show the uniquess of links’ utilization at Wardrop
equilibrium in multicast networks, yet we can’t apply the
second approach due to the presence of a factor depending
of trees (r¢,) in the cost function. We give here the proof
of the uniqueness based on the variational inequalities
approach for general topology.

Assumption:

o Forany! € L, f; is stricly increasing
Notations:

Given the flow configuration x € X, we denote the de-
lay for useri € Z of atree a € A’ by F, (a )( ), that is

Z Tgaf’ziv (.CIZ'UU)

uvea

Fl() =
and the vector of delay by

F() = [F<“) (X)]iez,aem

Let I" be the incident matrix (see appendix A) and A be the
N-dimensional vector A(x) = [A*(x)],_;, where A*(x)
denotes the minimal delay over trees for user ¢ given the
flow configuration x, that is

A'(X) = min F,
(x) = felg}()()

Lemma V.1: x € X is a Nash equilibrium if and only if
X satisfies

F(x) —TA(x) >0 (F(x) —TA(x))-x=0 (19)
MTx=® x>0 (20)

Proof: We have just to note that the conditions (20) are
equivalentto x € X. O

Lemma V.2: x € X is a Nash equilibrium if and only if

Fx)-(y—x)>0 VyeAX. (21)
Proof: Similar to the proof of [1, Lem. 3.2] ((21)
holds if and only if x is solution of the linear program
miny F(x) -y, s.t. TTy = &, y > 0). a

Lemma V.3: For arbitrary x and X (x # X), if F(X) is
finite or F(X) is finite and if 31 € £ such that z; # ;,
then

(X =X)-[F(x) —F(X)] >0 (22)
Proof: Assume that 37 € £ such that x; # ;. Then
(x = X)-[F(x) = F(X)]
= 2; > (il = o)) (Fiy 0 = Fiay()
€Al
= Z (% - féa))
€7 ac A
(Z 6uva fuv xuv) fuv(i'uv))>
uveL
= - ‘%:w) (fuv(xuv) - fuv(iuv))}
zeI quL
. {z ]
acA*
- Z [(-Z‘uv - -i'uv) (fuv(xuv) - fuv (iuv))]
uvel
X122 2 T
€T ac At
Since 77, > 1, the result follows from the strict increase

of the f;’s. d
From the two previous lemmas it follows
Lemma V.4: For any two Wardrop equilibria x and X, we
have
T = Ty
Proof: See [1, Thm. 3.5] d

Remark 6: Obviously it follows from the previous lem-
mas, that in any multicast network if the cost function of

any user i € Zis J'(X) = maXue i Y yoca Teafuo(Tuv)



for any two Nash two equilibria x and X, we have
VieZ, Jx)=JX)and Vi€ L, x; =37y

VI. NUMERICAL EXAMPLE

We consider the example of Section IV with a single
source and two destinations. The costs of all links are
taken to be linear. The cost of each direct link, sdq, sds, is
2(x + 1). The cost of the common link, su, as well as that
of the individual links, ud;, uds, are 1 + x each.

(We have been told that linear costs for links are often
used in networks for pricing purposes in France Telecom.)
We consider the problem of minimizing the total cost. The
global demand is ¢ and there are IV symmetric users. Thus
the demand per user is ¢/N.

We look for a symmetric Nash equilibrium. We thus as-
sume first that all players except for, say, player 1, send the
same amount x over the tree that consists of direct links,
tq, and the rest over the tree with the common link, ¢t5. We
compute the best response of player 1, who sends y over
tq. The cost for player 1 is

Z(y) = 41+ (N-1z+y)

+3(¢—y) A+ (N -1) (¢ —x)+ ¢ —y)
We now choose ¢ = 1. The best response is given by

1
= ——(2N — TzN? N
Yy 14N( TeN*+ TzN + 3)
The symmetric Nash equilibrium is then obtaining by

equating = = y, which yields

1 2N+3
VRNV

In Figure 5 we present this solution (the amount sent over
tq at equilibrium) as a function of the number of players.
Figure 6 shows the ratio of the amount sent by a player
over t4 and the amount sent over ¢, as a function of V.
We see that there is a limit of this ratio as N goes to in-
finity (which would correspond to the concept of Wardrop
equilibrium in the context of multicast).

We finally depict in Figure 7 the sum of costs for all
players as a function of N. This figure shows clearly that
the Nash equilibrium becomes less and less efficient as the
number of players grow. The lowest global cost is obtained
as expected when there is a single player.

VII. CONCLUSION, DISCUSSION AND FURTHER
EXTENSIONS

In this paper, we have studied competitive routing in
multicast networks using game theoretic tools. We have
introduced different criteria for optimization adapted to
these networks and have established for these criteria the

existence of equilibrium as well as their uniqueness for
two specific networks. We further introduced an exten-
sion of the notion of Wardrop equilibrium and established
its uniqueness in a general topology. The question of the
uniqueness of Nash equilibrium in multicast networks with
general topology is still open. In our model we assumed
that the flow transmitted by a source node arrived fully to
all the corresponding destinations.

An interesting extension of our model arises in the case
of multirate transmission, which can be attained by hier-
archically encoding real time signals. In this approach, a
signal is encoded into a number of layers that can be in-
crementally combined to provide progressive refinements.
Every layer is transmitted as a separate multicast group
and receivers may choose to which groups they wish to
subscribe (according to the capacity available or the con-
gestion state). Internet protocols for adding and dropping
layers. can be found in [9] and [10]. Multirate transmis-
sion has applications both in video [6], [15] as well as in
audio [2].

To deal with such a model we introduce a new object
1P, where sD € £ for some i € Z and d € D, it rep-
resents the proportion of the flow ¢, sent by user i that
the address d € D wants to receive. In such an extension
we cannot apply the proofs of Section Ill, nevertheless the
results of Section IV are still valid. The exact model as
well as the detailed analysis of this extension to the net-
work presented in Section IV can be found at http://www-
sop.inria.fr/mistral/personnel/Thomas.Boulogne; it is enti-
tled Multicast Sessions with Multirate Transmission.
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Fig. 7. Sum of the cost for all players as a function
of N
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APPENDIX

A. Incident matrix

Let a® := #{a € A"}, then the incident matrix T is

11 21 N1
71 T Y1
11 21 N1
Y2 Y2 Y2
11 21 N1
Yal Yal Yal
12 22 N2
r'= i 7 "
12 22 N2
Y2 Y2 72
1IN 2N NN
’YaN —1 fyaN—l f)/aN —1
1IN 2N NN
Yol Yol Yol

whose element (i, 7) is v/, where i, j € Z, k € A,

r:k-l-Zi;llasandyfj:{

(1]

(2]

(3]

(4]

1 ifi=j,
0 otherwise.
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