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Abstract

We present in this Chapter a survey on applications of MDPs to com-
munication networks. We survey both the different applications areas in
communication networks as well as the theoretical tools that have been
developed to model and to solve the resulting control problems.

1 Introduction

Various traditional communication networks have long coexisted providing dis-
joint specific services: telephony, data networks and cable TV. Their operation
has involved decision making that can be modelled within the stochastic control
framework. Their decisions include the choice of routes (for example, if a direct
route is not available then a decision has to be taken which alternative route
can be taken) and call admission control; if a direct route is not available, it
might be wise at some situations not to admit a call even if some alternative
route exists.

In contrast to these traditional networks, dedicated to a single application,
today’s networks are designed to integrate heterogeneous traffic types (voice,
video, data) into one single network. As a result, new challenging control prob-
lems arise, such as congestion and flow control and dynamic bandwidth alloca-
tion. Moreover, control problems that had already appeared in traditional net-
works reappear here with a higher complexity. For example, calls corresponding
to different applications require typically different amount of network resources
(e.g., bandwidth) and different performance bounds (delays, loss probabilities,
throughputs). Admission control then becomes much more complex than it was
in telephony, in which all calls required the same performance characteristics
and the same type of resources (same throughput, bounds on loss rates and on
delay variation).

We do not aim at a complete survey of the area, since several other surveys
[86, 90, 144, 114, 145, 147, 245, 242, 244, 247] on related issues already exist,
see also [215]. Other references that focus on the methodology that allows to
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use MDPs to communication networks can be found in the following books
[4, 51, 108, 233, 263, 275] as well as in the survey paper [187].

We have two goals in this survey. First, we wish to present to researchers
who specialise in MDPs a central application area which provides a vast field of
challenging problems. We would like to familiarise these researchers with special
complex features in control problems that arise in communications: complex
information structure, problems with multiobjective and multiagents. A second
objective is to familiarise researchers in communications with tools that have
been developed for modelling and for solving control problems in networks.

Problems that are described in this survey are MDPs in a general sense:
they are described as Markov chains whose transition probabilities are con-
trolled. This control can be done by a single or several controllers, having the
same or having different objectives. It is often tools other than the standard
dynamic programming that are used to solve these control problems. For com-
pleteness, we occasionally mention approaches that have been used for control
of communication systems which are not based on MDPs, and then relate or
compare these to MDPs.

2 The Control Theoretical Framework

The most popular telecommunication network architectures today are the Inter-
net and the ATM (Asynchronous Transfer Mode) networks. The Internet offers
today a “best effort” type service, i.e., the resources in the network are shared
among all users, and when the number of users increases, the quality of service
(in terms of delay, throughput, losses) per user decreases. In contrast, ATM
networks provide mostly guaranteed services: if a session needs a given Quality
Of Services (QOS) it may establish a contract with the network that guarantees
that all along the duration of the session, some required bounds would hold on
given performance measures (loss probabilities, delays, delay variation, through-
put), as long as the source respects the terms of the contract (in terms of the
average and the maximum throughput it sends, as well as some constraints on
its bursty behavior). Two guaranteed service classes are defined in ATM: the
CBR (Constant Bit Rate) and VBR (Variable Bit Rate) service classes. ATM
contains also two best effort type services: the Available Bit Rate (ABR) service
and the Unspecified Bit Rate (UBR) service. In the ABR service, the network
determines the allowed transmission rate of each source by sending to them
periodically appropriate control signals. As long as a source abides to those
commands, the network guarantees some given bounds on its loss rates. In the
UBR service no guarantees are given on performance measures.

From a control theoretical point of view, an important classification of the
control in networks is according to who is controlling and what the objectives
are. Three general frameworks are possible:

1. Centralised control, or a single controller. This is the case in problems
such as call admission control: a request for a new connection arrives and
the network has to decide whether to accept it or not.
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2. Team theory [45]: several controllers but a single objective. This is the
case when all the control decisions are taken by different elements (or
agents) in the network rather than by the users. The common objective(s)
might be the efficient use of the network and providing a good service to
the network users.

3. Game theory [45]: there is more than one selfish decision makers (players)
and each has its own objective. The goal of each player is to maximise its
own performance, and the decision of each player has an impact on the
performance of other players. This framework models the case of several
users who can control their own flow, or the routes of their own traffic.

From a control theoretical point of view, ATM networks can be viewed gen-
erally as team control problems: there are several agents within the network,
typically situated in the routers or in the access points to the network, that
take decisions. Their objectives is to guarantee the performances that they
wish to provide to the various applications and, if possible, to optimise them.
In addition, an important objective is to use efficiently network resources (such
as memory, bandwidth). (Often different controllers have different informa-
tion, as will be discussed in Section 3.) The literature on problems in telecom-
munications (or related models) that fall into this category is very rich, see
[31, 33, 109, 232, 278].

The appropriate theoretical framework to consider the Internet is more in-
volved. It could be considered as in a game framework since essential control
decisions (such as flow control) are taken by the users which are a-priori non-
cooperative. The sources may have different objectives and their dynamic be-
havior may have an influence on other users. In practice, however, the actual
design of controllers of data transfer (TCP/IP [136]) is frequently done (through
the software that comes with computers handling Internet connections) in an
unselfish way. The controllers can still be changed by the users or by applica-
tions to improve their individual performance, but this is seldom done. On the
other hand, rate controllers are frequently applied in the Internet to interactive
voice and video (by changing the compression rate and thus the quality of ser-
vice). In these applications there is much more variety of controllers and these
are often designed in a selfish way.

Two optimality concepts are used in the non-cooperative games arising in
networks. The first is the Nash equilibrium: it arises when the performances are
determined by a finite number of controllers and it constitutes of a strategy set
for each of these controllers such that no user can benefit from deviating from
its own strategy as long as the other controllers stick to their strategy. A second
type of equilibrium concept arises when the number of users is infinite (which
may model in practice a finite but large number of users) and the influence of
a single user on the performances of other users is negligible. This is called an
atomic game. In the context of routing problems in networks, the corresponding
equilibrium is called a Wardrop equilibrium [264]. This concept turns out to be
useful also in cases in which both the flow and the routing are controlled [221].
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If we consider a very large number of sessions in a network, the routing
decisions for a single session will typically have a negligible influence on the per-
formance of other sessions. This can be viewed as an atomic game. If however,
the routing decisions are not made by the application that initiated the session
but, rather, by the service provider to which the user is subscribed, then the
analysis will be in terms of a Nash equilibrium, given that the routing decisions
of any service provider can have a nonnegligible impact on the performance of
users of other service providers as well. Another example of where the Nash
equilibrium is the proper theoretical concept is flow control on the Internet ini-
tiated by Web connections. A single request to access a Web page that contains
many pictures can result in opening simultaneously several connections each of
which is used to fetch the data of another pictures. In such a case, a single
application can have an important impact on many other applications.

Most work that studied telecommunication networks within the the game
theoretic framework did not use a dynamic setting and restricted to determining
the size and the routes of average flows. We present some examples that did use
stochastic dynamic models (Markov games – which are the extension of MDPs
to a game situation of selfish controllers).

Korilis and Lazar established in [163] the existence of an equilibrium in a
distributed flow control problem in a network in a setting of Nash equilibrium.
They further characterised its solution using coupled linear programs.

The references [42, 34, 50, 74] treat a problem related to the choice of con-
nection between a best-effort type service and a dedicated guaranteed service.
Consider a request that arrives for a connection for a data transfer. The user
that initiates the connection can either use a guaranteed service and request
a fixed dedicated amount of resources (such as bandwidth), or it could use a
typically cheaper best-effort service in which the resources are shared between
all best-effort ongoing connections. The information available for taking the
decision is the number of ongoing best-effort connections. The user wishes to
minimise the expected time it takes for the data transfer. Note that this time
depends also on the decisions that will be made by future users that will wish
to connect: if more users in the future will decide to use the best-effort service
too, the expected transfer time will become longer, since the available resources
are shared between all ongoing connections. However, the decisions of future
arrivals are unknown. This explains the need for the Markov game approach
and the equilibrium concept that is used in these references. The existence and
uniqueness of an equilibrium is established in [34] and it is further computed in
the case of a Poisson arrival process of sessions.

Other examples of Markov games which study models related to telecom-
munication applications appear in the references [3, 28, 118].

Before ending the discussion on game models, we mention zero-sum Markov
games in which there are only two players with opposite objectives. Several
models within this special framework have been used for the study of problems
in telecommunications with a single central controller in which some parameters
are unknown. The unknown parameters were assumed to vary in time in a
way which is unpredictable to the central controller (called player 1). The
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goal of player 1 is to guarantee the best performance under the worst possible
(unknown) dynamic choice of the unknown parameters. To solve such problems,
one models the unknown parameters as if they were chosen by a second player
with opposite objective. This gives rise to a zero-sum game. Admission control,
routing, flow control and service assignment problems were considered in the
references [1, 2, 5, 15, 20, 14].

In all three theoretical frameworks that we discussed above, the objective of
a controller may be in fact a vector. The objective is said to be multicriteria.
In the case of a central controller one may wish to minimise delays, minimise
losses, minimise rejection rate of sessions, minimise waste of resources. One
could add up the objectives and consider minimise instead a weighted sum of
objectives instead. Alternative formulations are

1. Minimising the vector of objective in the Pareto sense; a Pareto solution is
a policy such that no strict improvement in the performance of one com-
ponent can be achieved without strictly decreasing another component.

2. Minimising one of the components of the objective subject to constraints
on other components.

We state some example of the multicriteria approach in the modelling of
telecommunication problems:

(1) The maximisation of the throughput of some traffic, subject to constraints
on its delays (this problem has been studied along with its dual problem: the
minimisation of expected delay subject to a lower bound constraint on the
throughput). A rich research literature in this direction was started up by Lazar
[181] and has been pursued and developed together with other researchers; some
examples are the references [67, 131, 132, 163, 164, 258]. In all these cases, limit-
type optimal policies were obtained (known as window flow control). Koole [157]
and Hordijk and Spieksma [130] considered the problem introduced in [181] as
well as other admission control problems within the framework of MDPs, and
discovered that for some problems, optimal policies are not of a limit-type (the
so called “thinning policies” were shown to be optimal under some conditions).

In [4], the author considers a discrete time model that extends the framework
of the above problems and also includes service control. The latter control can
model bandwidth assignment or control of quality of service. The flow control
has the form of the control of the probability of arrivals at a time slot. The
control of service is modelled by choosing the service rate, or more precisely, by
assigning the probability of service completion within a time slot. A tradeoff
exists between achieving high throughput, on the one hand, and low expected
delays on the other. It is further assumed that there are costs on the service
rates. The problem is formulated as a constrained MDP, where we wish to
minimise the costs related to the delay subject to constraints on the throughputs
and on the costs for service.

(2) Dynamic control of access of different traffic types. A pioneering work
by Nain and Ross considered in [207] the problem where several different traffic
types compete for some resource; some weighted sum of average delays of some
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traffic types is to be minimised, whereas for some other traffic types, a weighted
sum of average delays should be bounded by some given limit. This research
stimulated further investigations; for example, Altman and Shwartz [35] who
considered several constraints and Ross and Chen [43] who analyzed the control
of a whole network. The typical optimal policies for these types of models
requires some randomisation or some time-sharing between several fixed priority
policies.

(3) Controls of admission and routing in networks. Feinberg and Reiman
have solved in [95] the problem of optimal admission of calls of two types into
a multichannel system with finite capacity. They established the optimality of
a randomised trunk reservation policy.

Other problems in telecommunications which have been solved by constrained
MDPs are reported in [75, 57, 194]. A study of a constrained MDP in a queueing
model with a removable server, with possible applications in telecommunications
or in production, was done in [94].

3 Information issues and action delays

When attempting to model control protocols in telecommunication networks
within the optimal stochastic control framework, we note that many non stan-
dard features arise in the information structure.

We recall that a “full information” framework is a setting in which each
controller knows at each time instant all previous states as well as the previous
actions taken by all controllers, plus the current state. In addition, it is assumed
that all controllers know the initial state (or the initial distribution over the
initial state). We list below some complex aspects of the information available
to the decision maker.

3.1 MDPs with incomplete information and MDPs with
partial information

The decision maker does not have full information about the network state,
but only some observations of the history. For example, the flow control in
ABR services in ATM is performed by routers within the networks which have
information only on their own congestion state (the number of cells queued at
the router) and may have some rough information on congestion experienced by
connections that use this router; but they have no information on that of other
connections. There are various models that handle MDPs without full state
information. By “MDP with incomplete information” we refer to a a Baysian-
type framework in which the decision maker(s) can take actions according to
the observed history, and knows the initial state, or an initial distribution over
the state.

In contrast, in the framework called “MDPs with partial information”, the
initial distribution or the initial state need not be available (see [128, 129, 169,
190].) To illustrate this framework, we mention the problem of two service
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stations in tandem. Customers of two different types arrive at a single server
facility. The control decisions of the server are which type to of customer to
serve at each time. Customers that are have arrived and are have not yet been
served are queued and wait their turn. Once a customer is served in the first
station it is routed to a second service station that has the same structure, in
which a second server has to decide which customer to serve at each time. There
again queueing may occur. The decision of each server may depend only on the
number of customers of each type queued in that centre. This is a very realistic
assumption in practice. This problem is solved in [129].

Another example of MDPs with partial information is window-based flow
control in networks. We consider a network with several sources and destina-
tions. Each source of packets has to take decisions concerning the transmission
of new packets. When a packet reaches the destination the source receives an
acknowledgement. The only information that a source has on the state of the
network is through these acknowledgements, from which it can infer how many
packets have not yet reached the destination (or more precisely, for how many
packets acknowledgements have not yet come back). Thus each controller has
some different local information. This problem has been fully solved in [131, 132]
by exploiting the so called Norton Equivalence, which allows each source to con-
sider the rest of the network as an equivalent single queue (see also [258]).

Below we review information structures that are, on one hand, suitable for
modelling telecommunication systems and on the other hand, lead to solutions
to the stochastic control problem (within a reasonable complexity).

3.2 Quantised information

This is a special case of incomplete information; due to the discrete nature
of data networks, information that are originally represented by real numbers
have to be transformed into numerical date using a finite number of bits. This
causes loss of precision in the information. For example, congestion information
in networks is often transmitted only by one or two information bits, so that
the transmitted information takes a small number of possible values. This is
the case in the TCP flow control on the Internet, where the way to infer that
congestion exists is by a binary information on whether a packet is lost or not.

3.3 Delayed information

The information available to decision makers on the state often suffers from
delays. A one way propagation delay can exceed 250ms in a network that
contains a Geostationary satellite link. Around 20 ms of propagation delay
is incurred in a communication between the west and east coast of the USA.
In addition to propagation delays, large random time varying delays are often
incurred due to queueing. These components depend on the congestion state
of the network and are sometime unknown to the controllers. In a network
with several controllers, the delays further vary from one controller to another.
The delays could be neglected in analysis of networks in which throughputs
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are small and transmission delays large; in such cases the time scales related
to events in the networks are larger than those involving the delays. Today
high speed networks achieve very large throughputs, and the time between the
transmission of two consecutive information bits can be smaller than 10−9sec
(when considering Gbit/s networks). Hence information delays become a crucial
practical (and theoretical) problem.

We briefly review work on control problems with delayed information in
telecommunications. Flow control with delayed information has been studied
in [25, 36, 171] by transforming the problem into an equivalent MDP with full
information. The first paper has been extended to noisy delayed information in
[21]. Two types of flow control have been studied. The first type is a rate-base
flow control, in which the rate of transmission of packets is directly controlled.
The second type is a window-based flow control, in which the controller adjusts
its window dynamically; a window stands for the number of packets that can be
sent before acknowledgements to the source arrive from the destination. Work
on rate-based flow control with delay in the framework of linear quadratic control
(linear dynamics and quadratic cost) has appeared in [27, 29, 33]. The impact
of delay on window-based flow control in the framework of Jackson network is
analyzed in [67]. Routing with delayed information has been investigated in
[40, 170, 253]. Finally, a problem of optimal priority assignment for access to a
single channel with delay has been investigated in [19].

3.4 Sampled Information

Sampled information means that the decision maker (either within the network
or at the source) does not get the information on the network state continuously,
but it get some occasional updates. For example, the information used for flow
control in the Internet are the acknowledgement that return from the destination
to indicate the receipt of a packet. Acknowledgements return however at discrete
times, may be lost, and their rate further depends on the transmission rate of the
original transmitted data packets. To our knowledge there has been almost no
work on MDPs with sampled information in the context of telecommunication
networks. We should mention that modelling the flow control within the linear
quadratic control framework (in particular - when considering Gaussian noise
or the H∞ approach, see [26, 29]) allows one to handle sampled information,
using the theory in [44, Sec. 5.3]. But this has not yet been done. In [10]
an alternative framework is used to handle sampled information; properties of
optimal policies are established whenever the value function is multimodular in
the controls.

3.5 Asynchronous Information

This is a special case of sampled information in which several controllers in
a network receive information at different times, possibly independent of each
other; a controller may not know when another controller receives an information
update. For example, routing information for establishing the shortest path in
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the network are typically gathered in different nodes (routers) in which local
routing decisions are taken. Such routers exchange occasionally information to
determine shortest paths in an asynchronous way.

3.6 Delayed Sharing Information

This is a special case of information structure that arises in team or game
problems, see [133, 172, 173, 227, 260]. The state is given as a product of
several local components where each component corresponds to one controller
(or player). Time is discrete. All controllers have a one step delayed information
about the global state of the system. However, each controller gets immediate
information about the local component of the state that corresponds to it.

We present some examples of applications of this type of information struc-
ture in telecommunications. In [232], the authors have studied decentralised
control in packet switched satellite communication and a decentralised control
problem for multiaccess broadcast networks have been studied in [109]. In both
examples, each controller has to decide whether to transmit or not, without
knowing if packets have arrived in the current time unit to other nodes. If they
did, then packets from other nodes could be scheduled for transmission at the
same time and collisions could occur.

3.7 No information

When transferring short files, the information about the state of the network
may come back to the source after the whole file is transferred. This situation
occurs when transmission delays are negligible with respect to information de-
lays. This illustrates the fact that controllers often have to make decisions with
no available state information. There have been several approaches in solving
MDPs with no state information. Within the partial information framework,
the algorithm of Hordijk and Loeve [190] has been used in a problem of rout-
ing into parallel queues [128]. An alternative approach has been proved to be
useful in solving routing control, admission control and polling [135, 6, 152].
This approach applies to cases in which instead of keeping the whole history of
previous actions, only some finite (bounded) number of events are recorded. In
all above papers, the events which have to be recorded when considering rout-
ing to several queues are simply how long ago a packet was routed to each one
of the queues. This allows one to transform problems with no information to
equivalent MDPs with full information, to establish the optimality of periodic
policies, and to obtain other characteristic of optimal policies. It is in particular
remarkable that models which are not Markovian (arrival of customers may be
general stationary ergodic processes) can be handled by MDPs with finite spaces
of states and actions [6]. A third approach consists of using special structure of
queueing systems (queueing systems are often used to model telecommunication
networks) which leads to the optimality of policies that are regular in some sense.
In particular, whenever the value function can be shown to be multimodular in
the controls, a rich theory exists for obtaining optimal policies with no state
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information. We refer to [113, 11] for the definition and properties of multimod-
ular functions, and refer to [113, 6, 13, 11, 8, 9, 12] for applications in routing,
admission control and polling with no state information. Weaker notions of reg-
ularity of policies are presented in [13, 7, 69, 140, 122, 135]. In particular, the
Golden-ratio approach is used in [122, 135] for an optimal channel assignment
problem with no state information to obtain simple policies which are close to
optimal. This approach is adapted to a context of optimal scheduling of search
engines on the Web in [140] and to optimal polling in [69].

3.8 Nested information

In the case of several controllers, say N , we say that information is nested if we
can order the controllers in a way that information available to a controller i is
a subset of the information available to controller i + 1 for all 1 ≤ i < N . This
structure is again a special case of the incomplete information setting. Note that
the case where several controllers receive all information after some fixed delay
(that may depend on the controller) is a special case of the nested information
structure. The controllers are then ordered with decreasing delays. An example
of a flow control problem that gives rise to this information structure appears
in [33].

3.9 On the tractability of complex information structure

There is one appealing feature in the nested information as well as in the one-
delayed sharing pattern. In both cases it is possible to transform the problem
into an MDP with full information with somewhat larger state and action spaces.
The way to transform an MDP with incomplete information to an equivalent one
with full information can be found in [121, 133, 151, 260] and references therein.
For the case of several controllers, we cite a general condition that allows one
to transform an incomplete information MDP with several controllers into an
equivalent MDP that has a tractable solution the following [45, p. 369]: “An
agent’s information at a particular stage n can depend on the control of some
other agent at some stage k < n only if he also has access to his information
available to that agent at that stage k”. This condition includes the one-delayed
sharing pattern as well as the nested information. It is called in [45] a “classical
information pattern”.

We note that some complex information structures seem natural for mod-
elling telecommunication systems but have not been actually used in the liter-
ature since their solution is either hard, or unknown, or requires policies which
are complex to realize (require many computation and/or memory). An exam-
ple is team or game problems with no state information, with full information
on the actions of the agents, but in which the different agents have different
knowledge on the initial states. (This problem is related to the one in [98].)

An alternative conservative approach for handling various information struc-
tures is to consider noisy information, where the noise is allowed to be a general,
possibly state dependent disturbance. A worst case design can then be used, see
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[26, 29]. This approach may be used for example to handle the case of quantised
information.

3.10 Action delays

Another important implication of the delays in high speed networks is the so
called action delay: even in absence of information delay, a large delay may
elapse between the moment that a decision is taken by a controller till this
decision has an impact on the network. For example, in ABR service of ATM
networks, routers issue commands on flow control that are forwarded to the
transmitting sources through special information cells. A router has immediate
information on the local state of the queues in that router. Based on this
information it sends commands to the sources. But by the time the sources
react to these commands, and by the time the reaction influences the queues at
the router, a large action delay elapses.

It has been shown in [33] that MDPs with both information and action delays
can be transformed into a equivalent MDPs with only information delay.

In the following sections we summarise in this section some central control
issues that arise in telecommunications.

4 Call admission control

The decision to accept another call to the system may influence both the per-
formance of that call as well as that of ongoing call in the system. This decision
changes the state of the system and thus has also an impact on whether future
calls will be accepted. Call admission control (CAC) is not applied today on
the Internet, but is implemented in ATM networks. Whereas many protocols
and control policies have been standardised in the ATM, the implementation of
CAC in ATM network is left to the constructor and will probably not be stan-
dardised. We describe below several type of admission control problems that
arise in telecommunication. Admission control is often combined with routing;
we discuss this in the subsection on routing. Other issues related to admission
control in wireless communication will be discussed in Section 10.

4.1 Admission control for CBR sources

If the network guarantees a fixed bandwidth per accepted call (e.g., in telephony
or in CBR connections in ATM), then the performances of accepted calls is no
more influenced by future decisions. In particular, in an ATM environment,
delays and throughputs are guaranteed along the entire duration of the call once
it is admitted. The main performance measure of interest in that context is then
the average rejection rate of a session. Dynamic decisions are required in that
framework if there are different classes of calls, each with its own requirement
of network resources. This type of admission control problems is frequently
modelled at a session level: the state is taken to be the number of sessions of
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each class, and the MDP is formulated by using the arrival rate of sessions, there
average bandwidth requirement and the probability distribution of the duration
of a session.

In the case of a single node, a given bandwidth has to be shared between
sessions. This problem is known as the stochastic knapsack problem, see [16,
185, 220, 230] and references therein. In this setting, there may be cases in
which if we accept a call that requires a small amount of bandwidth then there
may not be sufficient room for accepting a large call. This type of dilemma
explains the fact that optimal acceptance policies are quite complex and are
often non-monotone, see [16, 220].

In special cases, the acceptance policies turn out to be monotone and the
acceptance region is convex [95, 185, 220, 230]. In the case of two classes with
the same bandwidth requirements per class, the optimal policy is known as a
trunk reservation policy, which means that we reserve some bandwidth for a
high priority class and calls of the other classes are rejected when the remaining
bandwidth for the priority class goes below that level. We mention here that
in [95] the problem is posed as a constrained MDP and the trunk reservation
policy requires randomisation.

In the case of jobs with different requirements for bandwidth, an elegant
solution of the optimal call admission control is presented in [104, 229] (for
two classes) when restricting to coordinate convex policies, see also [206, 230].
The solution is based on the observation that for such policies, the steady state
probabilities have a product form. A fluid approximation approach is used in
[16] when relaxing the above restriction. The solution shows, in fact, that in
the appropriate scaling, the limit fluid model has a trunk reservation solution
which is a special case of a coordinate convex policy.

In the above discussion it is assumed that if a call is not accepted then it
disappears. There are, however, cases in which a requirement for establishing
can be put into some finite waiting queue instead of being completely rejected.
An MDP is used in [217] to solve this problem and its performance is compared
to other methods.

4.2 Admission control of sources with variable throughput

A very rich literature exists on admission control of calls with variable trans-
mission rate (VBR sources). Assume that a single node with a given bandwidth
is to be shared between several sources of this type. A conservative approach
would be to consider the sum of peak rates of all existing connections and to
check whether the overall bandwidth would be exceeded if we further added
to that the peak rate of the new connection. If it is then the call is rejected.
Instead, one tries to make use of statistical multiplexing, i.e., of the fact that
rarely all sources transmit at peak rate. The typical question that is posed
then is: how many calls can we accept so that the probability that a packet is
lost is below some threshold? note that a packet is lost when the sum of the
instantaneous transmission rates exceeds the available bandwidth. A popular
approach is to characterise sources by a parameter called the effective band-
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width (see [88, 143, 188] and references therein) which is, roughly speaking, the
amount of bandwidth the source needs so that the average loss rate is below
some threshold. It is typically larger than the average transmission rate, but is
still smaller than the peak rate. There are methods to estimate or to compute
effective bandwidth [88, 143, 188].

The effective bandwidth approach itself is not related to MDPs, but it can be
combined with MDPs. Indeed, once we know the effective bandwidth of a source
with a variable transmission rate, we can use methods from the two previous
sections for admitting calls and consider that the bandwidth they require is
the effective bandwidth (instead of the peak rate bandwidth). This allows one
to accept more calls and thus use the network more efficiently at a price of
some additional loss probability of packets in each connection. If the effective
bandwidth of existing calls is unknown to the network, adaptive mechanisms
can be used to estimate it and combining that with call admission control. This
approach is known as measurement based admission control, see [110].

The effective bandwidth is not the only approach that can be used to com-
bine session level considerations with packet level phenomena (i.e., the actual
process of transmission of sources). In [204] an MDP is formulated to obtain a
Call admission control that takes both into account, and a solution is obtained
through linear programming.

4.3 Call admission in an integrated service environment

The control problems that we mentioned in the previous subsections were related
to “non-elastic” calls, i.e., calls that have some given bandwidth requirements
and cannot adjust their transmission rate to the available bandwidth. On the
other hand, there are applications that can adapt their transmission rate to the
available bandwidth (for example, data transfer). In this case it may seem that
call admission is control is not required; the ATM forum (a standardisation
institution for ATM) has decided [84] that ABR sessions will not be subject
to CAC, unless they require from the network a guarantee on minimum cell
rate. (An ABR with minimum cell rate can adapt its transmission to the avail-
able bandwidth: it will use more bandwidth if available, but it still requests a
minimum guaranteed bandwidth.)

The following questions then arise:

• How to control acceptance of ABR sessions when they do have a minimum
cell rate requirement?

• How to handle call acceptance of CBR or VBR traffic in the presence of
ABR traffic?

In [23], the authors study the second problem using diffusion approximations
under general distribution of interarrival times. They obtain numerically policies
that have a monotone switching curve structure and show that a substantial
improvement in the performance of ABR traffic classes can be obtained at the
price of a slight increase in the rejection rate of CBR and VBR traffic classes.
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In [137] the monotone switching curve structure is proved to be optimal in the
case of exponential distributions.

In [215, 214, 218], routing and call admission of combined CBR, VBR and
ABR is considered. Here ABR traffic is also subject to admission control as it
is assumed to have a minimum cell rate requirement.

5 Buffer management and packet admission con-

trol

Admission control may occur not only at a session level, but also at a packet
level. In absence of packet admission control, packets that arrive to routers
queue in dedicated buffers; if buffer overflow then the packets are lost. In both
ATM as well as in the Internet environment [168, 97] it has been recognised
that performance may be improved if the network rejects arriving packets even
before the buffer overflows. This is especially the case when we wish to provide
different performances to packets of different priorities. Yet, even in the case of
a single priority, if real time interactive applications are used (such as video or
voice) then it may be useful to discard packets before buffers overflow in order
to avoid large queueing delays.

There has been a rich literature on optimal acceptance of customers into
a single queue (or a network of queues) using MDPs, either directly related
or with potential application to the above queueing model, starting from the
late 1960s and beginning of the 1970s [211, 240, 280]. Later references are
[64, 49, 138, 241, 243, 247], see also [234, 235].

In general, the type of results obtained in these papers is the existence of
threshold optimal policies that reject packets if and only if the queue size exceeds
some level.

Surprising structural results have are obtained in [130] when considering
multiobjective control problems. They consider the problem of minimising the
expected average delay under some lower bound constraint on the expected
throughput, or alternatively, the problem of maximising the expected through-
put subject to an upper bound constraint on the expected average delay. Opti-
mal policies are shown to be of threshold type, but in addition to that, there is
one state in which randomisation (between acceptance and rejection) is required.
Surprisingly, this randomisation is performed not necessarily at the threshold,
so the optimal policy is not monotone.

Admission control with no state information has been studied in [113] using
the concept of multimodularity. This has been extended to a framework of a
network in [11, 8]. The case of delayed (and other) information was studied in
[10, 36, 171].

Remark 1 In flow control problem the source has to decide at which rate to
send packets. The admission control problem can thus be viewed as a special
case of a flow control problem, in which only two actions exist: that of trans-
mitting at rate zero (corresponding to rejection) and that of transmitting at
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maximum rate (corresponding to acceptance). Thus much of the literature on
flow control can be of potential use for admission control.

We would finally like to mention [30] in which combined rate-based flow
control and admission control are handled, and the reference [3] in which the
control of admission and of service (in a non-zero sum stochastic game setting)
are considered.

Other issues in buffer management in which MDPs have been used are given
in [83, 237]. These concern optimisation of policies for sharing a buffer between
several classes of arrival streams.

6 Flow and congestion control

In many applications, the users have to adapt the transmission rate of the pack-
ets they transmit to the instantaneous state of the network. There are two main
approaches to do so: the rate-based flow control, in which the rate is directly
controlled, and the window-based control, in which the window size is to be
determined dynamically. More precisely, when a packet reaches the destination
the source receives an acknowledgement. The window is defined to be the num-
ber of packets that are allowed to be transmitted before being acknowledged.
If this number is fixed to, say, one hundred, then the source can first send one
hundred packets, and then later send one packet per each acknowledgement
that returns from the destination. Depending on some parameters that can be
measured (as delays, or losses), the source can dynamically change the window
size. The rate-based flow controlled is used in ATM networks [84], whereas the
window-based flow control is used in the Internet [136].

Many papers have been devoted to flow control into a single queue. The
network has often been modelled as a single bottleneck queue in which conges-
tion occurs, and the rest of the network just adds to additional propagation
delay. This has been justified by both experimentation and theoretical analysis
[65, 68, 131, 132, 258]. In the last three references, optimal window-based flow
control is obtained in the case of several sources and in a whole network. The
problem is solved by reducing it to an equivalent single queue models.

A key research issue has been to establish the optimality of flow control
policies that are monotone in the state, under different information structure.
The monotonicity in the case of a single queue has been studied in [10, 21, 25, 36,
234, 235, 248, 247]. In the case of two actions, these monotone policies become
threshold policies. The monotonicity in the case of a whole network is treated
in [107, 108, 265] (see also [22, 150] for extensions), based on the submodularity
concept [256] (see also [272]). In general, the proof of the monotone structure
uses value iteration and it requires that the cost be convexity nondecreasing.
The convexity is, however, not necessary in the case of expected average cost,
see [248] and [3].

Note that the flow control in a network often has the form of the control of
service rate of a queue since by controlling it we determine the flow rate into the
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downstream nodes. Typical objectives are to minimise expected delays or other
monotone functions of the workload or number of queued packets. In the case of
finite queues, one often considers the minimisation of losses as an objective. In
that context, a tandem queueing system with finite buffer capacities is analyzed
in [162], where both queues are fed by exogenous arrivals. The first server can
be stopped so as to avoid congestion at the downstream queue. It is shown
that the optimal control policy for the minimisation of the total loss rate (in
both queues) has a monotone switching curve. The authors then compare the
optimal policy to other policies that are simpler to implement.

Monotone structure for flow control has also been obtained in the frameworks
of constrained MDPs and in stochastic games. In the setting of constrained
MDPs, the expected delay is to be minimised subject to a lower bound on
the throughput, or vice versa: the throughput is to be maximised subject to
an upper bound on the expected delay [4, 66, 67, 131, 132, 181]. Adaptive
implementations of this type of constrained problems can be found in [191, 192].
In the framework of zero-sum stochastic games, the service rate may change in
time in a way which is unpredictable to the flow controller [1, 2, 14]. The
server is then modelled as an adversary player and the flow controller seeks
to guarantee the best performance under the worst case behavior of the server.
(The opposite case, in which the flow rate is controlled by an adversary player, is
studied in [15].) Finally, a model that combines non-zero sum stochastic games
with constraints has been analyzed in [163].

An alternative framework for the study of flow control is the LQ (linear
dynamics, quadratic cost) model. A plausible objective is to keep queue lengths
around some desired level. This objective is derived from the fact that when
queues are large then the risk of overflow increases, which results in undesirable
loss of packets. On the other hand, when queues become empty then the output
rate of the queue cannot exceed the input rate (which is required to be, on
the average, lower than the service rate, in order to avoid instabilities); an
empty queue thus results in loss of throughput. By letting the queues’ size
track in an appropriate way the desirable level, optimal performance (in terms
of throughput and losses) can be achieved. When the queue seldom becomes
empty, the dynamics of the queue can be well approximated as being linear
in the control (the input rate). The well known linear quadratic framework is
obtained by setting the immediate cost to be quadratic in the deviation from the
desired queue level. Other objectives in terms of (undesirable) transmission rate
variation, or in terms of (desirable) good tracking of the available bandwidth
can be included in that framework, see [26, 29]. The available bandwidth may
be described as an ARMA model, which is also suitable for the description of
additional noise in the information available to the controller.

One advantage of this setting is that delayed information is not difficult to
handle [27, 29]. Moreover, it allows one to handle the case of several controllers
(modelled as a team problem) with different action as well as information delay
[31, 32, 33]. Finally, this setting allows one to obtain an explicit solution of the
problem: both the optimal policy as well as the optimal value can be explicitly
computed.
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7 Routing

Routing consists of determining the route of each packet from a given source
to one or more destinations. There are networks in which each packet may
use a different route (this is frequently the case in the Internet), such networks
are called packed-switched networks. In such cases dynamic routing control is
performed on a very granular scale. In contrast, in networks based on a circuit-
switched architecture (such as traditional telephony or ATM networks), routing
decisions are made for each connection, and all packets of the connection use
the same path.

Among the mostly used routing algorithms are the Bellman-Ford algorithm,
the Dijkstra’s Algorithm and the Floyd-Marshall Algorithm [52, Sec. 5.2]. In all
these algorithms, the dynamic programming principle plays a central role. The
objective of routing algorithms is to find the shortest path between nodes, either
in terms of number of hops, or in terms of the link length (delay). The latter
may change in time either due to link failures and repairs, or due to changing
traffic conditions in the network. Routing algorithms should therefore adapt to
such changes. Routing is further decentralised: finding shortest paths involves
computations that occur in parallel in various nodes of the network. Finally, it
is typically asynchronous, in the sense that updates in different nodes do not
occur at the same time. Some examples of such algorithms are the one used in
the original 1969 ARPANET [52, p. 327], and the RIP (Routing Information
Protocol) [195] (the latter reference can be considered to be the standard of the
Internet routing).

The above characteristics of routing algorithms, namely adaptivity to time
changes, asynchronicity and decentralisation may cause oscillations and stabil-
ity problems. Discussions on these problems can be found in [52, Sec. 5.2.5].
Therefore an important research issue on these asynchronous dynamic program-
ming algorithms is the study of their convergence and correctness. An example
of such a proof can be found in [52, Sec. 5.2.4].

The general approach of routing along shortest paths is well suited to routing
of packets, since the routing decision for one individual packet has a negligible
impact on the delay along that path and the computed delay will be approxi-
mately the one to be experienced by that packet. Thus from a theoretical point
of view, the routing decisions result in solutions that related to the concept of
Wardrop equilibrium (Section 2). An important feature in Wardrop equilib-
rium is that all routes from a source to a destination that are actually used
have the same delay. This property is appealing in applications in telecommu-
nications, since it reduces the overhead of resequencing in case different packets
take different routes (see discussion in [111]).

Below we further describe research on routing in packet-switched and circuit-
switched networks. We mention additional issues that arise in routing in mobile
networks in Section 10.
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7.1 Routing and admission control in circuit-switched net-
works

When routing whole sessions rather than individual packets along fixed paths
(as is typically the case of telephony or of ATM networks), the routing decisions
will have a nonnegligible impact on the delay on that path, and thus on the
delay experienced by the session to be routed as well as by future sessions.
Other types of dynamic programming formulations have frequently been used
in those cases.

In case that all packets of a call have the same route, the Call Admission
Control is coupled with the routing problem: the question is whether there
exists a route along which we should accept a connection. This is the call setup
problem. Sometimes there is the possibility of taking alternative long routes
in case that a direct route is occupied by other calls, and the call admission
controller has to decide whether or not to use the alternative route. To illustrate
this, consider three nodes: A, B and C, and assume that between each two
nodes there is a direct link with a capacity to handle one hundred calls. If all
the capacity between A and B is used, one can still attempt to route a call from
A to B through the point C. This path is called an alternative route.

In networks that use alternative routing whenever a direct route is not avail-
able, it has been observed that bi-equilibria behavior occur: the network spends
long time in an uncongested mode and a long time in a congested mode. In
the uncongested equilibrium, many direct links are available. In the congested
mode, many ongoing calls in the network use alternative routes and the blocking
probability of a new call is high. To understand this, note that an alternative
route uses more resources than a call established on a direct link, and it can
increase congestion in the network: the danger with using alternative routes is
that if a large number of connections are actually routed through alternative
routes then the amount of resources used is probably high, and the chances that
a new call will find a direct route is small. If accepted, it would probably also
require an alternative route which will further increase congestion and would
further decrease the chances that the next call will be accepted or will find a
free direct link.

To avoid the congested mode, trunk reservation is often used: it is a policy
that does not allow a connection to use an alternative route on a link if the free
capacity on the link is below some threshold. The remaining capacity of the link
(the trunk) is reserved for direct calls. This means that new calls can be rejected
even if there are available resources to handle them (see e.g., [39, 146, 134]).

In the 1980s, dynamic and adaptive routing has been introduced into tele-
phony, which resulted in substantial improvement in network performance and
reliability [87]. A number of methods have been proposed for adaptive rout-
ing: methods based on decentralised adaptive schemes [212], centralised time-
variable schemes and adaptive methods based on the least loaded path (for more
details and references, see [87]). Several papers use MDPs to compute off line
state-dependent routing and admission control (see e.g., [87, 166, 167] and refer-
ences therein). Since the state space is huge, it is impossible to obtain an optimal
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policy except for small networks. However, policies with good performance are
obtained as follows. First, some independence assumption is used which allows
us to decompose the network problem into a set of MDPs each related to another
link. The optimal policy for the decomposed problem is easy to compute, but it
is not optimal for the original problem for which the decomposition assumption
does not hold. But based upon this policy, one obtains an improved policy using
a one step policy improvement iteration [182, 165, 166, 167, 231] or several steps
of policy improvement [87, 223]. The low complexity of this approach allows
us to obtain good policies based on real-time measurements, see [87]. Another
method that uses a similar decomposition approach as a starting point is given
in [39].

In some cases of regular topologies (for example, a fully connected networks),
it becomes easier to obtain good policies as the network becomes very large. In
[134] the policy that uses the least loaded alternative route with trunk reser-
vation is shown to be asymptotically optimal as the number of nodes grow
to infinity. For more references on routing in circuit-switched networks using
MDPs, see [119, 115].

Diffusion approximations in routing of calls has been studied in [178].

7.2 Routing and Admission in packet-switched networks

In addition to the question of decentralised asynchronous dynamic routing in
networks, other theoretical questions have attracted much attention. In partic-
ular, many researchers have considered the case of routing into parallel queues.
Two types of structural results have been obtained: the optimality of monotone
switching-curve policies, and the optimality of policies that send a packet to the
shorter queue, if it has a faster server. These characterisations of optimal poli-
cies may seem quite trivial (although it is not at all straight-forward to prove
their optimality). Yet, they turn out to hold under quite specific conditions. In
fact, several counterexamples have been presented in which this structure does
not hold once we deviate from these conditions, see e.g., [273] and [41].

A routing policy into N queues is described by partitioning the space state
into disjoint sets Si, such that in set i it is optimal to route to queue i, i =
1, ..., N .

Monotone switching curves In [112, 101, 257, 277], an optimal policy is
shown to have the following structure under various assumptions, for routing
into two queues: the two sets Si are separated by a monotone curve; for each
given state xi of queue i there is a threshold Li such that it is optimal to route
packet to queue j �= i at state (xi, xj) if the number of packets xj at queue j is
smaller than Li(xi).

This type of results is extended to different information structure and to
more than one controller. The delayed information is treated in [10, 40, 170],
and other information patterns (including the sampled information and the case
of no information) are handled in [10].
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Joining the shortest queue with fastest server In [91, 125, 139, 197,
141, 142, 276], an optimal policy is shown to have the following structure under
various assumptions when routing to into N queues. If the available information
is the number of packets in the queues then a packet should be routed to a queue
if it is has the smallest number of customers. If the workload in the queue is
known, then the routing is done to the queue with the shortest workload.

This type of results is extended to different information structure and to
more than one controller. The delayed information is treated in [170].

An extension to a game setting is given in [3, 14] and references therein.
Diffusion approximations for routing have been used in [99, 100, 144] and

references therein.

7.3 Routing with no state information

An active area of research in packet-switched network is the routing to N queues,
or N servers, or N networks with no state information.

In the particular case of symmetric queues, the optimality of a round robin
policy has been established in [12, 189, 263] (for the case of average costs).
The case of finite horizon with no state information, but with a given prior
distribution has been studied in [202, 203].

The case of routing to N networks (not necessarily identical) that are linear
in the so called ”max+” algebra, is studied in [12]. Based on the theory of mul-
timodularity policies with some regular properties are shown to be optimal in
many cases, under very general assumptions on the service and arrival distribu-
tions. The objective is to minimise expected average waiting times or workloads
(or convex functions of the latter). This framework includes as special cases the
routing into N parallel queues.

In [6, 9, 152] similar structural results have also been obtained in the case of
routing to N parallel servers with no buffering, with exponential service times,
where the throughput is to be maximised. It has been shown in [6] that even for
non Markovian inter-arrival times, the control problem can be transformed into
an equivalent MDP with full information where all but a finite number of states
are recurrent. For practical purposes, this means that an MDP with a finite
number of states and actions can be used to solve this problem. Moreover, it is
shown that there exist optimal deterministic periodic policies. In the particular
case of two queues, the optimal period is of the form (1, 2, 2, ..., 2), where 2
corresponds to the faster server.

7.4 Routing after queueing

A special routing problem that is somewhat different than the previous one is
that of routing after queueing: there are several servers with different speeds.
In general it is optimal to send a packet to the faster server if it is not busy; the
question is then whether a a packet should be sent to a slow server (or should
we wait until the fast server is free). In the case of two servers it has been
shown in [184] that there is some threshold on the number of queued packets:

20



an arriving packet should be routed to the slow server if and only if the number
of packets in the is below the threshold. The original lengthy proof is based on
a policy iteration argument. Since then a simpler sample-path proof has been
presented in [262], and an even simpler proof based on dynamic programming
has appeared in [159].

Surprisingly, this intuitive structure of the optimal policy does not extend
to more than two queues, see [41].

8 Scheduling of service

Optimal service scheduling models many scenarios in telecommunications: ac-
cess control to a communication channel, dynamic priority assignment between
different traffic types and dynamic bandwidth allocation in ATM networks.

8.1 Infinite queues and linear costs: the cµ rule

One of the mostly studied problem in stochastic optimal scheduling of service
is the one in which there are K parallel infinite buffer queues and the average
weighted expected sum of queue lengths (or of work load) in the queue is to
be minimised. The weight factors are given by some positive constants ci, i =
1, ..., K. The service times in queue i is assumed to be exponentially distributed
with parameter μi whereas inter-arrival times are generally distributed. It has
been known already from the early sixties that the optimal policy has is a fixed
priority policy; it is the so called ”cμ” rule [85, p. 84-85]: the different queues
are ordered according to the decreasing order of the product of the weight ci

times the service rate μi, and a queue is served only if those queues with a
higher product of μici are empty.

These results have been adapted to other framework, in particular to the
discrete time setting, see [48, 47, 76].

Other extensions and generalisations both in the model as well as in the
proof techniques can be found in [79, 80, 126, 158, 161, 205, 208, 259, 263]
(many related references are presented in [263]). In particular, the case in which
packets can be rerouted and change class after they terminate their service is
analyzed in [148] see also [56, 268]. We should mention that the first proofs have
used the theory of Bandits for which it was known that optimal index (Gittens
index) rule exists, see [106, 261, 268, 274, 275].

This problem has received a particular attention in the setting of MDPs with
additional constraints. As an example, consider the problem where different
interactive and non-interactive traffic compete for the access to a single channel.
One may wish to minimise the expected delay of the non-interactive traffic, but
yet to impose bounds on the average delays of interactive traffic. The case of a
single constraint has been studied in [207], who proposed a randomised mixture
at each step between two fixed-priority policies; they show the existence of an
optimal policy within this class. The case of several constraints has been solved
in [35] who use a finite linear programming to determine an optimal policy
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within the class of so called ”time sharing policies”: the controller switches
between different fixed priority policies when the queues all empty. The linear
programming determines the relative frequency at which each one of the finite
number of fixed priority policies should be used. The solutions in both references
[35] and [207] use a Lagrangian argument that transforms the control problem
into a nonconstrained one, for which the cμ rule is known to be optimal.

As a side result of the structural results of optimal policies in [35], the authors
characterise the achievable set of performance measures attained by any policy.
When restricting to policies that do not idle when the system is non-empty,
this region is shown to be a polytope whose extreme points correspond to fixed
priority policies.

Later, a reverse approach can be used to solve the constrained problem:
first the achievable region is characterised, see [92, 93], which then allows one
to obtain the solution of constrained control problem, see [56, 53, 236]. This
approach turned out to be quite powerful in more complex control problems as
well, see [54, 55, 213]. The achievable region is often referred to as conservation
laws, see e.g., [263, p. 258].

The type of results for the constrained control problem has been extended to
a network in [43]. Yet one should be careful when considering networks: there
is a counterexample that shows that the cμ rule is not optimal in the second
node in a tandem network, see [127].

The cμ rule has been shown in [20] to be optimal for a problem of scheduling
service in parallel queues in a setting of a stochastic zero-sum game (that corre-
sponds to a worst case control) where the arrival are MADP (Markov Decision
Arrival Processes), an extension of MAP (Markov Arrival Processes) that allows
the arrival process to be controlled and to depend on the state of the system.

8.2 Other scheduling problems

We briefly mention other scheduling problems. Scheduling with deadline con-
straints has been studied in [58].

In the case of finite queues, it has been observed in [239] that the control
model is equivalent to that of optimal routing. This observation has been used
in [6, 13] in which stochastic scheduling of service with no state information is
studied. Other references on the case of no information are [122, 135].

A special class of scheduling is polling problems, which we describe in the
next section.

9 Polling

The terms polling is used when a single server moves between several queues.
Upon arrival to a queue, some customers in the queue are served and then the
server moves to another queue. The number to be served may depend on the
number of customers in the queue. An important feature of polling systems is
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that when the server moves from one queue to another then switching times or
switching costs are incurred.

Polling systems are used to model LANs – local area networks (these are the
networks that interconnect computers and printers within a department or a
university) or MANs – metropolitan area networks (these are deployed over an
area of up to 100km2 and serve to interconnect local area networks). Examples
of LANs that can be modelled using polling systems are the IEEE 802.4 token
bus and the IEEE 802.5 token ring (Chapters 4.5.3–4.5.4 in [52]). Examples of
MANs modelled as polling systems are given in [228].

Polling systems can also be used to model the scheduling of transmission of
packets in the output of an ATM switch.

Interesting control problems arise in the context of polling; the schedule
problem: in what order should queues be visited and the service regime: how
many packets are to be served upon a visit to a queue.

In [71, 72, 281], a polling system with infinite queues is considered. The
problem of which queue to visit next (for a fixed given service regime) is formu-
lated as an MDP. The objective is to minimise the expected weighted waiting
time accruing to the system per unit time. Another control problem is then for-
mulated: the choice of a permutation of the set of queues {1, ..., N}. The server
then visits these queues according to that order (using a fixed service regime in
each queue). Once all the queues are visited (we call this a cycle) a new choice
is made for the next cycle. The objective is to minimise the expected cycle
time. This problem is completely solved in [71] leading to a simple rule which
is optimal for both gated1 as well as exhaustive service regimes2: the visit is
according to the increasing order of the values of ni/λi, where ni is the number
of packets at queue i in the beginning of the cycle, and λi is the arrival rate to
that queue. The optimality of the same criterion under other service disciplines
is established in [281].

A similar formulation of an MDP is derived in [73] for polling systems with
a single buffer, and some optimality results are obtained under particular as-
sumptions.

Several papers study the optimal dynamic polling under various informa-
tion structure. The maximisation of the throughputs for polling system with a
single buffer is studied in [13] in the case of no state information, whereas the
corresponding infinite buffer case (in which the weighted sum of expected work-
load is minimised) is studied in [12]. Other information patterns are handles in
[210, 186].

Other papers that consider the objective of minimisation of expected (weighted)
workload or weighted average queue lengths in polling systems are [18, 24, 38,
70, 69, 103, 123, 155, 183, 180, 282] and references therein. In general, the
problem of minimising the expected (weighted) workload is a difficult one and
standard dynamic programming techniques have been seldom used in the refer-
ences above, see [123]. Characterisation and structure of optimal policies have

1in the gated regime, a packet is served in queue i if and only if it is present there upon
the arrival of the service to that queue

2the server stays in a queue till it becomes empty
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been derived using sophisticated sample path approaches [183, 186], techniques
based on multimodularity [12], fluid approximations [180] and diffusion approx-
imations [24]. Some papers restrict to a given rich class of policies and consider
the optimisation among this class [37, 60, 61, 62, 63].

10 Wireless and satellite communications

In wireless and mobile satellite networks there are other dynamic control prob-
lems that are due to the mobility.

10.1 Control of handover and admission

If a call is accepted and established then the mobile terminal transmits and
receives information from a local base station that covers the area in which it is
located. This area is called a cell. If a mobile moves from one cell to another,
then a handover of the communication to the new base station has to take place
in order for the call to continue. Usually one puts more importance to maintain
an existing call than to accept a new one. Thus when accepting a call at a
cell, one should have in mind that this decreases the number of calls that can
be handed-over to that cell from neighbouring ones. Several papers have used
MDPs to solve the call admission control for mobile networks, see [120, 224].

Another related problem is how to decide whether and when to perform a
handover. The decision may take into account the movements of the mobile
and the strength of the signal. A solution of this problem using an MDP can
be found in [226].

10.2 Routing in wireless networks

More complex routing problems occur in the case where users are mobile. More-
over, the nodes themselves may be mobile, as is the case in satellite communica-
tions using Low Earth Orbit satellites [102]), or in so called “Ad-hoc Networks”
[111, 222]. In Ad-hoc networks, adaptive decentralised routing is again used,
but it should be very sensitive to changes in the topology. In satellite com-
munications one can often use simpler routing schemes since the movement of
the routers (the satellites) is predictable. Routing in such networks is an active
area of research. To the best of our knowledge, dynamic programming or MDP
tools have not yet been applied to routing through moving satellites, whereas in
Ad-hoc networks, dynamic programming is still the basic tool for determining
shortest paths.

10.3 Scheduling transmission opportunities

The scheduling of transmission opportunities between the mobile terminals is
determined by the base station. An important factor that is specific to wireless
communication is that there may be disconnectivity problems due to the fact
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that the communication link is more vulnerable to physical obstacles, fading
and noise. Some papers that have addressed this control problem are [24, 78,
153, 252, 254].

Another related problem is that of random access to a common channel in a
distributed setting, i.e. in the absence of a base station. In that case, users send
their packets independently of each other; simultaneous transmissions by more
than a single user result in collisions and in the need of retransmission. This
type of random access to a common wireless channel was first used in 1970 to
interconnect the islands of Hawaii and is still quite common today in satellite
communications. Control is needed to determine the retransmission probabili-
ties so as to avoid a large number of collisions during that phase. Finding an
optimal retransmission probability is slotted ALOHA systems was modelled in
[96] as a finite state MDP with compact action spaces. It was shown that this
MDP is unichained and several properties such as monotonicity and estimates
for optimal policies were derived. By using natural initial approximations for
an optimal policy, a policy iteration algorithm was implemented. The algorithm
computed optimal retransmission probabilities after few iterations.

10.4 Other control problems

Some other control problems in both wireless and satellite networks are mobility
tracking [46, 193], and energy control [279]; for the latter problem we do not
know of an MDP solution approaches, but we believe that it could be used.

11 MDPs in applications of the World Wide
Web

Most of today’s traffic on the Internet is World Wide Web traffic, which makes it
an important field of application of optimal control techniques. The World Wide
Web offers search engines, such as Altavista, Lycos, Infoseek and Yahoo, that
serve as a database that allows one to search information on the Web. These
search engines often use robots that periodically traverse a part of the Web
structure in order to keep the database up-to-date by copying the Web pages
from around the world into the database. An important control problem is the
efficient design of these search engines. In particular, the question that arises is
how often should pages be fetched in order for the information in the database
to be updated. It is required to minimise the probability that a request for an
information on a page finds that page in the database out-of-date, i.e., that the
page has since been modified but the new version has not yet been updated in
the database. Fetching pages is a costly operation, and efficient updates (taking
into account the frequency that a page is requested) is crucial.

Several papers have studied this problem using MDPs. In [140], the authors
consider a problem where there is a fixed number of M Web-pages. The contents
of page i is modified at time epochs that follow a Poisson process with parameter
μi. The time a page is considered up-to-date by the search engine is the time
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since the last visit by the robot until the next time instant of modification; at
this point the Web-page is considered out-of-date until the next time it is visited
by the robot. The times between updates by the robot are given by a sequence
τn, assumed to be i.i.d. A simple policy based on the golden-ratio approach is
shown in [122, 135] to perform close to optimum. In [6] the i.i.d. assumption is
relaxed and the τn sequence is only assumed to be stationary. The problem is
then solved using a finite MDP, and the existence of periodic optimal policies is
established. The solution, using MDPs of some related problems can be found
in http://www.path.berkeley.edu/˜guptar/webtp/index.html.

Other applications of MDPs to the control of search engines in the Web can
be found in [249, 250].

12 Solution methodologies

We shall survey in this section some solution methodologies that were successful
in problems in telecommunications. Some of these are classical and are related
directly to general solution methods of dynamic programming equations. Some
other solution methods, however, make use of special properties of queueing
networks which are useful in modelling problems in telecommunications.

We have already mentioned in the previous sections the use of Bandits
together with the Gittens index for scheduling problems, and the use of con-
servation laws (which are especially used in scheduling as well). We further
discussed in the part on flow control the advantage of linear quadratic frame-
work, which could be also used in other contexts (e.g., in dynamic bandwidth
allocation). Below we present several other techniques and methodologies which
are very useful in telecommunication applications.

12.1 Structural characteristics of optimal policies

Due to the curse of dimensionality of dynamic programming, researchers have
been interested in inferring the structure of optimal policies and/or of the value
function. In some cases, when one knows the structure of optimal policies,
the original optimal control problem can be reduced to that of an optimisation
problem over a small subclass of policies that possess the required properties.

A very popular method for obtaining the structure of optimal policies goes
through value iteration as follows. Under quite general conditions, if one knows
the value function then one can compute the optimal policies as the policy that
chooses the argument of the optimisation (maximisation or minimisation) of
the corresponding dynamic programming. The question is then how does the
argument of the optimisation behave as a function of the state. This of course
depends on the properties of the immediate rewards (or costs), the transition
probabilities, and the value of the dynamic programming. For a given set of
transition probabilities, one can often show that if the immediate rewards and
value have some properties (such as convexity or concavity or submodularity)
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then this implies the required structure of the argument of the optimisation and
thus of the optimal policy (see e.g., [149]).

For example, in many one-dimensional queueing systems, if the value func-
tion is convex then the policy that minimises the costs is of threshold type
[108, 150]. In two dimensional problems, submodularity often implies the op-
timality of monotone switching curve policies [150]. In routing problems, weak
Schur convexity of the value function implies typically the optimality of the
policy that routes a customer to the shortest queue [125].

In order to obtain the required properties of the value function, one proceeds
by value iteration. One first checks that the terminating cost has this property;
in case of infinite horizon (discounted cost) one can choose some arbitrary ter-
minating cost (typically a cost that is everywhere zero) that has the required
property (which will not have an influence on the value for the infinite horizon).
Then one checks by iterating the dynamic programming operator that the value
for the n-step horizon also possesses the required structure for any integer n.
For the infinite horizon case, one then has to establish that the property also
holds for the limit (as n tends to infinity), which coincides with the value for
the infinite horizon (under fairly general conditions).

The above approach can be used not only to establish properties of an op-
timal policy or the optimal value, but also to compare the values of different
policies or the value corresponding to different statistical assumptions. For
example, this method is used in [154] to show the advantage of stochastic multi-
plexing of many small sources, by comparing the performance of one big source
to that of several small sources.

We finally note that other techniques can be used to establish structural
properties of optimal policies, and in particular sample path methods.

12.2 Sample path methods

Several sample path techniques have been used for solving MDPs in queueing
applications, see e.g., [205, 209, 208, 238, 263]. A thorough survey on these
methodologies can be found in [187]. The most frequently used are interchange
arguments, in which one can show that by interchanging the order in which
actions are taken, the policy can be improved. This technique has been used for
both routing as well as scheduling problems, see e.g., [263]. This approach is
based on coupling: one constructs on the same probability space the evolution
of a two stochastic systems that differ only in the control, but not in the driving
sequence (such as interarrival times or service times). An opposite approach is,
on the contrary, to change the probability space and solve the control problem
in the new space instead, which if chosen appropriately is simpler to solve. In
some cases, although the probability spaces are different, the costs depend only
on some marginal (rather than joint) distributions and is thus the same for
the two models. An example is routing to parallel symmetric queues with no
state information (for appropriate costs). One constructs a new model for which
(potential) service times are the same in all queues, which allows one to establish
the optimality of a round robin policy for the new model. it then turns out that
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this policy is also optimal for the original model [263, p. 264].

12.3 Stability analysis

There is a whole class of MDPs that arise in telecommunications for which
the solution goes through stability analysis, and typically through Lyapunov
function techniques.

As an example, consider the assignment or polling problem when the con-
nections between each queue and the server is broken at random times and for
random durations. The possibility of such interruptions complicates the control
problem considerably, since the possibility that any queue might not be avail-
able to the server at any future time needs to be accounted for in choosing the
current server allocation. This problem is typical for wireless communications
in which noise can cause disconnectivity problems. The goal is to maximise
the throughput. The solution approach is to first find stability conditions that
are necessarily for an arbitrary policy, and then show that a the same stabil-
ity condition is a sufficient condition under some given candidate policy. This
approach has been used in [252, 254] where it was shown that the policy that
serves the longest connected queue is optimal. Lyapunov functions that are
quadratic in the state were used to obtain the stability condition. A related
problem in satellite communications was solved with a similar technique in [78].
The same problem as in [252] was later solved under more refined criteria [24]
using diffusion approximations.)

In [251, 253] state dependent routing and flow control is considered in a
queueing network with arbitrary topology. The routing is based on local state
information. In addition, the rate of a server is controlled based on local in-
formation (which means that the outflow is controlled). A distributed policy is
shown to achieve maximum throughput in the case of delayed state information
[253].

Optimal scheduling in another type of network topology is considered in
[105], namely ring networks. Again, a scheduling policy with maximal stability
region is obtained.

A further discussion of stability issues in our context can be found in Chapter
10 of this volume.

12.4 Fluid limits and diffusion approximations

Telecommunication systems are usually described as discrete event systems,
where discrete units of information (bits, cells, packets or sessions) are trans-
mitted at at discrete times. Due to the curse of dimensionality of dynamic pro-
gramming it is often impossible to solve optimal control problems in networks
within this framework. Two less granular approaches are the fluid limits and the
diffusion approximations, in which the transmission of discrete information units
is approximated by the transmission of a deterministic fluid and of a stochas-
tic fluid, respectively. In both approximations, the fluid represents the expected
workload or the number of customers that arrive, that are present, and that leave
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the system. Using functional laws of large numbers for the fluid approximation
and functional central limit theorems for the diffusion approximation, one can
typically show that the approximating processes become tight at high loads. The
limiting processes allows us to approximate the value and to obtain policies that
are almost optimal for the original system. Public domain software exists which
is specially adapted to the use of diffusion approximations for telecommunica-
tion problems, see http://www.dam.brown.edu/lcds/software.html. Fluid and
diffusion approximations have often the advantage of a collapse of the dimen-
sion of the state space: in many cases, a high dimensional problem reduces to
a lower dimensional one in these approximations, see e.g., [16] for the case of
fluid approximations and [23] for the case of diffusion approximations.

Some other papers using fluid limits in control of queues in this line are
[16, 39, 82, 81, 89, 180, 200, 198, 199, 201, 269, 270, 271]. A public domain ani-
mations of fluid control corresponding to the papers [269, 270, 271] is available
on the Web in the home page http://rstat.haifa.ac.il/ gweiss of Weiss. Some
references on diffusion models are [116, 117, 144, 174, 175, 176, 177, 178, 179,
219, 225, 266, 267].

In yet another type of fluid models, one consider two time scales. The distri-
bution of the arrival and/or service in a network may very in some stochastic way
(whose distribution is possibly controlled) at a time scale which is much slower
than the transmission time of packets. In that case one uses some environment
state to describe the slow variation of the distributions of the parameters of
the network, and then use a fluid approximation only to replace the granular
arrivals and service in each given environment by a fluid. In that context, re-
cent work [17] shows that fluid limits are not only approximations that become
asymptotically tight (in some appropriate scaling), but also that they give in
fact optimistic bounds on the performance.

Using this approach, the authors in [30] consider combined admission and
flow control. The state of the network depends on the number of sessions of
different traffic types, which varies at a time scale much slower than the con-
trolled transmission of packets. Termination of sessions (and thus the decrease
in their number) occurs according to an exponential distribution. The arrival
of new sessions of different types occur according to a Poisson process, and the
admission control can decide to accept or reject an arrival of a session. Once
in the system, the rate of transmission of packets (modelled as fluid) of each
session, is controlled. Another example of this approach is the reference [246]
where the authors consider a fluid model for the optimal flow control.

12.5 Power series algorithm

The power series algorithm, developed originally in [124] and further in [59,
160] in the context of non-controlled Markov chains, allows one to obtain the
performance measures by a recursive numerical method that is based in the
expansion of the value function in the load parameter. Recently this method
has been extended to MDPs and optimisation of Markov chains in [60, 156] and
applied to several problems in optimisation and control of queueing systems,
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which can be used to model scenarios in telecommunications [62, 63].

12.6 Neuro-dynamic programming

Neuro-dynamic programming (NDP), also known as reinforcement learning, is
a recent class of methods that can be used to solve very large and complex dy-
namic optimisation problems [51]. NDP combines simulation, learning, neural
networks or other approximation architectures and heuristics, with the central
ideas in dynamic programming. It provides a rigorous framework for address-
ing challenging and often intractable problems from a broad variety of fields.
As such, it is a promising tool for for solving large scale control problems in
telecommunications. Applications of this methodology in telecommunications
can be found in [51, Sec. 8.5], in [77, 196, 216, 255] and in references therein.
A detailed survey on NDP can be found in Chapter 14 of this volume.

13 Concluding remarks

We have provided a survey of the areas in telecommunications in which MDPs
have been applied and have potential application. In addition, we have surveyed
some modelling issues (multiagent and information issues) as well as solution
techniques (other than the standard dynamic programming) that are special to
telecommunication applications of MDPs.

In preparing this survey we have interviewed around forty researchers work-
ing on MDPs and on telecommunications. Our general impression from these
interviews and from the preparation of the survey are the following.
(i) Communication networks is a very rich area of application that has an impact
on MDPs, including the development of theoretical tools that seem adapted to
problems encountered in telecommunications.
(ii) Optimal control and applied mathematics are not central in the development
of communications and network technology, as opposed perhaps to areas such
as aeronautics, robotics. Some people interviewed regretted that persons that
venture into today’s communication problems do not have a solid background
of the fundamentals issues addressed by control theory.
(iii) Dynamic programming techniques have an important impact in some areas,
and in particular on routing (Bellman-Ford and other algorithms). Theoretical
work using MDPs that were mostly cited in the interviews as having an impact in
telecommunications is that of [87, 167] on admission control and routing. Dziong
and Mason’s work [87] was implemented in the Bell Canada network. Moreover
for the work they received the First Stentor award for Industry-University Col-
laboration (along with A. Girard, J. Regnier and H. Cameron from NORTEL)
in Telecoms, which is one of the most prestigious awards in Canada.
(iv) We believe that MDPs has an important potential for applications in
telecommunications, in particular in the areas of scheduling in ATM switches,
in buffer management schemes (admission of packets of different priorities to
buffers) and in flow control.
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