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Abstract

Network equilibrium models that have traditionally been used for transportation planning have penetrated in recent
years to other scientific fields. These models have recently been introduced in the telecommunication networks
literature, as well as in the field of game theory. Researchers in the latter fields are not always aware of the very
rich literature on equilibrium models outside of their application area. On the other hand, researchers that have
used network equilibrium models in transportation may not be aware of new application areas of their tools. The
aim of this paper is to present some central research issues and tools in network equilibria and pricing that could
bring closer the three mentioned research communities.
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1. Introduction

Determining the equilibrium state of a traffic network has been a preoccupation of transport
planners for nearly half a century. Underlying this preoccupation is the assumption that road
traffic will naturally arrange itself in an equilibrium flow, under steady state conditions. In
this context, predictions of future traffic flow patterns that would follow any changes to the
network or demand levels rely upon an accurate representation of the traffic equilibrium.

Except for recent years, telecommunication network flow models have not made use of
the notion of network equilibrium, as traffic networks do. Indeed, while road traffic is highly
individualized, each driver making his or her own route choice decision, telecommunication
networks are much more centralized.

Recently, however, equilibrium models have started to emerge in telecommunication
networks. This is due to two main reasons. First, the deregulation and privatization of
large telecom companies introduced competitive and decentralized behavior among telecom
operators. Secondly, a new concept of networks has been developed and deployed with great
success, in which most of the intelligence lies at the edges of the network (at the sources
and destinations) allowing for increased speed and reduced overhead and costs, as well as
the possibility for intelligent (and selfish) route or provider choice decisions. The Internet
provides one example of such an environment.
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1.1. Wardrop and Nash equilibria

The definition of the steady state equilibrium of a traffic network was put forth by J.G.
Wardrop in his 1952 treatise (Wardrop, 1952) which provided two different definitions of
traffic assignment concepts. The first is commonly referred to as the Wardrop, or traffic
equilibrium, principle and, as we will show later, is a variant of Nash equilibrium for
networks. It states that “The journey time on all the routes actually used are equal, and less
than those which would be experienced by a single vehicle on any unused route.” Wardrop’s
second principle is what has become known as the system optimum principle, and states that
“The average journey time is a minimum.” While some point to the economist Pigou, who
stated analogous principles in his 1920 Economics of Welfare, as the rightful originator of
these ideas, they had not been applied to networks, and transportation networks in particular,
until Wardrop’s seminal work.

Analogous to Wardrop’s first principle is the definition of the famous Nash equilibrium
defined in J.F. Nash’s 1950 doctoral thesis. Expressing it in terms of network flows, a flow
pattern is in Nash equilibrium if no individual decision maker on the network can change
to a less costly strategy, or, route. In other words, the Nash equilibrium does not state what
can or cannot happen when more than one decision maker changes their strategy (route)
simultaneously. When the decision makers in a Nash game are discrete and finite in number,
a Nash equilibrium can be achieved without the costs of all used routes being equal, contrary
to Wardrop’s equilibrium principle. In some cases, Wardrop’s principle represents a limiting
case of the Nash equilibrium principle, as the number of users becomes very large. We will
present some such precise statements on this relationship later in this paper.

The second Wardrop principle, that of system optimality, assumes that congested net-
works can be globally optimized. While this can be true for a network which is entirely
controlled by a single operator, it is not so with networks of road traffic or with disaggre-
gated telecommunication networks. Therefore, in the remainder of this paper, we will focus
on equilibria, rather than pure system optima.

1.2. Equilibria in networks

Given the fundamental nature of equilibria in many large-scale systems, it is of no surprise
that researchers studying transportation networks have been preoccupied with developing
models that reproduce this equilibrium, as a function of network characteristics and user
demand levels. Typically, transport equilibrium models consider vehicles to be the fun-
damental units seeking an equilibrium, or, in the case of public transport, the individual
traveler. In both of these cases, since the number of users is generally very large, the Wardrop
concept, that treats individual user contributions to the costs as infinitesimal, is preferred to
the (in this respect, more general) Nash paradigm.

In the context of telecommunication networks, the Wardrop equilibrium is used most
often to model the situation in which the routed entities are packets, and routing decisions
are taken at the nodes of the networks (rather than by the users) so as to minimize the
(per-packet) delay. In many actual networks, the routers at the nodes seek to minimize
the per-packet delay in terms of the number of “hops,” or nodes, to the destination. There
are, however, situations in which it is more advantageous to work with actual delays as
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cost metrics, rather than the number of hops (see Bertsekas and Gallager, 1987; Gupta and
Kumar, 1997), and it is in these cases that the Wardrop equilibrium has been used to describe
the resulting flow patterns. This is the case, for example, in ad-hoc networks in which both
users as well as base stations are mobile, or where there are no base stations so that users
are responsible to relay messages of other users. For these type of networks a Wardrop type
equilibrium has been advocated in Gupta and Kumar (1997).

Wardrop equilibria have also been used in telecommunication networks to model a large
number of users that can determine individually their route and in which the routed object
is a whole session, see Korilis and Orda (1999) (whose model includes in addition some
side constraints on the quality of service).

A third context in which Wardrop equilibrium has been used outside of transportation is
in distributed computer networks, in which the routed objects are jobs. An individual job can
be processed in any of several interconnected nodes (computers) and the routing decision is
taken so as to minimize its expected delay in the system (composed of both communication
as well as processing delay). Much material on that application can be found in Kameda
et al. (1997).

The most widely studied concept of equilibrium in telecommunication networks is, how-
ever, the Nash equilibrium applied to the case of finitely many decision makers. The decision
makers typically represent service providers, each of whom can determine how to route the
flow generated by its subscribers (and how to split flow between actual paths).

The paper is structured as follows. In Section 2.1, we describe the links between Wardrop
and Nash equilibria and the classes of potential and population games. Since these sets are
similar but not not equivalent, we hope that the description in this paper encourages trans-
fers of results from one class of games to another. Section 2.3 discusses commodity-link
flow models, which, along with the models of Section 2.4, are described by variational
inequalities. Since the latter class of problems has been studied extensively in the trans-
portation equilibrium literature, many of the developments could potentially be applied to
models of telecommunication networks. In Section 2.5, we present a few non-additive cost
equilibrium models; algorithmic work for this class of models could therefore serve both
the transportation and telecom communities.

In Section 3, we present two forms of network pricing. First, in Section 3.1, we describe
models in which link prices are given by Lagrange multipliers, and as such are a form of
marginal cost pricing, including recent extensions to that type of pricing that allow auxiliary
objectives, such as revenue maximization, to be taken into account, albeit to a limited extent.
We then present in Section 3.2 the more general, bilevel, network pricing problem, which
allows operator revenue to be fully maximized, and discuss some algorithmic approaches
to solving that very complex problem.

2. Equilibrium models spanning transport and telecom

2.1. Basic Wardrop model

The basic equilibrium model in traffic networks falls into the category of potential games
with an infinite number of users. Indeed, the Wardrop equilibrium condition (the first
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Wardrop principle, stated above), can be expressed mathematically to state that the flow on
every route r serving a commodity, or origin-destination (OD) pair, w, is either zero, or its
cost is equal to the minimum cost on that OD pair. Along with the fact that the cost on any
route serving an OD pair is at least as high as the minimum cost on that OD pair, and the
satisfaction of demand for each OD pair, we obtain the following system:

hwr (cwr − πw) = 0, r ∈ Rw, w ∈ W, (1)

cwr − πw ≥ 0, r ∈ Rw, w ∈ W, (2)∑
r∈Rw

hwr = dw, w ∈ W (3)

where hwr is the flow on route r ∈ Rw,the set of routes joining node pair w ∈ W , the set of
origin-destination node-node pairs. The cost or delay on that route is cwr , and πw is the min-
imum cost on any route joining node pair w. The demand for service between the node pair
w is denoted dw. Define the directed graph as G = (N , A) where N is the set of nodes and
A is the set of links. Assume that cwr is the sum of link costs tl(xl) of the links l along route
r and that the cost tl is a function only of the total flow xl over each link l. Then, adding non-
negativity restrictions hwr ≥ 0 and πw ≥ 0, the resulting system of equalities and inequal-
ities can be seen as the Karush-Kuhn-Tucker (KKT) optimality conditions of the following
optimization problem, known as the Beckmann transformation (Beckmann, 1956).

min f (x) =
∑
l∈A

∫ xl

0
tl(xl) dx =

∑
l∈A

∫ ∑
i∈N xil

0
tl(x) dx

subject to
∑
r∈Rw

hwr = dw, w ∈ W, (4)

∑
w∈W

∑
r∈Rw

hwrδ
l
wr = xl , l ∈ A, (5)

xl ≥ 0, l ∈ A, (6)

where xil is the flow of users from OD pair i on link l, xl is
∑

i∈N xil and δl
wr is a 0 − 1

indicator function that takes the value 1 when link l is present on route r ∈ Rw.

2.2. Wardrop equilibrium and potential games

The fact that Wardrop equilibrium can be obtained using an equivalent optimization problem
with a single player having some cost f (x) is a feature common to a whole class of games
known as potential games. This class of games was formally introduced by Monderer and
Shapley (1996) for the case of finitely many players. It was extended in Sandholm (2000)
to the case of population games, which includes the setting of Wardrop equilibrium.

In developing the concept of potential games, game theorists seem not to have been aware
of the huge literature on road traffic equilibria starting from Wardrop (1952) and Beckmann
(1956). Monderer and Shapley (1996) write in: “To our knowledge, the first to use potential
functions for games in strategic form was Rosenthal (1973).” Interestingly enough, this
reference (see also Rosenthal, 1973b) includes a discrete version of Wardrop equilibrium
with finitely many players, called “congestion games.”
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The original definition of a potential for a game is as follows. Introduce the following
N -player game G = (N ; (Si )i∈N ; (ηi )i∈N ) where Si is the action set of player i , S = ×i∈N Si

and ηi (s) is the payoff for player i when the multistrategy s ∈ S is used. For s ∈ S, let (s | t i )
denote the multistrategy in which player i uses t i instead of si and other players j �= i use
s j . A potential for the game is defined in Monderer and Shapley (1996) as a real valued
function P on S such that for each i , every s ∈ S and every t i ∈ Si , P(s | t i ) − P(s) =
ηi (s | t i ) − ηi (s). Existence and uniqueness of equilibria of potential games in that setting
has been established in Monderer and Shapley (1996) and Neyman (1997).1

An adaptation of this definition is needed for population games; see Chap. 3 of Patriksson
(1994) and Sandholm (2000), in which there are N classes of populations of “infinitesimal”
players, where the “mass” of players of type i is given by some constants di . Let α( j, t)
be the fraction of members of population type j that use action t ∈ Si . A multistrategy
is the collection α = (α( j, t)). We assume that the payoff ηi for a player of class i is a
function of his own action as well as of the multistrategy α. Let Si be the set of actions
available to a player of population i , i = 1, . . . , N . We say that α∗ is an equilibrium if, for
any i , any s ∈ Si and any t ∈ Si such that α∗(i, t) > 0, ηi (t ; α∗) ≥ ηi (s; α∗). Equivalently,
letting f = −η, we say that flow α∗ is in equilibrium if the following variational inequality
problem (VIP) holds for all α ∈ S: f (α∗)(α − α∗) ≥ 0.

We then define P to be a potential for the population game if for each s, the vector of
payoffs η(s) is the gradient of P(s). Under mild conditions on the payoff functions and
strategy sets, one can thus establish the existence and uniqueness of equilibria in potential
population games. (See Chap. 3 of Patriksson, 1994.)

2.3. Commodity—link-variable models

In telecommunication network models, the variable of interest is often the commodity-link
flow, xil , rather than the total link flow, xl . In this section, we consider a typical model based
on commodity-link flows as the decision variable, and through it, derive some relations
between Nash and Wardrop equilibria.

We have seen that the Wardrop equilibrium can be computed using an equivalent convex
optimization problem (related to the potential). We show below that reminiscence of this
potential appears also in problems of Nash equilibria with finitely many users: all equilibria
satisfying some conditions on the commodity-link flow (condition (11) below) have the
same total link flow that can be obtained from some convex optimization problem.

In the network routing problem, the decision variables xil are restricted by the non-
negativity constraints for each link l and player i : xil ≥ 0 and by the conservation constraints
for each player i and each node v, expressed below in terms of ingoing and outgoing nodes:

r i
v +

∑
j∈In(v)

xi j =
∑

j∈Out(v)

xi j (7)

where r i
v = di if v is the source node for player i , r i

v = −di if v is its destination node, and
r i
v = 0 otherwise; In(v) and Out(v) are respectively all ingoing and outgoing links of node

v. (di is the total demand of player i).
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A typical commodity-link cost function, for the i th commodity on link l, is given by

fil(xil) = xil tl

( ∑
j∈Il

x jl

)
, (8)

where Il is the set of commodities (players) using link l. Note that this model resembles the
system optimal model defined in Wardrop’s second principle. The Lagrangian with respect
to the conservation of flow constraints is

Li =
∑
l∈A

xil tl

( ∑
j∈Il

xil

)
+

∑
v∈N

πi,v

(
r i
v +

∑
j∈In(v)

xi j −
∑

j∈Out(v)

xi j

)
,

for each player i . Thus a vector x with nonnegative components satisfying (7) for all i and v

is an equilibrium if and only if the following Karush-Kuhn-Tucker (KKT) condition holds:
Let xuv = ∑

i∈A xi,uv , where xi,uv is the flow of users from OD pair i on the link defined
by node pair u, v. There exist Lagrange multipliers πi,u for all nodes u and all players, i ,
such that for each pair of nodes u, v connected by a directed link (u, v),

tuv(xuv) + xi,uv

∂tuv(xuv)

∂xuv

≥ πi,u − πi,v,

with equality if xi,uv > 0.
Define πu = ∑

i πi,u . Taking the sum over all players we get the following necessary
conditions for x to be an equilibrium for each link (u, v):

I tuv(xuv) + xuv

∂tuv(xuv)

∂xuv

≥ πu − πv, (9)

with equality if xi,uv > 0 for all i , where I is the total number of players.
Assume that all players have the same source and destination, and let d be the sum of

commodity demands. Then (9) are the KKT conditions for optimality of the vector {xl}
with nonnegative components satisfying the conservation of flow constraints in the routing
problem (single commodity) where the cost to be minimized is given by∑

l∈A

xl tl(xl) + (I − 1)
∫ xl

0
tl(y) dy, (10)

and where the total demand to be shipped from the common source to the common destina-
tion is d; in particular, (9) holds with equality if xuv > 0. Assume further that tl are strictly
convex, or more generally that expression (10) is strictly convex. Then this problem has a
unique solution in total link flows, which we denote (x∗

l ).
Now, let {xil} be a Nash equilibrium for the original problem having costs (8) with the

property:

A1. Wheneverxil > 0 for some i and l then x jl > 0 for all players j . (11)

A1 describes a property of the equilibrium: if (at equilibrium) one player sends positive
flow through a link, then so do all other players. Under assumption A1, it follows that for
all l,

∑
i xil = x∗

l . Note however, that this is not true in general if A1 does not hold, since
x∗

l need not be expressible as the sum over I of some nonnegative xil that satisfy (7).
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Remark. The above is an alternative proof to the one in Orda et al. (1993) of the uniqueness
of the total link flows at all Nash equilibria satisfying A1.

Taking the limit in (10) as the number of players I → ∞, the second term in (10)
dominates, and by continuity of the functions and compactness of the feasible set, we
observe that both the objective function and the solution approach that of the Wardrop
equilibrium.

2.4. General models and variational inequalities

The basic equilibrium model presented at the end of Section 2.1 imposes a number of
simplifications on the model of the traffic flow phenomenon, and in particular, on the travel
time, or impedance, functions.

Most notably, for the potential function to exist, the travel time function, tl , defined for
each link of the network, l ∈ A, must be integrable. The most common way for this to
occur is that the travel time on a link l depends only upon the flow present on the link l, that
is, tl(x) = tl(xl). This simplification, in the traffic context, means that interactions between
different traffic streams at junctions cannot be modeled within this paradigm (even if we use a
virtual link to model the node), since then, the travel time on a link l that reaches the junction
is a function of flows on some or all links meeting link l at the junction, that is, tl(x) =
tl(x1, . . . , xl , . . . , xm) (and is not just a function of the sum of flows). The simplification
also imposes that only a single class of users is modeled, since multiple classes of users
would interact on each link, resulting once again in multivariate link travel time functions.

When the link travel time functions are multivariate, it is usually the case that no potential
that can be obtained by integrating the travel time functions as in the basic model. Examples
of multivariate link cost functions can be found in the literature on modeling signalized
junctions on a road network, see Heydecker (1983). Other examples can be found in the
modeling of multimodal networks, such as networks on which buses and cars share the road
space or trucks and light vehicles, since each traffic class effects the traffic differently, and
each class has its own travel time function, depending on all classes present on the link.
Some characteristics of this type of multivariate cost functions can be found in Toint and
Wynter (1995) and Marcotte and Wynter (2004).

Although the potential function approach cannot be used to describe the multivariate
equilibrium, the Wardrop equilibrium conditions are valid regardless of whether the cost
functions are univariate or multivariate, and they can be expressed for both types of cost
functions in a compact variational framework.

In telecommunication network planning, link impedance functions can often be quite
complex, due to the underlying probabilistic phenomena as well as the interacting cost
components of delay, packet loss, jitter, etc . . . A typical form of the commodity-link cost
functions (see, for example, Orda et al., 1993) is

til(xil , xl) = xil tl(xl) = xil

Cl − xl
, (12)

where, as before, xl = ∑
i=1..I xil is the flow of all classes i on link l. The constant

Cl is the capacity of link l. The user classes in this case correspond to commodities, or
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origin-destination demands. For more justification on this type of delay models, see Baskett
et al. (1975), Kameda and Zhang (1995). In some simple settings, such as a network of
parallel arcs, when the sum of the demands of all classes is less than link capacity, or on
some one-commodity networks, Orda et al. (1993) show uniqueness of the Nash equilibrium.
Also under “diagonal strict convexity,” the authors show uniqueness of the Nash equilibrium,
yet this condition only holds under quite restrictive conditions on the cost functions or on
the topology (Altman et al., 2002). In Orda et al. (1993) and Altman and Kameda (2001),
uniqueness of the link class flows is shown for costs of the form (12) for general networks
under assumption A1 (see Eq. (11)).

We can analyze the Wardrop equilibrium for this system easily by expressing it as the
solution {x∗

i } of the following variational inequality:

ti (x
∗)T (x∗

i − xi ) ≤ 0, (13)

for all feasible class-flow vectors, xi , for all i , where, as above, the vector x = ∑
i=1..I xi and

ti = t for all classes i = 1..I , and determine, for example, if the Jacobian of the mapping
t is singular, in which case we recover the nonuniqueness of the equilibrium in class-flow
variables. Since the Jacobian of the mapping t is clearly singular (∂ti (x)/∂x j = ∂t j (x)/∂xi

for all i, j), we recover the nonuniqueness of the equilibrium (in the variable xi ) that was
observed by Orda et al. (1993) to occur on general networks.

We can also contrast the Wardrop and Nash equilibria through this example. The Nash
equilibrium x∗

i satisfies∑
l∈Ri

x∗
il t(x

∗
il , x∗

�=il) ≤
∑
l∈Ri

xil t(xil , x∗
�=il)

for each user class i = 1..I , where the index �= i includes all classes not equal to i.
Rewriting, we obtain that

∑
l∈Ri

x∗
il t(x

∗
il , x∗

�=il) − ∑
l∈Ri

xil t(xil , x∗
�=il) ≤ 0 for each i ∈ I

and therefore when

t(x∗
il , x∗

�=il) − t(xil , x∗
�=il) = 0, (14)

the above reduces to
∑

l∈Ri
(x∗

il − xil)t(x∗
il , x∗

�=il) ≤ 0, for each i ∈ I , which is equivalent
to the (Wardrop) VIP with cost operator t and classes given by users i ∈ I . Indeed, (14)
occurs precisely when the influence of an additional user on the cost, t , is 0.

Another example of general costs in telecommunications can be found in Altman et al.
(2002), where the network model includes dropping of calls if capacity is exceeded. The
cost criterion for each user class i is the probability that his message is rejected along its
path, given by

Bi (x) = 1 −
∑

m∈Si

∏I
j=1

(
x

m j

j

/
m j !

)
∑

m∈S

∏I
j=1

(
x

m j

j

/
m j !

) .

S is the set of feasible “states”; Si is the set of states for which another call of user i can
still be accepted (without violating capacity constraints), m is the system state whose j th
component m j is the number of class j calls in the system. Hence the number of terms in the
cost function depends upon the configuration and capacity constraints of the network. (The
larger the number of feasible paths for a user class, the more terms present.) When each
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class, which can be represented by an origin-destination pair, seeks a Wardrop equilibrium,
the corresponding variational inequality is to find x∗

i such that Bi (x∗)T (x∗
i − xi ) ≤ 0, for

all xi , for all classes i . Even in the simplest topology of parallel links, it has been shown in
Altman et al. (2002), that there may exist several equilibria with different total link flows.

Depending on the form of monotonicity satisfied by the cost operator in the variational
inequality, one can choose convergent algorithms for its solution, as well as determine
whether or not the solution will be unique. Weaker forms of monotonicity for which the
mathematical properties and a number of convergent algorithms are known include pseudo-
monotonicity and strong nested monotonicity. (See Marcotte and Wynter, 2004; Cohen and
Chaplais, 1988, for the latter.)

2.5. Additive versus non-additive models

The most widely studied performance measure investigated to date in transportation, com-
puter and telecommunication networks has been the expected delay. In transportation net-
works, this cost metric leads naturally to models in which the route costs are additive
functions of link costs along the route, that is cr (x) = ∑

l∈R tl(xl).
In telecommunication networks, exogenous arrivals of jobs or of packets are often

modeled as Poisson processes. Delays at links are modeled by infinite buffer queues with
i.i.d. service times, independent of the interarrival times. In the particular case in which the
service time at a queue is exponentially distributed, then whenever the input process has a
Poisson distribution so will the output stream. This makes the modeling of service times
through exponential distributions quite appealing, and makes the cost along a path of tan-
dem queues additive. However, the expected delay turns out to be additive over constituent
links in a general topology under a much more general setting, known as BCMP networks
(named after its authors Baskett et al., 1975).

Indeed, as long as the exogenous arrivals have Poisson distributions and under fairly
general assumptions on the service order and service distribution, the expected delay over
each link is given by the expected service time divided by (1-ρ), where ρ is the product of
total average traffic flow at the queue and the expected service time. This general framework
also allows for the modeling of multiclass systems, i.e. where different traffic classes require
different expected service times at a queue, see Kameda and Zhang (1995).

Other more general types of separable additive cost functions have been used in telecom-
munication networks which can represent physical link costs due to congestion pricing, see
e.g. Orda et al. (1993).

However, in both transportation and telecommunication networks, equilibrium models
in which path costs are not the sum of link costs do arise.

In the transport sector, when environmental concerns are taken into account, such as the
pollution associated with trips, non-additive terms arise. Path costs due to tolls or public
transport costs are generally non-additive as well, since they are calculated over entire paths,
and cannot be decomposed into a sum of the costs on component links.

In Gabriel and Bernstein (1997) and Bernstein and Wynter (2000), the authors discussed
properties of a bicriteria equilibrium problem in which both time delay and prices are
modeled on the links. Non-additivity arises from the nonlinear valuation of the tradeoff
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between time and money, known as a nonlinear value of time. For example, users are
willing to pay more (or less) per minute for longer trips than for shorter trips. That is, a
route cost function may be expressed as cr (x, p) = V (

∑
l∈Ri

tl(xl)) + ∑
l∈Ri

pl , where
V : 	m

+ 
→ 	+ is the nonlinear value of time function.
In telecommunication networks, many important performance measures are neither addi-

tive nor separable. The first example is that of loss probabilities when the network contains
finite buffer queues. We note that in this case there is no flow conservation at the nodes.2 This
model has been dealt with by light traffic approximations which are additive and separable,
see Dinan et al. (2000) and Jiménez (2001).

Another performance measure (already mentioned in the previous subsection) that has
been studied in the context of network equilibrium is that of rejection probabilities. The
network consists of resources at each link, and requests for connections between a source and
a destination. The resources are limited, and a connection can only be established if there are
sufficiently many resources along each link of a route between the source and destination.
For the case where connections arrive according to a Poisson process and where calls last for
an exponentially distributed duration (these assumptions model telephone networks well),
simple expressions for rejection probabilities (i.e. the probability that an arriving call will
find the line busy) are available. These expressions are neither separable nor additive. Such
networks have been studied in Altman et al. (2002) and Bean et al. (1997).

When route costs are no longer the sum of constituent link costs, algorithms for solving
the network equilibrium problems must be modified; indeed, underlying most algorithms for
the network equilibrium problem is a shortest path search, and standard searches all suppose
additive path costs. One algorithm for the non-additive route cost model can be found in
Gabriel and Bernstein (2000) while another is provided in the article by M. Patriksson, in
this special issue.

3. Pricing

The pricing of network services, in transportation and telecommunications, has taken on
more importance in the past decade. In transportation networks, congestion pricing, such as
road tolls which adapt to time of day, and could, in principle, vary with the congestion level,
have become a reality in many parts of the world. Similarly, pricing of communications
networks and the Internet have become intense areas of research activity since telecom
deregulation, and due to the development of Internet services, such as tele-conferencing,
software leasing, and e-commerce.

3.1. Marginal cost pricing

The vast majority of the literature on pricing of networks supposes that the pricing scheme
is based upon shadow prices, or marginal costs. That is, the marginal cost of adding a new
request, or user, to the network defines the price that should be charged to that user. See
Patriksson (1994) for a list of references from the transportation literature, and Kelly (1997),
Kelly et al. (1998), and Low and Lapsley (1999) in the telecommunications literature.
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When there are no capacity constraints in the model, the marginal cost of adding a new
user on link a ∈ A within the Wardrop equilibrium model is given by

ta(xa) + xat ′
a(xa). (15)

The difference then between marginal costs and user costs is the second term, xat ′
a(xa).

For the user equilibrium solution to be “driven” to the system optimal solution, the cost
of adding each new user must be taken into account, such as through marginal cost pric-
ing. This means substituting delay function (15) for ta(xa) in the Wardrop equilibrium
model.

In telecommunication networks, capacity constraints are generally present on each link
in the model. The Lagrange multipliers on those constraints provide another marginal cost,
representing an additional cost that can be imposed on each user that would exceed the
capacity on the link. By construction, the multipliers on those constraints, and therefore the
link prices, are zero unless the link is at capacity. (Note that these prices need not, however,
be unique.) This price can be understood as a control measure, a “cost” imposed in addition
to the travel cost itself that keeps the flow within the boundaries of the capacity constraints,
without actually having to enforce the capacity constraints, see e.g. Larsson and Patriksson
(1999).

In the telecommunications literature, this notion of pricing is referred to as the Propor-
tional Fairness principle, when the network flow problem is defined by the maximization of
the sum of logarithmic user’s utility functions, see Kelly (1997) and Kelly et al. (1998). That
is, the network flow objective is given by maxd∈D

∑
i∈I log(di ) subject to flow conserva-

tion, link capacity, and non-negativity constraints, defined as the set D of feasible resource
allocations, where d ∈ 	W

+ is the amount of bandwidth to be allocated to user i ∈ I , defined
by an origin-destination node pair. The objective of the proportional fairness bandwidth
allocation and pricing scheme is therefore to determine the origin-destination demand level
to allocate to each pair that maximizes a logarithmic utility function, and satisfies network
constraints.

In Larsson and Patriksson (1998) and Larson et al. (2002), the authors showed that the
non-uniqueness of the Lagrange multipliers in capacity-constrained equilibrium problems
could be used to optimize traffic management schemes by defining a secondary function
over the set of multipliers. In Wynter (2001) and in Bouhtou et al. (2003), this technique was
applied to the Proportional Fairness pricing model so as to permit revenue maximization
using fair prices. That is, the network operator would solve maxλ∈�(x∗) λ

T x∗, where x∗

is a proportionally fair resource allocation and �(x∗) is the (polyhedral) set of Lagrange
multipliers at x∗. This approach has been studied and algorithms developed in Larson et al.
(2002) and Rydergren (2001). In Bouhtou et al. (2003), numerical experience aimed at
studying the degree to which revenue maximization is possible while still maintaining the
properties of the marginal cost pricing scheme is provided.

3.2. Pricing strategies with other objectives

While Lagrange multiplier-based pricing strategies have a historical foundation, in that
they quantify the notion of marginal cost pricing of networks, they do not take into account
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fully the desire of the network operator to maximize revenue. Indeed, the link prices are
heavily constrained by the fact that they must be Lagrange multipliers, or by the fact that
they must precisely drive flows to the system optimal solution. The strategy described
above does permit limited profit maximization to be achieved, when the total revenue is
not unique, as it may be in some cases (see Larsson and Patriksson, 1998; Bouhtou et al.,
2003).

However, in general, for revenue maximization to be realized, prices can no longer be
tied to Lagrange multipliers. In the case of capacity constraints, the multipliers, as stated
earlier, are only positive when capacity is reached. This alone reduces potential for revenue.
Furthermore, in telecommunication networks, there are cases in which further integrality
constraints are imposed: one cannot split the flows at any proportion but instead, one has to
choose the transmission rate over each link among some given set. In such cases, capacity
need not be reached exactly for the network to be congested. (See Jarray and Wynter, 2002,
for a solution to this problem in a different context.)

The general paradigm that models optimal network pricing is known as the bilevel pro-
gram; the lower level of the problem represents the user equilibrium or network flow problem
with prices as a parameter, and the upper-level, or network operator’s problem, in g, seeks
to optimally set the prices given the response of the users or flow pattern, to those prices.
The mathematical formulation is given by

max g(x, p) = xT p, x ∈ S(p), p ∈ P

where S(p) = {x∗ : F(x∗, p)T (x∗−x) ≤ 0, x ∈ X (p)}, X (p) being the set of constraints on
flow variables x (network constraints, non-negativity, . . . along with any other constraints
that may depend on the price vector, p.) and where F = ∇ f if the (Nash or Wardrop)
equilibrium problem admits an equivalent convex optimization formulation. Recall that f
are the cost functions of the players in the Nash game, or the objective function of the
optimization form of the Wardrop equilibrium, in the separable case. The bilevel program-
ming problem is known to be nonconvex and non-differentiable, even in the most favorable
circumstances, when the users’ equilibrium problem is constrained. It is therefore very dif-
ficult to solve over networks, and most methods in the literature are designed to converge
to any stationary point of the problem. The most popular methods for solving the bilevel
program to a local optimum include penalty methods, in which the constraint x ∈ S(p),
expressed by its KKT conditions, is penalized in the objective, g, as well as sensitivity-
based methods, that obtain a subgradient of the objective, g, through sensitivity analysis
and apply subgradient or bundle methods. (See for example Bard, 1998, and Patriksson,
2001, for the sensitivity-based methods.)

4. Perspectives

This paper has highlighted a number of areas in which common features between transporta-
tion and telecommunication network models exist, and where future research effort would
be worthwhile. Here we summarize a few of the areas that seem particularly worthwhile
for further research effort.
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4.1. Different definitions of equilibrium and games

It is clear that through lack of a common forum, much work on network games is duplicated
in different communities, often with the strength of the results varying across the board.
We discussed some examples of this in Section 2.2, mentioning in particular that Wardrop
equilibrium is a special case of a potential game, which is in turn a special case of population
games. On the one hand, it is worth studying whether any results on population games
generalize those known for Wardrop equilibria, or vice-versa. Most work on potential games
considers a finite number of players, and so appear less useful in transportation networks
than in telecommunications settings. We note that some work in discrete Wardrop equilibria
can be found in Bernstein (1990), and some extensions of potential games to infinite many
players can be found in Sandholm (2000).

4.2. General costs

We presented several settings in which costs are more general than the standard separable,
total link flow cost functions so prevalent in the transportation literature. In particular,
telecommunication models generally make use of commodity-link flow variables. While
this can be seen as a special case of the multi-class models found in the transportation
literature, we saw that through the particular form of the commodity-link costs, such as (12),
a number of much stronger properties can be obtained. The most surprising of these is that the
commodity-link flows can in some cases be unique (e.g., for networks of parallel links, . . . ).
While this model and the uniqueness result does not immediately transfer to transportation
networks, since the costs there will generally not satisfy the properties assumed, one could
consider looking at particular networks and cost forms in transportation models to deduce
much stronger properties than have been assumed to hold.

Similarly, by formulating more general models from telecommunications as variational
inequalities, it is possible to determine their uniqueness properties over general networks
quite readily, and, especially, to propose a much wider range of algorithms for solving for
those equilibria.

Another non-standard form of equilibrium models are those which do not have additive
costs over constituent links of the paths. Some work on these models exists in both com-
munities, and we have cited a few references on such work. It seems clear that there should
be considerable possibilities for adapting the results mentioned to the applications of both
transport and telecom models.

4.3. Pricing

We have provided quite a cursory description of optimal network pricing, since a large
body of literature on this topic exists in the telecommunication setting. However, the vast
majority of that work does not include equilibrium models, or does not appear to be read-
ily transferable to transportation modeling. We have therefore chosen not to include those
references in this paper. We do, however, describe a well-known approach proposed for
telecommunications pricing that can be shown to be a special case of an approach proposed
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for transportation system management. The paradigm of bilevel programming seems partic-
ularly appropriate to both telecommunications and transportation pricing, when marginal
costs are not sought. Adapting this paradigm to particular settings and applications will
likely become a very active field of research. However, the algorithmic issues that will re-
sult are considerable; attention could be focused on devising more rapid and decomposable
approximation algorithms.
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Notes

1. Uniqueness is in fact established among the class of correlated equilibria, of which Nash equilibria is a subset.
2. Note that flow conservation fails even in the case of infinite queues when one considers multicast applications

in which packets are duplicated at some nodes, see Boulogne and Altman (2002).
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