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Abstract. Consider a queueing system with many queues, each with its own input stream, but
with only one server. The server must allocate its time among the queues to minimize or nearly
minimize some cost criterion. The allocation of time among the queues is often called polling and
is the subject of a large literature. Usually, it is assumed that the queues are always available, and
the server can allocate at will. We consider the case where the queues are not always available
due to disruption of the connection between them and the server. Such occurrences are common in
wireless communications, where any of the mobile sources might become unavailable to the server
from time to time due to obstacles, atmospheric or other effects. The possibility of such “vacations”
complicates the polling problem enormously. Due to the complexity of the basic problem we analyze
it in the heavy traffic regime where the server has little idle time over the average requirements.
It is shown that the suitable scaled total workloads converge to a controlled limit diffusion process
with jumps. The jumps are due to the effects of the vacations. The control enters the dynamics
only via its value just before a vacation begins; hence it is only via the jump value that the control
affects the dynamics. This type of model has not received much attention. The individual queued
workloads and job numbers can be recovered (asymptotically) from the limit scaled workload. This
state space collapse is critical for the effective numerical and analytical work, since the limit process
is one dimensional. It is also shown, under appropriate conditions, that the arrival process during a
vacation can be approximated by the scaled “fluid” process. With a suitable nonlinear discounted
cost rate, it is shown that the optimal costs for the physical problems converge to that for the limit
problem as the traffic intensity approaches its heavy traffic limit. Explicit solutions are obtained in
some simple but important cases, and the cµ-rule is asymptotically optimal if there are no vacations.
The stability of the queues is analyzed via a perturbed Liapunov function method, under quite
general conditions on the data. Finally, we extend the results to unreliable channels where the data
might be received with errors and need to be retransmitted.
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1. Introduction. Consider a queueing system with several queues and a single
server. The problem of assigning service among the competing queues in an optimal
way has been studied extensively in the last half of the century, starting with [9,
pp. 84–85]. The assignment is often called “polling.” For linear holding costs, the
fixed-priority policy known as the cµ-rule (and other rules closely related to it) has
been shown to be an optimal policy under a variety of statistical assumptions and
cost structures (see, e.g., [1, 3, 4, 9] and references therein). Due to Little’s rule, this
policy turns out to minimize also the overall average expected waiting time in the
system. The problem can be considered to be one in optimal stochastic control.
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We are concerned with this assignment or polling problem when the connections
between each queue and the server are broken at random times and for random du-
rations. Such intervals during which a queue is not available to the server (even if it
wished to poll it) are often called vacations in the queueing literature. The possibility
of such vacations complicates the control problem considerably, since the possibility
that any queue might not be available to the server at any future time needs to be
accounted for in choosing the current server allocation.

This problem is of considerable importance in contemporary wireless communi-
cations, where the queues are in the mobile sources which generate data to be trans-
mitted and the server is the channel or antenna of the base station. At each time,
one assigns the channel to one of the sources (i.e., points the antenna in the direction
of that source). In more complex cases with so-called smart antennas, the channel
can be shared among the sources in a controlled way, but that possibility will not be
considered here.

Recently, Tassiulas and Ephremides [28] have considered this problem of how
to assign service to competing queues in the presence of random connectivity. The
motivation concerned the dynamic assignment of transmission access to a channel
between mobile terminals, any of which might be unavailable from time to time due to
physical obstacles or to propagation problems (atmospheric attenuation, interference,
noise, fading, etc.). In the context of satellite communications, a survey of such
problems can be found in [11].

The classical cµ-rule turns to be not only far from optimal for this system, but
in fact the system may be unstable when any fixed priority policy is used. Tassiulas
and Ephremides [28] and Tassiulas and Papavassiliou [29] considered the problem of
obtaining a dynamic assignment policy that maximizes the throughput. The solution
methodology is based on stability analysis using Liapunov functions; first a necessary
condition for stability is identified, which holds under any policy. Then a particular
policy is identified for which a sufficient stability condition coincides with the above
necessary stability condition. It then turns out that this policy stabilizes the system
under the largest range of input rates and is thus shown to maximize the throughput
that the system can handle. Such a policy has a very simple form [28]: assign a
transmission opportunity to the longest connected queue.

It turns out that there is a very large class of policies other than the one above
which also achieve that maximum stability region and maximum throughput. (For
example, if we first multiply the length of each queue by some [queue dependent]
positive constant and then assign transmission to the queue with longest weighted
length, still an optimal throughput is achieved; this is suggested by our stability
analysis in section 6.) The aim of this paper is thus to consider control and optimal
control under more sensitive cost criteria, which can not only maximize the throughput
but can also minimize some expected holding costs (or in particular, discounted mean
values of a broad class of functions of the queue lengths or expected workload in the
system).

Due to the complexity of the system and the generality of the statistical assump-
tions, we consider the optimal control problem only in an asymptotic sense; i.e., the
one obtained by an appropriate scaling, corresponding to the heavy traffic regime,
where the server has little spare capacity over the mean requirements. As usual with
heavy traffic analysis, the limit system is substantially simpler than the original phys-
ical system. The aim is to use the limit model to get nearly optimal controls and
approximations to the optimal value functions for the actual physical system under
heavy traffic conditions. For some large class of policies, we establish the convergence
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of the total workload processes to a one dimensional diffusion process with jumps,
where the jumps are due to the possibility that the server will have no work to do
during part of a vacation of some source. The individual workloads and queue lengths
can be approximated in terms of this limit process; hence there is a substantial reduc-
tion in dimension from that of the original problem to unity. This limit result is then
used to obtain a closed form solution for the asymptotic problem for several types of
cost functions. In particular, a closed form solution is obtained for the case when the
cost corresponds to the total workload in the system.

A problem related to the one we solve here has been treated in [8] and refer-
ences therein. There too, optimal scheduling of service opportunities is considered.
However, the problem of random (unpredictable) disconnectivity is not considered
there; instead, there are predictable instances in which service opportunities appear.
These correspond to transmission opportunities between adjacent satellites which use
intersatellite links within a satellite constellation. As in [28], the criterion is to max-
imize the throughput. Several policies are proposed there and their performance is
compared.

The structure of the paper is as follows. Section 2 describes the problem and
lists the assumptions which are needed to get the weak convergence results of section
3. Jobs (batches of data) arrive at the queues of the individual sources at random
times, and in random amounts. It is assumed that the vacations are relatively “rare”
and that the ratio of the vacation intervals to the intervacation intervals is small.
Nevertheless they have a very important effect on the performance. For notational
simplicity, only two sources are considered in the details. However, all of the results
hold irrespective of the number of sources, and we comment on the extensions. The
analysis contains results which are of broader interest. Examples are the proof that
the arrival (and, indeed, the [suitably time scaled] workload and queue processes)
process during a vacation can be well approximated by a “fluid” process under heavy
traffic and that the individual queue sizes can be approximated by linear functions
of the individual queued workloads. The policy affects the limit process only via
the magnitude of the jumps. In particular, the jumps depend only on the “control”
values just before a vacation begins. If we restrict the policy to being a member of
a large class of piecewise continuous feedback policies, then Theorem 3.2 shows that
the individual workloads can be well approximated by linear functions of the total
workload, under heavy traffic.

The discounted cost function is introduced in section 4. The limit control problem
appears to be nonstandard, owing to the special way that the control appears in the
dynamics, even though it appears in the cost function in a standard way. To get
weak convergence of the cost or optimal cost values, one needs a uniform integrability
condition as well as weak convergence, and this is dealt with as well.

The optimal control is computed under some assumptions on the costs in section
5. In section 6 we establish the stability conditions for a large class of policies. We
extend our model and results in section 7, where we consider the case of unreliable
channels which may require retransmissions of erroneous information.

2. The problem formulation. 1 There are two sources with inputs which
generate data in some random way. Any number of sources can be used, but we stick
to two for notational simplicity. The results for the general case will be apparent

1The book by H. Kushner, Heavy Traffic Analysis of Controlled Queueing and Communication
Networks, Vol. 2, Springer, New York, 2001, has much information on related problems.
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from the results for the two source case. The data (or jobs) created by each source
are queued there, and the server alternates service (i.e., polling) between them in some
way to be determined later. There is no switchover time in going from one source
to another. Each of the sources will become unavailable to the server from time to
time. The periods of unavailability are called vacations, in accordance with current
terminology. Strictly speaking, it is the connection from the source to the server which
is “on vacation,” but we simply say that the source itself is on vacation. A source
that is on vacation cannot be polled, but the data or job inputs which it creates still
arrive to its queue. In that case, the content of the unavailable queue grows, but
the server can only work on the available queue. Service is nonpreemptive, and first-
come-first-served (FCFS): i.e., a job once started is completed, assuming that there is
no intervening vacation. Also, the system is assumed to be “work conserving” in that
the server will not idle if there is work to do on an available queue. Suppose that a
vacation starts in the middle of a job. We suppose either (a) that the job is allowed
to be completed, or (b) that it is stopped, but when that source is next served the job
needs only its residual time, or (c) that the entire job needs to be redone. Because of
the “rarity” of vacations under the assumptions (A2.3) and (A2.4) to be introduced
below, the results will be the same for all cases. For specificity, and without loss of
generality in the results, we suppose that both sources are available at time 0.

Our approach is that of heavy traffic analysis, where the “spare capacity” of the
system is small. As usual in heavy traffic analysis, the problem is embedded in a
sequence of problems, indexed by n. As n → ∞, the spare capacity of the server goes
to zero, and this is quantified in (A2.2). Let {∆a,n

i,l , l < ∞} denote the interarrival

times for jobs at source i = 1, 2, and let {∆d,n
i,l , l < ∞} denote the corresponding work

(real time) requirements.
Comment on weak convergence. Let R

r denote r-dimensional Euclidean
space. The path space for all of the processes will be D(Rr; 0,∞), the space of
R
r-valued functions which are right continuous and have left-hand limits, for the

appropriate values of r. If r = 1, we write simply D(R; 0,∞). The Skorohod topology
will be used on this space. All of the concepts concerning weak convergence which will
be used can be found in the standard references [5, 12]. Summaries with applications
to stochastic systems can be found in [17, 19]. The following is a convenient criterion
for tightness in D(R; 0,∞). It will be used implicitly, without specific mention. Let
Y n(·) be a sequence of processes with paths in D(R; 0,∞). Let T n(t) denote the
stopping times with respect to the filtration engendered by Y n(·) and which are no
larger than t. If, for each t,

(2.1a) lim
δ→0

sup
n

sup
τ∈T n(t)

E (1 ∧ |Y n(τ + δ)− Y n(τ)|) = 0

and

(2.1b) {Y n(s) : n < ∞, s ≤ t} is tight in R,

then {Y n(·)} is tight [12].
Notation and assumptions. For some centering constants ∆̄α,n

i , α = a, d,
whose properties will be specified below, define the processes

(2.2) wα,n
i (t) =

1√
n

nt∑
l=1

[
1− ∆α,n

i,l

∆̄α,n
i

]
, t ≥ 0, α = a, d, i = 1, 2.
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When an index of summation is nt we mean the integer part [nt]. Let xni (t) denote
1/
√
n times the number of jobs in queue i at real time nt, including the one in service,

if any. Let WLn
i (t) (called the workload at queue i) denote 1/

√
n times the real time

that the server must work to complete all of the jobs which are in queue i at real time
nt. Thus, time is scaled by 1/n and the state by 1/

√
n. Define the total workload

WLn(t) =
∑

iWLn
i (t). By scaled work we mean 1/

√
n times the actual physical work

in question. The expression scaled time of some event always refers to the real time
of that event divided by n.

Define the index of a job at queue i as one plus the number of jobs that arrived or
were there before it, starting with the ordered

√
nxni (0) jobs which are in that queue

at time zero. Let Ln
i (t) ≥ 0 denote the index of the last customer to enter service

in queue i at or before real time nt. For future use, note that xni (·) and WLn
i (·) are

related by

(2.3) WLn
i (t) ∈


 1√

n

Ln
i (t)+

√
nxn

i (t)−1∑
l=Ln

i
(t)

∆d,n
i,l ,

1√
n

Ln
i (t)+

√
nxn

i (t)−1∑
l=Ln

i
(t)+1

∆d,n
i,l


 .

We will use the following conditions. By “driving random variables,” we mean the
set of initial conditions, the arrival times and service requirements, and the starting
and stopping times of the vacations.

A2.0. For each n, xni (0),WLn
i (0), i = 1, 2, are independent of all of the “future”

driving random variables. None of the sources is on vacation at t = 0. (The last
sentence is used only to simplify the notation.)

A2.1. For α = a, d; i = 1, 2, there are constants ∆̄α
i such that

∆̄α,n
i → ∆̄α

i .

As n → ∞, the sequences wα,n
i (·), n < ∞, α = a, d; i = 1, 2, converge weakly to mutu-

ally independent Wiener processes wα
i (·), α = a, d, i = 1, 2, with variance parameters

σ2
α,i, respectively.

Define λ̄α,ni = 1/∆̄α,n
i , which will be used interchangeably, and similarly for λ̄αi =

1/∆̄α
i . Define the traffic intensities

ρni = ∆̄d,n
i /∆̄a,n

i = ∆̄d,n
i λ̄a,ni , ρi = ∆̄d

i /∆̄
a
i = ∆̄d

i λ̄
a
i .

A2.2. There is a real number b such that

lim
n

√
n

[∑
i

ρni − 1

]
= b.

Note that (A2.2) implies that
∑

i ρi = 1.
A2.3. For each n, i, the intervals between the end of the lth vacation and the

start of the next one for source i are denoted by nτ s,ni,l , l = 1, . . . . They are mutually
independent, exponentially distributed, independent of all the other “driving” random
variables and have rate λ̄s,ni /n, where λ̄s,ni converges to λ̄si > 0 as n → ∞. The
intervals for the different sources are mutually independent.

A2.4. For each n, i, there are mutually independent and identically distributed
random variables τv,ni,l , l = 1, . . . , such that the duration of the lth vacation interval for

source i is
√
nτv,ni,l . Also, τ

v,n
i,l converges weakly to a random variable τ

v
i as n → ∞.
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For each i, the τv,ni,l , l = 1, . . . , are independent of all other “driving” random variables.

The intervals for the different sources are mutually independent. supi,nEτv,ni,l < ∞.
Define τv,ni,0 = 0.

The convergence to the Wiener process in A2.1 is a convenient way of covering
many common models, the simplest being the independent and identically distributed
cases. The extension of A2.4 which covers correlated (between the sources) vacation
intervals is discussed at the end of section 3. The added difficulties are only algebraic.
We can work with different information structures, in that the server controller can
know either the numbers queued or the work queued. We will confine ourselves to the
first case, but it will be seen that the results are asymptotically (as n → ∞) equivalent
in that the minimum costs are the same and a good policy for one is equivalent to a
good policy for the other. This holds since (Theorem 3.1) the scaled number queued
and scaled work queued are (asymptotically) linearly related except on an arbitrarily
small (scaled) time interval. Thus, unless mentioned otherwise, the server does not
know the work in the queues, only the number of jobs in each queue. It also knows
the entire past history, which is the set of past polling decisions, the work done for
each job already served and the timing, as well as the starting and ending times of
the vacations to date, for each source. The admissible control (or polling) policy is
defined in the following way.

A2.5. The server can select the queue served in any nonanticipative way at all,
provided that it does not switch while a job is being processed. By nonanticipative we
mean the following. Suppose that a job has been completed at real time nt and both
sources are available. Then, the next source to be polled is determined by the value (0
or 1) of a measurable function of the initial queue sizes, all arrival and service data,
and the record of vacation starts and completions up to real time nt for each queue.

Later we will also deal with the set of policies which satisfy either of the following
special but important conditions.

A2.6a. (In terms of queued numbers.) There is a real-valued function φ(·), which
is continuous and nondecreasing, such that between vacations the server polls source
1 at real time nt if xn2 (t) < φ(xn1 (t)), and polls source 2 otherwise. The server does
not switch while a job is being processed.

A2.6b. (In terms of queued workload, a less restrictive function.) There is a real-
valued function θ(·) which is continuous at all but a finite number of values such that
between vacations the server polls source 1 if WLn

1 (t) ≥ θ(WLn(t)), and polls source 2
otherwise. The server does not switch while a job is being processed.

3. Weak convergence of the workload and content processes: Arbitrary
controls. For l > 0, define

νni,l =

l∑
k=1

[
τ s,ni,k + τv,ni,k−1/

√
n
]
,

which is 1/n times the real time of the start of the lth vacation at source i. That
is, it is the scaled time of the start of the lth vacation at source i. The (scaled) lth
vacation interval for source i is the half open (scaled) interval [νni,l, ν

n
i,l + τv,ni,l /

√
n).

Discussion of the control problem. The weak convergence result will be in
terms of the total workload (rather than in terms of the workload in each queue),
which will be seen to be enough to get the desired results. In fact, except under
special policies such as A2.6, in general there is no weak convergence result for the
(WLn

i (·), i = 1, 2) or (xni (·), i = 1, 2). Also, the use of WL(·) yields a one dimensional
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limit control problem, a considerable advantage. Next, we introduce some needed
notation, and set the problem up and discuss some of its features in a way that
facilitates the proof of Theorem 3.1.

Let Sa,n
i (t) (resp., Sd,n

i (t)) denote 1/n times the number of jobs that arrived to
(resp., were completely served at) queue i by real time nt. Let Zn(t) denote 1/

√
n

times the total real time that both queues are empty and neither source is on vacation
up to real time nt. Let T v,n(t) denote 1/

√
n times the total time up to real time nt

that the server could not work due to a vacation (i.e., where the contents of the
available queue, if any, is zero, or where there are no available queues). Then we can
write (remaining work = arrived work − work done)

(3.1)
WLn(t) = WLn(0) +

1√
n

∑
i

nSa,n
i

(t)∑
l=1

∆d,n
i,l

− 1√
n
[real time of all service by real time nt] ,

where the last term on the right is

(3.2) − [√nt− Zn(t)− T v,n(t)
]
.

The effect of the vacations: A heuristic discussion. We need to examine
T v,n(t) more carefully, since (as will be seen) it is through this term that the control
affects the paths of the process in the limit. By A2.4, in scaled time the vacations
last τv,ni,l /

√
n units of time, an amount which vanishes as n → ∞.

By A2.3, the intervacation times are τv,ni,l in scaled time. Owing to the mutual
independence of the intervacation times for the same queue and for the different
queues, for any T > 0 the probability that vacations will overlap at some point on
the scaled time interval [0, T ] is of the order of 1/

√
n. Since weak convergence on

the time interval [0,∞) is implied by weak convergence on all intervals [0, T ], the
possibility of overlapping can be ignored in the weak convergence proofs. Thus, in
the following discussion, which evaluates the effects of the vacations on the paths for
arbitrarily large n, we will suppose (without loss of generality) that only one source
can be on vacation at a time. More particularly, if one or more vacations overlap,
ignore all but the first. Since this modification alters the paths on each interval [0, T ]
with a probability of the order O(1/

√
n), it does not affect the distribution of the

limit quantities. While the possibility of overlapping vacations is not important for
the purely weak convergence aspects in this section, it will have to be taken into
account when dealing with the convergence of the costs in section 4. This is because
the convergence of the costs (which are not bounded functions) requires both weak
convergence of the processes and uniform integrability of the cost functions, so that
events of small probability cannot necessarily be neglected. Define un(t) = WLn

1 (t).
Hence, WLn

2 (t) = WLn(t)−un(t). It will turn out that un(·) has the effect of a control.
Its value will be seen to be the mechanism for controlling the values of the jumps.

Consider the lth vacation of source i. It starts at (scaled) time νni,l, and the total

workload just before that is WLn(νni,l−). Define Āj,n
i,l to be 1/

√
n times the work

arriving at queue i during the lth vacation of source j. Define

(3.3) Āj,n
i,l (t) =

1√
n

nSa,n
i

((νn
j,l+(τv,n

j,l
∧t)/√n)−)∑

l=nSa,n
i

(νn
j,l

−)+1

∆d,n
i,l .
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The minuses (−) in the lower and upper limits of summation in (3.3) are due to the
fact that (recall that the interval is half open) we count νn1,l as part of the (scaled)

vacation period, but not νn1,l+ τv,n1,l /
√
n, for specificity, although the exact accounting

procedure used at the end-points is asymptotically (as n → ∞) irrelevant.
The time scale used in (3.3) will be called the local fluid scale. In this scale, t

denotes an interval of real time of length
√
nt, or, equivalently, an interval in scaled

time of length t/
√
n.

Until further notice, for notational simplicity in the motivational discussion, let
us fix our attention on the lth vacation of source 1. Thus, Ā1,n

i,l = Ā1,n
i,l (∞), the scaled

arriving work at queue i during this vacation. Also, Ā1,n
i,l (t) is 1/

√
n times the work

arriving at queue i in the real time interval [nνn1,l, nν
n
1,l +

√
nt) for t < τv,n1,l .

Let ξv,ni,l denote the change in the total workload during the lth vacation of source
i. If

(3.4a) τv,n1,l < WLn
2 (ν

n
1,l−) + Ā1,n

2,l = WLn(νn1,l−)− un(νn1,l−) + Ā1,n
2,l ,

then the vacation ends before queue 2 is emptied, and the vacation would not seem
to have an immediate effect on the total idle time and workload and (asymptotically,
as n → ∞) ξv,n1,l = 0. This is not quite obvious, and the point is both important
and subtle, since it is possible that the scaled work that arrives during a vacation all
arrives close to the end in which case there might be idle time. However, as seen from
Theorem 3.1, it turns out that (asymptotically, as n → ∞ and in the local fluid time
scale) the scaled work can be supposed to arrive “continuously” and at the mean rate
during the vacation, analogously to a “fluid.” This implies that, asymptotically, as
n → ∞ and under (3.4a), the vacation has no effect on the total workload.

On the other hand, if

(3.4b) τv,n1,l > WLn(νn1,l−)− un(νn1,l−) + Ā1,n
2,l ≡ τ̂v,n1,l ,

then queue 2 is emptied before the vacation ends. The proof of Theorem 3.1 allows
us to suppose that (asymptotically, as n → ∞, and in the local fluid time scale) the
scaled work arrives continuously, as a fluid, at the mean rate as noted above. However,
the heavy traffic condition A2.2 implies that the service rate is so much faster than
the arrival rate of work at queue 2, that (asymptotically, as n → ∞) the workload
in queue 2 is zero for a nonvanishing fraction of the vacation time. Thus, there is
(asymptotically) forced idle time and an increase in the total workload due to the
vacation. This increase will depend on the value of the workload at queue 2 at the
time that the vacation at queue 1 starts. In turn, that value depends on the control
policy. This is the only way that the control policy affects the workload: via the sizes
of the jumps due to the vacations, which (in turn) is determined by the distribution
of the total workload just before the vacation starts. It will be seen that the difference
between the scaled work that arrives at queue j during this lth vacation of source 1
and λ̄aj ∆̄

d
j τ

v,n
1,l = ρjτ

v,n
1,l converges weakly to zero. Obviously, one can reverse sources

1 and 2 in the above discussion. From the above discussion, we see that the control
can be viewed as the division of the total workload among the two queues.

Suppose, formally, that n indexes a weakly convergent subsequence of(
τv,n1,l , u

n(νn1,l−),WLn(νn1,l−)
)
,

use the same notation (dropping the n superscript) for the weak sense limits, and
formally use the asymptotic fluid approximation to (3.3). This fluid approximation
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simply replaces the terms in (3.3) by their asymptotic mean value and is ρi[τ
v
1,l ∧ t].

We see, formally, that (in the limit) the increase in T v,n(·) (equivalently, in the total
workload) during the lth vacation of source 1 can be written as

ξv1,l =
[
(1− ρ2) τ

v
1,l − [WL(ν1,l−)− u(ν1,l−)]

]+
which equals

(3.5a)
[
ρ1τ

v
1,l − [WL(ν1,l−)− u(ν1,l−)]

]+
.

The analogue for the lth vacation of source 2 is

(3.5b) ξv2,l =
[
ρ2τ

v
2,l − u(ν2,l−)

]+
.

Here, u(t) ≤ WL(t) can be considered to be the control function for the limit system
(3.7), (3.8a). It appears only via the discrete values: u(νi,l−), l < ∞, i = 1, 2. The
notation in (3.5) can be misleading since the use of the symbol u(t−) suggests either
left continuity or that the left-hand limit exists at t, or that (some subsequence of)
un(·) converges weakly. We do not make these claims for general polling policies, but
the sequence un(νni,l−) will always be tight in n. If the control policy is of the type in
(A2.6), then roughly speaking (see Theorem 3.2) the “intervacation sections” of un(·)
will be tight and have continuous weak sense limits.

The intervacation sections. Let ν̄nl and νnl denote, respectively, the (scaled)
time of the beginning and end (respectively) of the lth intervacation interval, irre-
spective of the source. Thus, by our conventions, ν̄nl is 1/n times the real time of
the beginning of the lth vacation. By our convention, no source is on vacation at the
initial time, so that ν̄n1 = 0. Define the intervacation sections as the functions

(3.6) WLn ((ν̄nl + t) ∧ νnl ) , t ≥ 0.

It is constant for t ≥ νnl − ν̄nl .
State space collapse. The physical dimension of the original problem is the

number of sources. Mathematically, the dimension is even higher since the set of
queue lengths is not Markovian. Theorem 3.1 is an example of what is called state
space collapse [7, 24, 25, 26, 32] in the heavy traffic literature. The dimension of
the approximating problem is unity and the original xni (·) (which do not necessarily
converge weakly) can be asymptotically approximated by a constant (depending on
i) times the total workload process WLn(·) (which does converge weakly in the sense
described in the theorem). Such state space collapse is obviously very helpful in the
control problem and for numerical procedures.

Comment on tightness and Theorem 3.1. During a vacation,WLn(·) changes
in steps of size O(1/

√
n) over an interval of scaled size O(1/

√
n). While the effect of

the vacation is (asymptotically) a jump in a well-defined sense, because of the way
that the jump is realized, WLn(·) is not tight in the Skorohod topology. Since the
parts of the path between vacations are well behaved, it is convenient to work with
the effects of the vacations and the intervacation parts separately. Suppose that the
set in (3.6) is tight for each l. It is easy to show this (Theorem 3.1) for l = 1. Then
the set of its “terminal” conditions WLn(νn1 −) is also tight, as is un(νnl −). Thus the
set (3.5a) or (3.5b) for the first vacation is also tight (Theorem 3.1). Then, the set of
initial conditions WLn(ν̄2) for the next intervacation interval is tight. Then repeat, as
for the first section, etc. In this way, taking an appropriate subsequence and working
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section by section, one constructs a “limit” process WL(·). We call this procedure
“concatenation.” A primary aim is showing the convergence of the discounted cost
functions (4.3b) to (4.3a) for a well-defined “limit” process WL(·). One does not need
full weak convergence of WLn(·) for this and the piecewise or concatenation approach
is adequate. The various conclusions of the theorem are denoted by (a), (b), etc.

As indicated above, in the proof of the theorem one works step by step. After
some preliminary details concerning convergence of the Sa,n

i (·) and representations of
the workload process, it is shown that the sequence of sections up to the time of the
first vacation is tight and its limit is characterized. Thus, the sequence of states at the
time at which the first vacation starts is tight. Then we deal with the first vacation
and characterize its limits. Now, we have that the sequence of states at the end of
the first vacation is tight, so we can analyze the paths between the end of the first
vacation and the beginning of the second, just as the path up to the first vacation
was handled, etc. In this way, we can see that there is nothing special about the first
intervacation interval or the first vacation. Thus, all of the intervacation sections and
vacation jumps can be dealt with. The appropriate limit process puts these together
in sequence. This type of convergence is sufficient to get the convergence result for the
discounted cost function later on. The procedure is analogous to a common method
of constructing the solution to a jump-diffusion process.

Theorem 3.1. Assume A2.0–A2.5, and suppose that (xni (0), i = 1, 2) converges
weakly to (xi(0), i = 1, 2). (a) Then WLn(0) converges weakly to

∑
i ∆̄

d
i xi(0). (b) For

i = 1, 2, the set

Ψn =
(
WLn(νni,l−), un(νni,l−), τv,ni,l , τs,ni,l , ξv,ni,l , i = 1, 2, l < ∞

)
is tight in n. (c) The sequence of intervacation sections of WLn(·) defined by (3.6)
and of Zn(·) are tight for each i and l, the weak sense limit of any weakly convergent
subsequence has continuous paths.

Fix a weakly convergent subsequence of the set Ψn and the set of intervacation
sections of WLn(·) and Zn(·), and index it by n also (abusing terminology). The
weak sense limits are denoted by dropping the n superscript. (d) Then (τ s,ni,l , l < ∞)
converges weakly to (τ si,l, l < ∞), where the τ si,l are exponentially distributed with rate

λ̄si . (e) The differences WLn
i (·)− ∆̄d,n

i xni (·) converge weakly to the “zero” process. (f)
Define WL(·) by concatenating the weak sense limits of the successive intervacation
sections of WLn(·). The weak sense limits of any weakly convergent subsequence are
related by

(3.7) WL(t) = WL(0) + bt+ w(t) +
∑
i

Ji(t) + Z(t),

where

(3.8a) Ji(t) =
∑

l:νi,l≤t

ξvi,l, νi,l =

l∑
k=1

τ si,k.

In (3.7) the process WL(·) between its (l− 1)st and lth jump is the value of the weak
sense limit of the process defined by (3.6) on the interval [0, νnl − ν̄nl ). (g) Also

(3.8b)
(
WL(0), w(·), τvi,l, τsi,l; i = 1, 2, l < ∞)
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are mutually independent, and w(·) is a Wiener process with variance parameter

(3.9) σ2 =
∑
i

[
ρiσ

2
a,i + σ2

d,i

]
,

which we assume to be positive. (h) Z(·) is the reflection term. It is continuous,
nondecreasing, can increase only at t, where WL(t) = 0 and satisfies Z(0) = 0. (i)
The ξvi,l have the representation (3.5). (j) Define the Poisson processes Ni(·), i = 1, 2,
to be the process with a unit jump at νi,l, l ≥ 1. For each t,

(3.10) w(t+ ·)− w(t), Ni(t+ ·)−Ni(t), i = 1, 2,

is independent of

(3.11)
w(s), Ni(s), s ≤ t; s ≤ t; i = 1, 2,(

u(νi,l−)I{νi,l≤t}, ξvi,lI{νi,l≤t}, i = 1, 2, l < ∞) .
(k) The process (3.3) converges weakly to the process with values ρi(t ∧ τvj,l).

Comment on the control u(νi,l−). Under the general conditions that are
used in this theorem to get the weak convergence, we cannot get convergence of the
random processes un(·), only of the random variables which are the values at selected
points. However, in the next section the class of polling policies will be restricted to
be in some very reasonable class, and for this class there will be tightness of un(·)
in an appropriate sense. Then, the weak sense limits will be well-defined admissible
control functions for the weak sense limit WL(·) process.
Proof. As noted below (3.2), without loss of generality we can suppose that at

most one source is on vacation at a time. Given the current real time nt, the real
time since the current service started or has to go, or the real time since or until the
next arrival are called residual times. We define a residual time error term to be a
random process (to be denoted by εn(·)) which is bounded by [constant/

√
n] times

a [finite sum of such residual time terms plus a constant]. Successive uses of εn(·)
might refer to different residual time error terms. Assumption A2.1 implies that the
εn(·) converge weakly to the “zero” process, since the continuity of the limit there
implies that the maximum of the first [nt] summands, divided by

√
n, goes to zero in

probability as n → ∞.
The difference between the terms in (2.3) is a residual time error term, thus the

process defined by the difference converges weakly to the “zero” process. The proof
that WLn(0) converges as asserted follows from A2.1 and the representation (2.3),
where t = 0.

For specificity, we will suppose that the preempt-resume discipline holds for any
job which is being served when a vacation of its source starts. Assumption A2.3
implies that, for any t, the number of vacations on any real time interval [0, nt] is
bounded in probability, uniformly in n. Due to this and the fact that (by A2.1) the
maximum of the first [nt] workloads divided by

√
n goes to zero in probability as

n → ∞, any of the disciplines cited in section 2 will yield the same result.
We next prove the weak convergence of Sa,n

i (·) to the process with constant values

λ̄ai t. Define T a,n
i (t) =

∑nt
l=1 ∆

a,n
i,l /n. By A2.1, T a,n

i (·) converges weakly to the process

with values ∆̄a
i t = t/λ̄ai . Also, possibly modulo a residual time error term,

Sa,n
i (T a,n

i (t)) = t,

T a,n
i (Sa,n

i (t)) = t.
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This and the weak convergence of T a,n
i (·) imply the asserted weak convergence of

Sa,n
i (·).

The next step is to show the tightness and asymptotic continuity of WLn(·) when
there are no vacations. In the absence of vacations, we can write

(3.12) WLn(t) = WLn(0) +
1√
n

∑
i

nSa,n
i

(t)∑
l=1

∆d,n
i,l − t

√
n+ Zn(t).

The term T v,n(t) of (3.2) is not included since, in this part of the proof, we have
assumed that there are no vacations. For each i, expand the inner sum in (3.12) as

(3.13)
1√
n

nSa,n
i

(t)∑
l=1

[
∆d,n

i,l − ∆̄d,n
i

]
+

1√
n

nSa,n
i

(t)∑
l=1

∆̄d,n
i .

The first term of (3.13) is −∆̄d,n
i wd,n

i (Sa,n
i (t)). Expand the last term in (3.13) as

(3.14)
1√
n
∆̄d,n

i

nSa,n
i

(t)∑
l=1

[
1− ∆a,n

i,l

∆̄a,n
i

]
+

1√
n

∆̄d,n
i

∆̄a,n
i

nSa,n
i

(t)∑
l=1

∆a,n
i,l .

The right-hand sum in (3.14) equals nt minus the time between nt and the last arrival
at or before real time nt. Hence, the right-hand term equals ρni

√
nt plus a residual

time error term.
Summarizing,

(3.15)

WLn(t) = WLn(0) +
∑
i

∆̄d,n
i

[
wa,n
i (Sa,n

i (t))− wd,n
i (Sa,n

i (t))
]

+
√
n

[∑
i

ρni − 1

]
t+ Zn(t) + εn(t).

The hypotheses and the weak convergence of Sa,n
i (·) imply the weak convergence

of the processes on the right of (3.15) to those of (3.7), except possibly that of Zn(·),
with the given definitions of w(·) and b, but without the jump term. If {Zn(·), n <
∞} were not tight and have continuous weak sense limits, then we would have a
contradiction to the facts that Zn(·) can increase only when WLn(t) = 0 and has
jumps of size 1/

√
n only. Thus, by taking a further subsequence if necessary, we can

suppose that Zn(·) converges to the reflection term Z(·) in (3.7). The sequence of
processes defined by (3.15) converges weakly and the limit satisfies (3.7) without the
jump term.

Now, return to the original problem, where there are vacations, and recall that νn1
is the scaled time of the start of the first vacation. For the remainder of this proof,
continue using the assumption that the vacations do not overlap. As noted below (3.2),
this is accomplished by ignoring all but the first if there are overlaps. The alteration
does not change the distribution of the limit processes, since the probability of such
a change on any finite interval goes to zero as n → ∞.

By A2.3 and A2.4, the various sequences of times τ s,ni,l , τv,ni,l , i = 1, 2, l = 1, . . . ,

converge weakly and ν̄nl+1 −νnl = τv,ni,l /
√
n converges weakly to zero. By A2.3 and the

weak convergence of the sequence of processes defined by (3.15), WLn(νn1 −) also con-
verges weakly. Denote the weak sense limits by dropping the superscript n. By A2.3,
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the (τ si,l, l = 1, . . . , i = 1, 2) are mutually independent, and exponentially distributed,

with rate λ̄si for τ si,l. By A2.4, (τvi,l, l = 1, . . . , i = 1, 2) are mutually independent. By
A2.0, A2.1, A2.3, and A2.4, the

(3.16) WL(0), wa
i (·), wd

i (·), τvi,l, τsi,l, i = 1, 2, l = 1, . . . ,

are mutually independent. For each l, νnl converges weakly and νnl+1 − νnl converges
weakly to an exponentially distributed random variable, with rate

∑
i λ̄

s
i , and the

limits are mutually independent and are independent of the random variables in (3.16)
other than {τ si,l; i, l}.

Suppose for the moment that the jumps ξv,ni,l are tight for each i, l. Abusing nota-

tion, let n index a further subsequence along which all of the ξv,ni,l , i = 1, 2, l = 1, . . . ,
also converge weakly, and denote the weak sense limits by dropping the superscript
n. Then, by repeating the analysis which led to (3.15) on each successive intervaca-
tion interval, we are led to (3.7) with Ji(·) defined by (3.8a) and the independence in
(3.8b). Equation (3.7) represents the limit of WLn(·) in the particular sense that its
interjump sections are the weak sense limits of the intervacation sections (3.6) and its
jumps are the limits of the WLn(ν̄nl+1)−WLn(νnl −) (for the chosen subsequence).

By taking a further subsequence, if necessary, we can also suppose that, together
with the other convergences, un(νni,l−), i = 1, 2, l = 1, . . . , converges weakly to random
variables which we call u(νi,l−), i = 1, 2, l = 1, . . .. From the weak convergence of the
un(νni,l−), νni,l, i = 1, 2, l = 1, . . ., we have the weak convergence of the un(νnl −), l =
1, . . ..

We will next show that ξv,ni,l is tight for each i and l and that (3.5) characterizes
the weak sense limits. To simplify the notation, we will start with the first vacation
and let the first vacation be that of source 1. With this simplifying assumption, we
can write τ s,n1,1 = νn1,1 = νn1 , and we will use these variables (and their weak sense
limits) interchangably. By the weak convergence of WLn(·) (with the weak sense limit
of WLn(·) being continuous) when there are no vacations and the weak convergence of
τ s,n1,1 , WLn

1 (τ
s,n
1,1 −) = WLn

1 (ν
n
1 −) = un1 (ν

n
1 −) converges weakly to the random variable

which we denote by u(νs1,1−). We will show that, under (3.4a),

(3.17) WLn(νn1,1 + τv,n1,1 /
√
n)−WLn(νn1,1) ⇒ 0,

and under (3.4b),

(3.18) WLn
2 (ν

n
1,1 + τv,n1,1 /

√
n) ⇒ 0,

(3.19) WLn
1 (ν

n
1,1 + τv,n1,1 /

√
n)−WLn

1 (ν
n
1,1) is tight,

and the weak sense limit (along the selected weakly convergent subsequence) of (3.19)
is defined by (3.5). Since the (scaled) vacation interval in question is [νn1,1, ν

n
1,1 +

τv,n1,1 /
√
n), strictly speaking, the arguments in the functions in (3.19) should be (νn1,1+

τv,n1,1 /
√
n)−, and analogously for (3.17) and (3.18). However, since the processes

defined by WLn(t) − WLn(t−) and un(t) − un(t−) converge weakly to the “zero”
process, one can always replace t− by t without changing any of the weak sense
limits. We will do this to simplify the notation.

Since source 2 is being polled during this vacation, for t ≤ τv,n1,1 we can write

(3.20) WLn
2 (ν

n
1,1 + t/

√
n) =

[
WLn(νn1,1)− un(νn1,1)

]− t+T v,n(νn1,1 + t/
√
n)+ Ā1,n

2,1 (t).
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We will next show that the process defined by

Ā1,n
i,1 (t ∧ τv,n1,1 )− ρni (t ∧ τv,n1,1 )

converges weakly to the “zero” process. This is what was meant by the statement
below (3.4a) to the effect that work can be assumed to arrive continuously during a
vacation and it is the last assertion (k) of the theorem. Note that the local fluid time
scale defined below (3.3) is used in (3.20), so that t denotes an interval of length

√
nt

in real time or t/
√
n in scaled time.

Use the representation (3.3) (dropping the − in the indices of summation without
changing the end result) to write Ā1,n

i,1 (t) as

(3.21)

1√
n

nSa,n
i

(νn
1,1+(t∧τv,n

1,1 )/
√
n)∑

l=nSa,n
i

(νn
1,1)+1

[
∆d,n

i,l − ∆̄d,n
i

]

+
1√
n

nSa,n
i

(νn
1,l+(t∧τv,n

1,1 )/
√
n)∑

l=nSa,n
i

(νn
1,1)+1

∆̄d,n
i .

The first term in (3.21) goes weakly to zero by the tightness of νni,l, τ
v,n
i,l in n, the weak

convergence of Sa,n
i (·), and condition A2.1. We need to characterize the right-hand

term of (3.21). Write it as

∆̄d,n
i√
n

nSa,n
i

(νn
1,1+(t∧τv,n

1,1 )/
√
n)∑

l=nSa,n
i

(νn
1,1)+1

[
1− ∆a,n

i,l

∆̄a,n
i

]

+
∆̄d,n

i

∆̄a,n
i

√
n

nSa,n
i

(νn
1,1+(t∧τv,n

1,1 )/
√
n)∑

l=nSa,n
i

(νn
1,1)+1

∆a,n
i,l .

Just as for the first term in (3.21), the first term in the above expression goes weakly
to the “zero” process as n → ∞. The real time difference between the arguments in
the upper and lower indices in the last expression is

√
n[t ∧ τv,n1,1 ]. Hence, the sum in

the second term times 1/
√
n is t∧ τv,n1,1 , modulo a residual time error term. Thus, the

difference between the second term and

(3.22)
∆̄d

i

∆̄a
i

(
t ∧ τv,n1,1

)
= ρi

(
t ∧ τv,n1,1

)
converges weakly to the “zero” process.

The above computations concerning the arriving scaled work during the vacation
show that the net change ξv,n1,1 in the total workload is tight, and that we can suppose,
asymptotically and in the local fluid time scale defined below (3.3), that scaled work
arrives at the queues continuously (i.e., as a fluid process) at the mean rate ρi during
the vacation.

Consider the case (3.4a). By what has just been proved, the scaled work process
arriving to queue 1 during the first vacation is arbitrarily well approximated (in the
local fluid time scale) by (3.22) for i = 1. Similarly, the scaled work that departs queue
2 during that time (local fluid time scale) is (asymptotically) equal to τv,n1,1 minus
the idle time in the local fluid time scale. However, due to the fluid approximation
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and the condition (3.4a), this idle time is zero, asymptotically. Thus, by the above
computation, the net increase in the workload (input minus output) of queue 2 during
the vacation is (asymptotically) equal to [ρ2 − 1]τv,n1,1 . Thus, by the heavy traffic
condition A2.2, adding the changes in the two queues, we see that the net change in
the total workload during the vacation converges weakly to zero as n → ∞.

Now, consider the condition (3.4b), continue to use the approximation (3.22), and
recall the definition of τ̂v,ni,l from (3.4b). It is then clear that τv,ni,l − τ̂v,ni,l is the net
contribution to T v,n(·) during this vacation interval, and (3.5) follows from this and
the results of the last paragraph. Let ξv1,1 denote the weak sense limit of ξv,n1,1 . Thus,
we have obtained (3.7) and (3.8) and verified (i) up to and including the time of the
first vacation.

Now, withWLn
i (ν

n
1,1+τv,n1,1 /

√
n) well defined and tight, restart theWLn

i (·) at scaled
time νn1,1 + τv,n1,1 /

√
n and repeat the above approximation and limit procedure. Then

an induction argument yields the asserted limit relations for all of the intervacation
sections and jumps. Take a weakly convergent subsequence of Ψn in the theorem
statement, and obtain (3.7) and (3.8) by concatenating the intervacation sections.

Next, we will prove the (asymptotic) linear relationship (e) between WLn
i (·) and

xni (·). We say that a sequence of real-valued processes qn(·) is bounded in probability
if, for each T > 0,

(3.23) lim
N→∞

lim sup
n

P

{
sup
t≤T

|qn(s)| ≥ N

}
= 0.

It will be seen that the tightness of WLn(·) implies that xni (·) satisfies (3.23). Let

us assume this for the moment. We will use the representation (2.3). Write ∆d,n
i,l =

∆̄d,n
i,l + [∆d,n

i,l − ∆̄d,n
i,l ]. With this representation, expand each of the two terms in

the brackets in (2.3) into two components, analogous to what was done to get the
expression below (3.21). The first component of the expansion of (say) the first term
inside the brackets in (2.3) is

(3.24) ∆̄d,n
i xni (t).

The second component of (again) the first term inside the brackets of (2.3) is

(3.25)
1√
n

Ln
i (t)+

√
nxn

i (t)−1∑
l=Ln

i
(t)

[
∆d,n

i,l − ∆̄d,n
i,l

]
,

and it converges weakly to the “zero” process by the weak convergence assumption
A2.1 on wd,n

i (·) since xni (·) is assumed to satisfy (3.23).
Note that the difference between the two terms inside the brackets of (2.3) is a

residual time error term εn(t), where εn(·) converges weakly to the “zero” process,
and this is true irrespective of whether or not (3.23) holds for xni (·).

By the tightness of the sections of WLn(·) between the (l− 1)st and lth vacations
(for each l) and of the associated set of jumps, (3.23) holds for WLn

i (·), hence it holds
for the process defined by the first term in the brackets in (2.3). Suppose that (3.23)
does not necessarily hold for xni (·). The expansion of the first term in (2.3) into (3.24)

and (3.25) still holds. By the assumption A2.1 on the wd,n
i (·), the fact that the upper

index of summation in (3.25) is no bigger than nSa,n
i (·) + √

nxni (0) and the weak
convergence of Sa,n

i (·) and of xni (0), the process defined by (3.25) satisfies (3.23).
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Then, since the sum of (3.24) and (3.25) is the first term in (2.3), which satisfies
(3.23), so must the process defined by (3.24). Hence xni (·) satisfies (3.23). The fact
that (3.23) holds for xni (·) and the assumption A2.1 imply that (3.25) converges weakly

to the “zero” process. Hence, WLn
i (·) is asymptotically equivalent to ∆̄d,n

i xni (·).
Only the nonanticipativity (j) needs to be proved. But this is a consequence of

the independence in (3.16)
More than 2 sources. Suppose that there is an arbitrary number of sources,

with the natural extensions of the assumptions A2.0–A2.5 and the notation holding.
Then, on any (scaled) interval [0, T ], with a probability that goes to one as n → ∞,
there is still only a finite number of vacations and at most one source can be on
vacation at a time. Because of this, the analogues of (3.4) and (3.5) can easily be
written.

Consider the lth vacation of source i. If

τv,ni,l <
[
WLn(νni,l−)−WLn

i (ν
n
i,l−)

]
+
∑
j =i

Āi,n
j,l ,

then the method of Theorem 3.1 can be used to show that (asymptotically) the va-
cation at source i ends before the other queues are emptied, and the vacation has no
immediate effect on the total workload. On the other hand, if

τv,ni,l >
[
WLn(νni,l−)−WLn

i (ν
n
i,l−)

]
+
∑
j =i

Āi,n
j,l ≡ τ̂v,ni,l ,

then there is (asymptotically) a forced idle time during the vacation. Dropping the n
superscripts, the increase in scaled work during the lth vacation of source i has the
asymptotic form

ξvi,l =


τvi,l − [WL(νi,l−)−WLi(νi,l−)]− τvi,l

∑
j =i

ρj




+

which equals [
ρiτ

v
i,l − [WL(νi,l−)−WLi(νi,l−)]

]+
,

where WLi(νi,l−) is the weak sense limit of (a suitable weakly convergent subsequence
of) WLn

i (ν
n
i,l−). This is the only change in Theorem 3.1.

The control form A2.6a. The control form specified by A2.6a seeks to force the
relationship (asymptotic) xn2 (t) ∼ φ(xn1 (t)), at least when possible between vacations,
when both sources are available. The control, in practice, might be based on either
the queue sizes or on the workloads, depending on what information is available
to the controller at the server. Theorem 3.1 implies that we can do either, due
to the asymptotic equivalence WLn

i (·) ∼ ∆̄d,n
i xni (·). To a control represented by

the function φ(·) in A2.6a, there is one in terms of the workload in the sense of
asymptotic equivalence. We will now see that A2.6a is asymptotically equivalent to
the existence of a continuous and nondecreasing function θ(·) such that we poll source
1 if WLn

1 (t) ≥ θ(WLn(t)) and poll source 2 otherwise, provided that the source is
available.

To get θ(·), we use the asymptotic equivalence xn2 (t) ∼ φ(WLn
1 (t)/∆̄

d
1) and

WLn
2 (t) ∼ ∆̄d

2φ(WLn
1 (t)/∆̄

d
1).
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Since, asymptotically, using the policy φ(·) between vacations,

WLn(t) ∼
∑
i

WLn
i (t) = WLn

1 (t) + ∆̄d
2φ(WLn

1 (t)/∆̄
d
1),

we can define an “asymptotic inverse” θ(·) to the function φ(·) in that (between
vacations) we poll source 1 if WLn

1 (t) ≥ θ(WLn(t)) and poll source 2 otherwise. The
inverse is obtained from

WL−WL1 = ∆̄d
2φ(WL1/∆̄

d
1).

Note that we could have started with θ(·) and derived φ(·) from it: i.e., suppose
that we are given a nonnegative, continuous, and nondecreasing function θ(·) satisfying
θ(WL) ≤ WL, and use the following rule: between vacations, poll source 1 if WLn

1 (t) ≥
θ(WLn(t)) and poll source 2 otherwise. This can be turned into an (asymptotic) rule
based on the xni (·) by polling source 1 if

xn1 (t)∆̄
d
1 ≥ θ(xn1 (t)∆̄

d
1 + xn2 (t)∆̄

d
2)

and polling source 2 otherwise.
The function φ(·) in terms of the numbers queued is often (but certainly not al-

ways) the more pertinent in applications. However, the dynamic programming equa-
tion will be in terms of the total workload and the system (3.7), since the basic weak
convergence result is in terms of the total workload. The total workload formulation
is also much more convenient from the computational point of view due to the “state
space collapse” for which, no matter how many sources there are, the problem is one
dimensional. Thus, it is important to be able to travel back and forth between the
queued number and total workload forms.

Note on realizing the relationship WLn
1 (t) ∼ θ(WLn(t)), or its equiva-

lent in terms of the number queued, under A2.6. Suppose that both sources
are available at scaled time t, and that we wish to change WLn

1 (·) to the value
WL∗,n

1 > WLn
1 (t) as quickly as possible. In heavy traffic, by polling queue 2, the

scaled queue of source 1 increases at a mean rate of λ̄a1∆̄
d
1

√
n in scaled time. Thus,

it takes approximately [WL∗,n
1 −WLn

1 (t)]/[λ̄
a
1∆̄

d
1

√
n] units of scaled time for the tran-

sition. Thus, in the heavy traffic limit, with neither source on vacation, any desired
change can be realized instantaneously.

The relationship WLn
1 (t) ∼ θ(WLn(t)) cannot be realized arbitrarily well, uni-

formly (for large n) on the entire interval between vacations. This is because the
uncontrollable changes in the WLn

i (·) during a vacation will cause it to be violated
for a short interval just after the vacation ends, while we “catch up.” But there are
εn → 0 as n → ∞ such that the sections of the differences

(3.26a) xn1 (·)−
θ(WLn(·))

∆̄d
1

and

(3.26b) xn2 (·)−
WLn(·)− θ(WLn(·))

∆̄d
2

starting (scaled time) εn after a vacation begins and stopping at the start of the
next vacation converge to the zero process as n → ∞. This will be sufficient for our
purposes.
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Using the control θ(·) in A2.6b, we can write the ξvi,l of (3.5) as

(3.27a) ξv1,l ≡
[
(1− ρ2) τ

v
1,l − [WL(ν1,l−)− θ(WL(ν1,l−))]

]+
and

(3.27b) ξv2,l ≡
[
(1− ρ1) τ

v
i,l − θ(WL(ν2,l−))

]+
.

The following theorem codifies the last part of the above discussion and the proof
follows from the computations done in Theorem 3.1. The last sentence of the theorem
holds because of the weak convergence of the intervacation sections and the fact that,
between vacations, WL(·) behaves like a Wiener process, provided that σ2

α,i > 0 for
some α, i.

Theorem 3.2. Assume the conditions of Theorem 3.1 and A2.6a as well. Then
there are positive real numbers εn → 0 such that xn2 (·)− φ(xn1 (·)) converges weakly to
the “zero” process on each interval [νni,l + εn, ν

n
i,l+1]. So do WLn

1 (·) − θ(WLn(·)) and
the processes defined in (3.26), where θ(·) is defined from φ(·) as above the theorem.
Now assume A2.6b in lieu of A2.6a. Then, excluding an arbitrarily small neigh-

borhood of the times where WLn(t) is a point of discontinuity of θ(·), the last sen-
tence of the previous paragraph holds for θ(·). Assume that at least one of the
σ2
α,i, α = a, d, i = 1, 2, is positive. Given ε > 0 and t1 > 0, let Tn

ε (t1) denote the
Lebesgue measure of the closure set of time points on [0, t1] at which WLn(t) is within
ε of a point of discontinuity of θ(·). Then, for each δ > 0 and t1 > 0,

(3.28) lim
ε→0

lim sup
n

P {Tn
ε (t1) ≥ δ} = 0.

Correlated vacations of the sources. Up to now, we have supposed that the
vacation processes of the two sources are independent of each other. This would be
the case if they were due to movement in independent environments or to extraneous
interference if the sources were far apart. If the vacations were due to extraneous
interference which affected the sources in a similar manner, then the vacation intervals
would be correlated. The main problem in introducing such correlation is algebraic,
in that it complicates the expressions.

Let us first suppose that, in addition to the mutually independent vacations spec-
ified by A2.3 and A2.4, there are also simultaneous vacations of the two sources, as
defined by the following condition.

A3.1. For each n, the intervals between the end of a simultaneous vacation
and the start of the next one are denoted by nτm,n

l , l = 1, . . . . They are mutually
independent, exponentially distributed, independent of all the other “driving” random
variables and have rate λ̄m,n/n, where λ̄m,n converges to λ̄m > 0 as n → ∞.

A3.2. For each n, there are mutually independent and identically distributed
random variables τmv,n

l , l = 1, . . . , such that the duration of the lth simultaneous
vacation interval is

√
nτmv,n

i,l . Also, τmv,n
l converges weakly to a random variable

τmv
l as n → ∞. The τmv,n

l , l = 1, . . . , are independent of all other “driving” random
variables.

If A3.1 and A3.2 are added to the conditions of Theorem 3.1 or Theorem 3.2,
then the results would be the same, except for the addition of another (independent)
jump process Jm(·). Let νm,n

l denote the (scaled) starting times of the successive
mutual vacations, and let νml denote the weak sense limits. The weak sense limit (in
the sense used in Theorem 3.1) equation is

(3.29) WL(t) = WL(0) + bt+ w(t) +
∑
i

Ji(t) + Jm(t) + Z(t),
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where

(3.30) Jm(t) =
∑

l:νm
l

≤t

ξml ,

where ξml is the weak sense limit of (see (3.3))

(3.31) Ām,n
l =

1√
n

nSa,n
1 ((νm,n

l
+τm,n

l
/
√
n)−)∑

l=nSa,n
1 (νm,n

l
−)+1

∆d,n
1,l +

1√
n

nSa,n
2 ((νm,n

l
+τm,n

l
/
√
n)−)∑

l=nSa,n
2 (νm,n

l
−)+1

∆d,n
2,l ,

and the limit is just τml , owing to the analysis done for the Āj,n
i,l in Theorem 3.1 and

A2.2.

4. The limit control problem. The limit dynamical model. Theorem
3.1 enables us to write the correct limit control problem. As usual in heavy traffic
modeling, the aim is to use the limit control problem to get good controls for the
physical problem and approximations to its optimal costs, under heavy traffic. The
limit dynamics are defined by (3.7) and (3.8), where the jumps are defined by (3.5),
where an admissible control u(·) satisfies u(t) ≤ WL(t) and is nonanticipative in
the sense that it is a measurable process, and, for each t, u(t) is independent of
w(t + ·) − w(t), Ni(t + ·) − Ni(t−), i = 1, 2. Since WL(·) is continuous at all t where
there are no jumps and has a left-hand limit at t if there is a jump there, WL(t−)
is well defined for all t. However, u(t−) is not necessarily defined. If the control for
(3.7), (3.8) is defined via a function such as the θ(·) in A2.6b, then we would have
u(t) = θ(WL(·)) and u(t−) is well defined for almost all t, which ensures that u(νi,l−)
is well defined with probability 1. This is one of the main reasons for our interest in
control functions such as θ(·). Alternatively, we could write the jumps as

(4.1a) ξv1,l =
[
ρ1τ

v
1,l − [WL(ν1,l−)− u(ν1,l)]

]+
,

(4.1b) ξv2,l =
[
ρ2τ

v
2,l − u(ν2,l)

]+
,

where u(·) is a “predictable” process [15, 23]. All that is important is the non-
anticipativity as defined above, so that, for each t, u(t) is independent of any jump
that might occur at t.

The cost function. Let ci(·) be a strictly increasing and continuous real-valued
function on [0,∞) with ci(0) = 0, and satisfying ci(x) ≤ Kx +K for some K < ∞.
We will work with a discounted cost function. The cost rate will depend on whether
we are penalizing queued jobs or queued workload. In the latter case, we penalize the
workloads individually and simply use the cost rate∑

i

ci(WLn
i (·)) = c1(u

n(·)) + c2(WLn(·)− un(·)) ≡ c(WLn(·), un(·)).

In the former case, we would like to penalize the queue sizes individually, i.e., with a
cost rate

∑
i ci(x

n
i (t)). Since, in general, we do not have a weak convergence result for

the xni (·) for an arbitrary admissible control policy, we are still forced to work with
the workload formulation. Then we asymptotically approximate in terms of workload
as

(4.2)
∑
i

ci(x
n
i (t)) ≈ c1

(
un(t)

∆̄d,n
1

)
+ c2

(
WLn(t)− un(t)

∆̄d,n
2

)
≡ c(WLn(t), un(t)).
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Let β > 0 be the discount factor. The cost function for the limit system will be

(4.3a) Wβ(WL(0), u(·)) = E

∫ ∞

0

e−βtc(WL(t), u(t))dt,

and for the physical system it will be

(4.3b) Wn
β (WLn(0), un(·)) = E

∫ ∞

0

e−βtc(WLn(t), un(t))dt.

Define Vβ(WL(0)) = infuWβ(WL(0), u(·)) and V n
β (WLn(0)) = infun Wn

β (WL(0), un(·)),
where the un(·) and u(·) are admissible. Under a feedback control θn(·) and associated
polling policy satisfying A2.6b, we can write

(4.4) Wn
β (WLn(0), θn(·)) = E

∫ ∞

0

e−βtc(WLn(t), θn(WLn(t))dt.

A restriction of the class of controls and a redefinition of the inf. As
noted, we would like to show that a nearly optimal control for the limit problem is
nearly optimal for the physical problem for large n and that

(4.5) V n
β (WLn(0)) → Vβ(WL(0))

ifWLn(0) converges weakly toWL(0), analogously to what was done in [2, 20, 21]. This
is hard to do, since the control appears in the dynamics (3.7) only via the magnitude
of the jumps.

The usual method [2, 20, 21] for showing (4.5) involves writing the control in
some form such that the sequence of optimal (or ε-optimal) controls for the physical
problem is tight, and any weak sense limit of the (state process, control process) is an
admissible limit control problem. For example, suppose that we have a problem where
the control is a vector-valued function which takes values in a compact set. Then,
we would write the controls in relaxed control form [19] with the weak topology on
them. Since any sequence of such relaxed controls is tight (in the weak topology
which is normally used), there is always a weakly convergent subsequence. One could
attempt the same thing here. The sequence of relaxed control representations of the
control will be tight. The problem is that our u(·) is the derivative of the relaxed
control. This derivative is defined only almost everywhere, and in particular, it is not
guaranteed that the weak sense limit of un(νni,l−) would be u(νi,l−), where this u(·)
is the derivative of the weak sense limit of the relaxed control representations. The
problem is that, while the cost rate can be written as a linear function of the relaxed
control, the jump distribution depends only on specific values of the un(·).

One can circumvent these difficulties. However, in order to apply any control
which is nearly optimal for the limit system to the physical system, the form in which
u(·) appears in (3.5) essentially implies that it should be a feedback control which is
continuous “most of the time.” Because of these facts, we will be concerned with the
more restricted class of controls of A2.6b defined by the following assumption. It is
seen from the examples in section 5 and numerical data (taken without the restriction
in A4.1) that A4.1 is not restrictive.

A4.1. Given an integer M , let Θ denote a class of functions, each member
of which satisfies A2.6b, has at most M points of discontinuity, and on each finite
interval [0,WL], the functions in Θ are equicontinuous between discontinuities. The
controls will be restricted to such a class, with the polling policy being as defined in
A2.6b.
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Fix the class Θ for some M and modulus of equicontinuity. Redefine V n
β (WL(0))

and Vβ(WL(0)) to be the infima over controls in the class Θ.
A slight alteration of the proof of Theorem 3.1 yields the following. Assume

the conditions of Theorem 3.1 and let θn(·) ∈ Θ. Choose the weakly convergent
subsequence such that θn(·) also converges (in the Skorohod topology) to, say, θ(·).
Then the conclusions of Theorems 3.1 and 3.2 hold. Suppose, in addition, that the
function whose expectation is being taken in (4.4) is uniformly (in n) integrable. Then
the weak convergence in Theorems 3.1 and 3.2 implies that the expected value in (4.4)
converges to the expected value for the controlled limit system. We state this in the
following more restrictive way, since that is the way it will be verified. The proof is
simpler than those in [2, 20, 21] for other control problems under heavy traffic, owing
to the more restricted class of allowed controls. The proof implies that a good control
for the limit problem will be good for the physical problem under heavy traffic.

Theorem 4.1. Assume A4.1 and the conditions of Theorem 3.1. Let ci(·) satisfy
the conditions imposed at the beginning of this section. Suppose that there is a real
C1 such that

(4.6) sup
θ(·)∈Θ

E |WLn(t)|2 ≤ C1t+ C1.

Then the function whose expectation is being taken in (4.4) is uniformly integrable
and

V n
β (WLn(0)) → Vβ(WL(0)).

Comments on the proof. Let ε > 0 be small and arbitrary. Let θε,n(·) and
θε(·) be ε-optimal controls in Θ for the processes WLn(·) and WL(·), with the initial
conditions WLn(0) and WL(0), respectively. Condition A4.1 implies that, by choosing
a subsequence if necessary, we can suppose that θε,n(·) converges to some θ̄(·) ∈ Θ in
the Skorohod topology. Then

ε+ V n
β (WLn(0)) ≥ Wn

β (WLn(0), θε,n(·)) → Wβ(WL(0), θ̄(·)) ≥ Vβ(WL(0)).

Thus,

lim inf
n

V n(WLn(0)) ≥ Vβ(WL(0)).

Now, apply θε(·) to WLn(·) to get

V n
β (WLn(0)) ≤ Wn

β (WLn(0), θε(·)) → Wβ(WL(0), θε(·)) ≤ Vβ(WL(0)) + ε.

These inequalities yield the theorem.
On the condition (4.6). Condition (4.6) is not a consequence of the other

conditions. Write (3.15) for the general case where the vacations are included as

WLn(t) = hn(t) + Zn(t).

It follows from the estimates given for the general Skorohod problem in [10, Theorem
2.2.] that there is a real C such that

WLn(t) ≤ C sup
s≤t

|hn(s)| for all t.
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Thus, a sufficient condition for (4.6) is that the following inequalities hold.

(4.7) sup
n

E |WLn(0)|2 < ∞,

(4.8) E sup
s≤t

|wα,n
i (Sa,n

i (s))|2 = O(t), α = a, d, i = 1, 2,

(4.9) J̄n(t) =
∑
j

E

∣∣∣∣∣∣
∑

k:νn
j,k

≤t

ξv,nj,k

∣∣∣∣∣∣
2

= O(tp) for some p > 0.

Dealing with (4.8) and (4.9) in detail will take us far afield, but they do hold
under quite broad conditions. To illustrate one of the possibilities, we will give some
of the details under the following condition.

A4.2. For each n, the random variables (∆α,n
i,l , l < ∞) are mutually independent

and identically distributed for each i = 1, 2, α = a, d, and the absolute third moments
are uniformly bounded. There are ∆̄α,n

i and ∆̄α
i such that E∆a,n

i,l = ∆̄α,n
i → ∆̄α

i ,

α = a, d. Also, the second moments of τv,ni,l are uniformly bounded.
Theorem 4.2. Assume A2.3, A2.4, and A4.2. Then (4.8) and (4.9) hold.
Proof. First, we consider (4.8). Fix α and i and define ψα,n

i,l = (1−∆α,n
i,l /∆̄α,n

i ).

Let Fα,n
i,l denote the minimal ν-algebra which measures {ψα,n

i,j , j ≤ l}, and write Eα,n
i,l

for the associated conditional expectation. The ψα,n
i,l are martingale differences in

that Eα,n
i,l ψα,n

i,l+1 = 0 with probability one for all l. There is C2 < ∞ such that

Eα,n
i,l

∣∣∣ψα,n
i,l+1

∣∣∣2 ≤ C2.

Define

Nα,n
i (t) =

1

n
×min

{
n :

n∑
l=1

∆α,n
i,l ≥ nt

}
.

The Sα,n
i (t) and Nα,n

i (t) will differ by at most 1/n. The Nα,n
i (t) have the advantage

that they are stopping times with respect to the filtrations Fα,n
i,l . In particular, {ω :

Nα,n
i (t) ≥ l} ∈ Fα,n

i,l−1. We have

(4.10) Emax
s≤t

|wα,n
i (Sα,n

i (s))|2 ≤ E max
m≤nNα,n

i
(t)

1

n

∣∣∣∣∣
m∑
l=1

ψα,n
i,l

∣∣∣∣∣
2

.

Owing to the martingale properties, the right-hand side of (4.10) is bounded by
C2ENα,n

i (t). Thus, we need to bound ENα,n
i (t).

For an integer m > 0, write

(4.11)

m ∧ nNa,n
i (t)

n
=

1

n

m∧(nNa,n
i

(t))∑
l=1

1 =
1

n

m∧(nNa,n
i

(t))∑
l=1

ψa,n
i,l +

1

n∆̄a,n
i

m∧(nNa,n
i

(t))∑
l=1

∆a,n
i,l .
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The expectation of the first term on the right is zero. Dropping that term and letting
m → ∞ yields

(4.12)

ENa,n
i (t) =

t

∆̄a,n
i

+
1

n
E [(first time of arrival to source i at or after nt− nt)] .

Thus

ENa,n
i (t) =

t

∆̄a,n
i

+ δn,

where limn δn = 0 and (4.8) holds. (The proof of the renewal theorem for the “excess
life” in [13, pp. 192–193] implies that δn → 0.)

Now turn to the proof of (4.9). To bound (4.9), we can use the expression

(4.13) E
∣∣∣ξv,nj,k

∣∣∣2 ≤
∑
i

1

n
E

∣∣∣∣∣∣
nSa,n

i
(νn

j,k+τv,n
j,k

/
√
n)∑

l=nSa,n
i

(νn
j,k

)+1

∆d,n
i,l

∣∣∣∣∣∣
2

.

Writing ∆d,n
i,l = [∆d,n

i,l − ∆̄d,n
i ]+∆̄d,n

i in (4.13) and splitting the upper bound in (4.13)

into the two corresponding parts yields a bound on E|ξv,nj,k |2 as (twice) the sum of

∑
i

[
∆̄d,n

i

]2
E
∣∣∣wd,n

i (νnj,k + τv,nj,k /
√
n)− wd,n

i (νnj,k)
∣∣∣2 ≤ C2

∑
i

[
∆̄d,n

i

]2
Eτv,nj,k /

√
n

and

∑
i

[∆̄d,n
i ]2

n
E
[
#arrivals at queue i in real time

[
nνnj,k, nν

n
j,k +

√
nτv,nj,k

]]2
.

The first expression is O(1/
√
n). Following the idea in the expansion (4.11), for

the second expression we get the bound, for some real C3,

C3E
[
τv,nj,k

]2
+ C3E [a residual time term]

2
/n.

However, by the cited proof of the renewal theorem for the “excess life” in [13, pp. 192–
193], and the third moment condition in A4.2, the mean square value of the residual
time term is bounded, uniformly in all indices.

We have obtained a bound for the mean square value of each of the jumps. To
complete the proof, we need to average over the number of vacations on real time
[0, nt]. We do this by ignoring the vacation durations in computing the distribution of
the number of vacations on any real time interval [0, nt], which gives an upper bound.
Then the number has a Poisson distribution for each n, with the rate parameter
being bounded in n, and the number is independent of the jump sizes. If there are L
vacations on [0, nt], then (4.9) is bounded by L2 times the bound on the mean square
value of each jump. Finally, using the Poisson distribution, average over L to get
(4.9) for p = 2.

The Bellman equation for the limit system. Let L denote the differen-
tial generator of the pure diffusion part of (3.7): i.e., for smooth real-valued f(·),
Lf(WL) = σ2fww(WL)/2 + bfw(WL). Write the control in feedback form u(t) =
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θ(WL(t)) ≤ WL(t) for some measurable function θ(·). The jump part of the differential
operator acting on a measurable real-valued function f(·) is

(4.14)
∑
i

λ̄siE [f(WL+ ξvi )− f(WL)] ,

where ξvi is the jump due to a vacation of source i, and E denotes the expectation
of the jump given the WL and the control just before the start of the jump. The
boundary condition is fw(0) = 0.

Define V̄β(WL) to be the inf of the cost over all admissible controls, not only those
of the form in (A4.1). Define the function
(4.15)

H(V̄β ,WL) = min
θ(WL)≤WL

{
c(WL, θ(WL)) +

∑
i

λ̄siE
[
V̄β(WL+ ξvi )− Vβ(WL)

]}
.

The formal Bellman equation is the partial differential integral equation

(4.16) LV̄β(WL)− βV̄β(WL) +H(V̄β ,WL) = 0,

with the boundary condition V̄β,WL(0) = 0. The subscript WL denotes the derivative.

Conjecture and assumption. We have not been able to find anything in the
literature concerning the PDE (4.16), where the jump magnitudes are controlled. To
fully justify the restriction A4.1, it is necessary to show both that (4.16) has a unique
(either classical or viscosity sense) solution which is the minimal cost and that the
minimizing θ(·) in (4.15) is of the type in A2.6b. This seems to be a very reasonable
expectation, although we have not been able to demonstrate it. As noted in the next
section, it is essentially obvious in certain special cases, e.g., where ci(x) = xi, and we
expect that it holds under broad conditions on c(·). Note that this is not an impulse
control problem. The jump times are those of a Poisson process.

Thus, we assume that our conjecture is true, namely, that the minimum cost
satisfies (4.16) and that the optimal control, given by the minimizer in (4.15), satisfies
A2.6b. Under this assumption, an optimal control for the limit problem is nearly
optimal for the physical problem under heavy traffic if the controls for the physical
problem are restricted to a large enough class of the type in A4.1.

5. Extensions and comments. In special cases, the weak convergence results
and the form of the limit problem suggest nearly optimal strategies for the physi-
cal problem, without much additional analysis. A case of current interest will be
discussed.

Minimizing the total expected workload. Suppose that the cost rates ci(·),
written in terms of workload, satisfy ci(WLi) = WLi. Then c(WL, θ(WL)) = WL
and the control problem is the minimization of the expectation of the integral of the
discounted total workload. The mean total workload EWL(t) for the limit problem
is minimized, uniformly in t, by using the policy θ(·) that minimizes the mean jump,
namely,

(5.1) Q := λ̄s1E [ρ1τ
v
1 − [WL− θ(WL)]]

+
+ λ̄s2E [ρ2τ

v
2 − θ(WL)]

+
.

Example: The case of exponentially distributed vacation intervals. As an example,
assume that τvi is exponentially distributed with parameter vi. Note that for any real
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number y and any random variable τ , exponentially distributed with parameter w,
we have

E(τ − y)+ = w

∫ ∞

y

e−wx(x− y)dx = w

∫ ∞

0

e−w(y+z)zdz =
e−wy

w
.

Denote for i = 1, 2, j = 1, 2, j �= i,

wi =
vi

1− λ̄aj /λ̄
d
j

.

Then we obtain

Q =
λ̄s1e

−w1(WL−θ)

w1
+

λ̄s2e
−w2θ

w2
.

Thus, for each WL, Q is convex with respect to θ, and its minimum is obtained at
θ for which dQ(θ)/dθ = 0, provided that this solution satisfies θ ∈ (0,WL). If it
does not, then the minimum over θ ∈ [0,WL] is obtained on one of the boundaries.
Differentiating with respect to θ yields

λ̄s1e
−w1(WL−θ) − λ̄s2e

−w2θ = 0.

Solving this equation yields

θ(WL) =
log(λ̄s2/λ̄

s
1)

w1 + w2
+

w1

w1 + w2
WL.

A nearly optimal policy θ(·) for the limit problem should be defined by

θ∗(WL) =
(
min

(
WL,

log(λ̄s2/λ̄
s
1)

w1 + w2
+

w1

w1 + w2
WL
))+

,

and this is borne out by numerical solutions.
Example: The symmetrical case. In the special case where the two sources have

the same rates, it is obvious that θ(WL) = WL/2. Thus, under the conditions of The-
orem 3.1 and the uniform integrability conditions of Theorem 4.1, the minimization
of (5.1) yields a nearly optimal strategy for large n.

No vacations. The asymptotic optimality of the cµ-rule. Suppose that
there are no vacations and the basic desired cost rate is c̄1x

n
1 + c̄2x

n
2 , where c̄i > 0.

Write the limit form of the cost rate in terms of the workload as

(5.2) λ̄d1 c̄1θ(WL) + λ̄d2 c̄2[WL− θ(WL)].

The minimizer of (5.2) is just the cµ-rule. Namely, poll source 1 if λ̄d1 c̄1 > λ̄d2 c̄2 and
there are jobs there, and conversely for source 2. Under the conditions of Theorem 3.1
and the uniform integrability conditions, such a rule would be asymptotically optimal
for the physical system. In this case, the limit workload does not depend on the
polling policy, only the cost rate does. This is an asymptotic form of the well-known
cµ-rule [31]. The asymptotic optimality of this rule under heavy traffic was given in
[30].

The cµ-rule gives priority to one of the queues, and this might lead to unac-
ceptably long waits in the nonpriority queue. This can be alleviated with a nonlinear
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weighting. For example, queue 1 might have a smaller cost rate than queue 2 for mod-
erate queue lengths. But to discourage the complete priority of queue 1, we might
use a nonlinear cost rate for queue 2.
Remark. Note that the optimal policies in all the examples in this section indeed

satisfy assumption A4.1, which is required in Theorem 4.1. Thus the class of policies
described by A4.1 is rich enough to contain an optimal policy within it for these
asymptotic problems.

6. Stability.
Definition: Stability, uniformly in n for large n. Suppose that there

are real n0 and W̄ such that

E
[
time for WLn(t), t ≥ t0, to return to the value WLn(t) ≤ W̄

∣∣
data to real time nt0,WLn(t0) = q

] ≤ F (q)

for all n ≥ n0, t0, q, where F (q) is bounded on each bounded q-set. Then we say that
WLn(·) is stable, uniformly in n.

Definition: Stability for fixed n. Fix n, and suppose that the above
conditional mean return time property holds for all q and t0. Then, for that value of
n, the queue is said to be stable.

We will use the following assumption, a modification of A2.2.

A6.1. There is a real b0 < 0:
√
n

[∑
i

ρni − 1

]
≤ b0 for all n.

Comments on stability. Under A6.1, it is trivial to prove the stability of the
weak sense limit system (3.7) using classical stochastic Liapunov function methods, as
in [14, 16, 17]. Stability is one of the most important properties of physical systems,
and should be proved under broad conditions. It is essentially an assertion on the
robustness of the system, and should hold under reasonable perturbations of the basic
data. Stability of the physical system is not automatically guaranteed by stability of
the weak sense limit. The technique to be employed is versatile and gets the desired
stability property, uniformly in reasonable perturbations of the basic data, in the
sense that the function F (q) will not depend on the exact form of the data, under a
reasonable mixing-type condition. The first definition above concerns large n. It will
be seen that if there are no vacations then we can set n0 = 1 in that definition, under
broad conditions on the data.

Under the conditions of Theorem 3.1, the ratio of time on vacation to total time
goes to zero as n → ∞. If n is fixed and small, then it is conceivable that this ratio
would be large enough so that the accumulation of data during the vacations will not
be offset by the processing between vacations, as is necessary for stability. However,
from the point of view of stability with vacations, there is an equivalence between
large n and small λ̄si . This explains the last assertion of Theorem 6.2.

First, we will provide the motivation for the perturbed Liapunov function ap-
proach. Then it is used for the problem without vacations and stability uniformly
in n (not just in large n) is proved. Then vacations are added. We will simplify the
algebra by supposing that arrivals to the queues can occur only at multiples of (real
time) δ > 0, which can be as small as desired. Otherwise, we would use integrals in
lieu of sums, but the results would be the same. Also, again for notational simplicity
and with little loss of generality, we also suppose that vacations start and stop only
at integral multiples of δ, and modify the assumptions A2.3 and A2.4 appropriately.
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We will also use A2.5 plus other (weak) conditions to be imposed below. Let En
kδ

denote the expectation, given all of the system data up to and including real time kδ.
Let Ia,ni,kδ be the indicator function of an arrival at real time kδ from source i, and let

∆d,n
i,kδ be the associated work, if there is an arrival.
Motivation and background: Perturbed Liapunov functions. A per-

turbed Liapunov function method will be used [6, 17, 18, 22]. The classical Liapunov
function method is quite limited for problems such as ours, since there is not usually
a “contraction” at each step to yield the local supermartingale property of a classical
Liapunov function. The perturbed Liapunov function method is a powerful exten-
sion of the classical method. In the perturbed Liapunov function method, one adds
a small perturbation to the original Liapunov function. As will be seen, when this
perturbation can be well defined it provides an “averaging” which is needed to get
the local supermartingale property.

The primary Liapunov function will be simplyWL(·). The final Liapunov function
will be of the form Wn(·) = WLn(·) + δWn(·), where δWn(·) is bounded. Suppose
that there is no vacation at real time kδ. Then, for WLn(kδ/n) ≥ δ, we can write

(6.1) En
kδWLn(kδ/n+ δ/n)−WLn(kδ/n) = − δ√

n
+

1√
n

∑
i

En
kδI

a,n
i,kδ+δ∆

d,n
i,kδ+δ.

The right-hand term needs to be “averaged,” and this is done with the use of a
perturbation function δWn(·).

Motivation using a simpler problem. Before defining the actual perturbation
which will be used, for motivation we will discuss the general principle with a simpler
form when there are no vacations. Even for this problem, stability of the physical
queues is not guaranteed by stability of the limit system. Let ∆̄a,n

i = 1/λ̄a,ni and ∆̄d,n
i

be centering constants such that the corresponding ρni satisfy A6.1 for some b0 < 0.
More will be said about them later.

Proceeding formally until further notice, define the first suggested perturbation:

(6.2) δW̃n(kδ/n) =
1√
n

∑
i

∞∑
j=k+1

En
kδ

[
Ia,ni,jδ∆

d,n
i,jδ − δλ̄a,ni ∆̄d,n

i

]
.

Clearly, the centering constants must be such that the sum is well defined, and we
return to this point below. If WLn(kδ/n) ≥ δ, then we get

En
kδδW̃

n(kδ/n+ δ/n)− δW̃n(kδ/n)

= − 1√
n

∑
i

En
kδ

[
Ia,ni,kδ+δ∆

d,n
i,kδ+δ − δλ̄a,ni ∆̄d,n

i

]
.

Define W̃n(kδ/n) = WLn(kδ/n) + δWn(kδ/n). Then (6.1) and the last expression
yield

En
kδW̃

n(kδ/n+ δ/n)− W̃n(kδ/n) = − δ√
n
+

1√
n

∑
i

[
δλ̄a,ni ∆̄d,n

i

]
.

By the condition A6.1, the right side of the last expression is asymptotically ≤ b0δ/n.
Thus, it is less than the negative constant b0 times the scaled time interval δ/n. Hence,
when WLn(t) ≥ δ, W̃n(kδ/n) has the supermartingale property and we can use this
to get the desired (uniform in n) stability if W̃n(·) is “well defined and bounded.”
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Let us examine the sum in (6.2) more closely to see why it is well defined and

bounded under broad mixing conditions. Since ∆̄d,n
i and λ̄a,ni are merely centering

constants for the entire sequence, the actual mean values or rates can vary with time
(say, being periodic, etc.). Fix k and let µi,1δ and µi,2δ be the real times of the first
two arrivals to queue i after real time kδ. Formally, consider the part of the inner
sum in (6.2) given by

En
kδ

µi,2∑
j=µi,1+1

[
Ia,ni,jδ∆

d,n
i,jδ − δλ̄a,ni ∆̄d,n

i

]
.

This equals

(6.3) En
kδ

[
∆d,n

i,µi,2δ
− (µi,2 − µi,1)δλ̄

a,n
i ∆̄d,n

i

]
.

Next, suppose that the interarrival times and workloads are mutually indepen-
dent, with the members of each set being mutually independent and identically dis-
tributed, with finite second moments, and means ∆̄a,n

i , ∆̄d,n
i . Then (6.3) equals zero,

since En
kδ(µi,2 − µi,1)δ = ∆̄a,n

i . Obviously, for any integer m, µi,1, µi,2 can be the
mth and (m+1)st arrival times with the same result. Thus, under the independence
assumptions, (6.2) is just

En
kδ

[
∆d,n

i,µi,1δ
− δ(µi,1 − k)λ̄a,ni ∆̄d,n

i

]
= ∆̄d,n

i En
kδ

[
1− δ(µi,1 − k)

∆̄a,n
i

]
,

where En
kδ(µi,1 − k)δ is just the conditional expectation of the mean time to the

next arrival after kδ, given the data to time kδ. For use below, keep in mind that this
quantity is bounded uniformly in k, under the above assumptions on the independence
and the moments. Hence, formally, δW̃n(t) is of the order of 1/

√
n, uniformly in all

variables.
Now, suppose that the interarrival times are as in the last paragraph, but the

service times are correlated, still with centering constant ∆̄d,n
i . Let µi,j , j = 1, . . . ,

denote the sequence of arrival times after kδ. Then (6.3) equals

(6.4) En
kδ

[
∆d,n

i,µi,2δ
− ∆̄d,n

i

]
.

Then, grouping terms and formally speaking, we see that the sum (6.2) is just
(6.3)/

√
n, plus a series

1√
n

∑
i

∞∑
l=µi,2

En
kδ

[
∆d,n

i,l − ∆̄d,n
i,l

]
.

Clearly, the inner sum is bounded under quite broad mixing conditions. All that is
needed is that En

kδ[∆
d,n
i,l − ∆̄d,n

i,l ] → 0 is a summable way as l − k → ∞. A similar

computation can be done if the ∆a,n
i,l are correlated.

If the inner sum in (6.2) is well defined and bounded (uniformly in n, k, ω), then
Theorem 6.1, which summarizes the above discussion, proves stability, uniformly in
(all) n and the discounting which is used there is not needed. While the inner sums
of (6.2) are well defined under broad conditions, there are interesting examples where
they are not. For example, consider the case where ∆a,n

i,l = Hδ = 1/λ̄a,ni , where H is
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an integer and the work in all jobs is just the constant ∆̄d,n
i . Then the inner sum, taken

from k+1 to m, oscillates between zero and −(H−1)δλ̄a,ni ∆̄d,n
i /

√
n as m → ∞. The

most convenient way of circumventing this problem is to suitably discount the defining
sums [22, 27]. Thus, for some small β > 0, consider the alternative “discounted”
perturbation

(6.5) δWn
β (kδ/n) =

1√
n

∑
i

∞∑
j=k+1

En
kδe

−(j−k−1)βδ/n
[
Ia,ni,jδ∆

d,n
i,jδ − δλ̄a,ni ∆̄d,n

i

]
.

The sum (6.5) is well defined if E|∆d,n
i,l | is uniformly bounded, and then the conditional

expectation can be taken either inside or outside of the summation.
Stability without vacations. We now proceed to prove the stability results.

It is simpler to start with the assumption that there are no vacations. The following
additional assumption will be used. The above discussion shows that the assumption
covers many cases of interest.

A6.2. There is real B such that w,p.1 |δWn
β (kδ/n)| ≤ B/

√
n for all β > 0 and

all n, k, where δWn
β (·) is defined by (6.5).

Define the final perturbed Liapunov function

(6.6) Wn
β (kδ/n) = WLn(kδ/n) + δWn

β (kδ/n).

Theorem 6.1. Let WLn(0) be tight, suppose that there are no vacations, and
assume A2.5, A6.1, and A6.2. Then the process WLn(·) is stable, uniformly in n.
Proof. We have

(6.7)

En
kδδW

n
β (kδ/n+ δ/n)− δWn

β (kδ/n)

= − 1√
n

∑
i

En
kδ

[
Ia,ni,kδ+δ∆

d,n
i,kδ+δ − δλ̄a,ni ∆̄d,n

i

]
+ εnk ,

where

(6.8) εnk = En
kδ

[
1− e−βδ/n

]
δWn

β (kδ/n+ δ/n).

Thus, adding (6.1) and (6.7),

(6.9) En
kδW

n
β (kδ/n+ δ/n)−Wn

β (kδ/n) = − δ√
n
+

1√
n

∑
i

[
δλ̄a,ni ∆̄d,n

i

]
+ εnk .

By the condition A6.1, the right side of (6.9) is asymptotically no greater than

(6.10)
b0δ

n
+ εnk .

Assumption A6.2 implies that |εnk | = B[βδ/n]γn, where γn → 0. Thus, for small β

(6.11) En
kδW

n
β (kδ/n+ δ/n)−Wn

β (kδ/n) ≤
b0δ

2n
, for WLn(kδ/n) ≥ δ.

Inequality (6.11) implies that Wn
β (kδ/n) has the supermartingale property when

WLn(kδ/n) ≥ δ. Suppose that Wn
β (kδ/n) = B2 > B + δ and let B2 > B1 > B + δ.

Then, by standard stability arguments [16, 17], the mean number of steps (of real
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time length δ and conditioned on the data to real time kδ) for Wn
β (jδ/n), j ≥ k, to

return to the set where Wn
β (jδ/n) ≤ B1 is bounded by

Wn
β (kδ/n)

[−b0δ/2n]
≤ B +WLn(kδ/n)

[−b0δ/2n]
.

Since |δWn
β (t)| ≤ B/

√
n, the return time estimate also holds for WLn(·). Thus, in the

time scale which is used to define WLn(·), where time is compressed by a factor of n,
the conditional mean return time is asymptotically bounded by 2[B+WLn(t)]/[−b0].
Hence, we have stability, uniformly in n.

Stability, with vacations. Now, we add the vacations. Again, to simplify the
notation, suppose a preempt-resume discipline, so that we do not have to concern
ourselves with redoing all of an interrupted job. The analysis for the latter case
follows similar lines.

The polling policy is subject only to the unrestrictive condition A6.3. The condi-
tion is motivated by the fact that the ξvi,l defined by (3.5) go to zero as the individual
workloads go to infinity, since the larger the work remaining in the nonvacationing
sources, the less likely it is that the server will have idle time during a vacation. If A6.3
does not hold, then there might not be stability for each b < 0, uniformly in large n.
For example, suppose that the polling policy is to give source 1 priority. Then WLn

1 (t)
will be arbitrarily close to zero, except possibly during and for a short interval just
after a vacation of that source. Consequently, the mean or conditional mean jump in
the total workload during a vacation of source 2 which starts at scaled time t will not
go to zero as WLn(t) goes to infinity. The condition A6.3 excludes exhaustive polling
(but only when the workload is very large), where a source is polled until its queue is
empty, unless a vacation of that source intervenes. However, when the total workload
is large, we might not want to use exhaustive polling anyway. While we work with
two sources for notational simplicity, the idea is the same no matter what the number
of sources. By our convention, for a vacation that starts at real time kδ, the real time
vacation interval is the half open interval [kδ + δ, kδ + δ +

√
nτv,ni,kδ).

A6.3. The polling policy is unrestricted, except for the following. There are
constants W̄a � W̄b, which will be as large as we wish. If WLn(t) ≤ W̄b, then there
are no restrictions. If WLn(t) > W̄b, then the only restriction is that if

(6.12) WLn
i (t) ≥ W̄a

is not satisfied for some i and the other source is not on vacation, then we poll the
other source.

A6.4. For each ε > 0, there is W̄ < ∞ such that for i, j : i �= j,

E
[
ξv,ni,l

∣∣data to scaled time νni,l,WLn
j (ν

n
i,l−) ≥ W̄

]
≤ ε.

The assumption A6.4 holds under the conditions of Theorem 4.2 if A6.3 holds.
The inequality (6.12) (when WLn(t) > W̄b) cannot be guaranteed for all time. It
will sometimes not hold during a vacation or for a vanishingly short (in scaled time)
interval after. The real time interval between vacations is O(n). Let α(·) be a real-
valued function on [0,∞) such that α(n)/

√
n → ∞ and α(n)/n → 0. Suppose

that a vacation ends at real time t0 and the next one begins at real time t1, with
t1 − t0 = O(n). Then with a probability (conditioned on the data up to t0) that goes
to unity as n → ∞, one can poll such that (6.12) is guaranteed on [t0+α(n), t1) when
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WLn(t0) > W̄b. The excluded interval is just α(n)/n in scaled time. Condition A6.3
works since the probability that two successive vacations will be within α(n) in real
time is O(α(n)/n).

Theorem 6.2. Let {WLn(0)} be tight and assume A2.3–A2.5 and A6.1–A6.4.
Then the process WLn(·) is stable, uniformly in n. Fix n. Then for small enough
λ̄si , i = 1, 2, WLn(·) is stable.

Note on the stability of the limit problem (3.7). Let L denote the differ-
ential generator of (3.7) when WL > 0. Then

LWL(t) = b+
∑
i

λ̄siEWL(t−),u(t−)ξ
v
i .

Since, for the limit problem, the condition (6.12) can always be guaranteed forWL(t) >
W̄b (except at the jump instants) if W̄b � W̄a are as large as we wish, it can always
be assured that the sum in the above expression is arbitrarily small for large WLn(t).
Then, since b < 0, WL(·) is stable. The proof below attempts to duplicate this idea.
Proof. In this proof, it is more convenient to work in scaled time. Thus, let Es,n

t

denote the expectation conditioned on all data to scaled time t. All scaled times are
integral multiples of δ/n. Suppose that no source is on vacation at scaled time t and
a vacation of some source starts at scaled time t+ δ/n. Then, let τv,nt /

√
n denote the

scaled time which passes until no source is on vacation, and let ξv,nt denote the total
jump in the workload due to all vacations which start at scaled time t+ δ/n and end
at scaled time t + δ/n + τv,nt /

√
n. Thus, it might cover a single vacation, or several

overlapping or abutting vacations.
Define σn

k , k ≥ 0, recursively as follows. Start with σn
0 = 0. Given σn

k , if no
vacation starts at scaled time σn

k + δ/n, then set σn
k+1 = σn

k + δ/n. If a vacation
starts at scaled time σn

k + δ/n, then set σn
k+1 = σn

k + δ/n + τv,nσn
k
/
√
n. Thus, the σn

k

are the sequence of scaled times kδ/n, but with the instants where some source is on
vacation skipped. To prove the stability it is sufficient to work with WLn(σn

k ) and
WLn(σn

k ) ≥ W̄a only.
Until further notice, suppose that the condition A6.3 holds at the start of each

vacation. The event that this is not the case is very rare for large n and will be
accounted for later. Recall the definition of Wn

β (·) in (6.6). Let Ev,n
t denote the

expectation, conditioned on all data to scaled time t and the event that a vacation
starts at scaled time t+ δ/n. By the computations in Theorem 6.1, we have (whether
or not (6.12) holds)
(6.13)

Es,n
σn
k
Wn

β (σ
n
k+1)−Wn

β (σ
n
k )

≤
∏
i

(
1− λ̄s,ni

n
+ o

(
λ̄s,ni

n

))
b0δ

2n
+

[∑
i

δ

n
λ̄s,ni + o

(
δ
∑

i λ̄
s,n
i

n

)]
Ev,n
σn
k
ξv,nσn

k
.

The o(·) will be ignored henceforth. Now, by A6.4 the term Ev,n
σn
k
ξv,nσn

k
in (6.13) goes

to zero as WLn(σn
k ) goes to infinity, which yields the stability, uniformly in n for large

n.
Next let us consider the possibility that we might not always have WLn

i (t) ≥
W̄a, i = 1, 2, at the start of a vacation, when WLn(t) ≥ W̄b, for W̄b � W̄a, both being
sufficiently large. Let Iv,nt+δ/n denote the event that a vacation starts at scaled time

t + δ/n, with WLn
i (t) ≤ W̄a for some i and WLn(t) ≥ W̄b. Let µn

l denote the scaled
time of the lth occurrence of this event. We exploit the fact that this event is “rare”
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for large n, by introducing another perturbation to the Liapunov function. We need
to add the term

(6.14) Es,n
σn
k
Iv,nσn

k
+δ/nτ

v,n
σn
k

to the right side of (6.13) (and multiply the current right-hand term there by (1 −
Iv,nσn

k
+δ/n), which leaves the estimates for that term unchanged. By A2.4, (6.14) is

bounded by C1E
s,n
σn
k
Iv,nσn

k
+δ/n for some constant C1. Introduce the additional perturba-

tion to the Liapunov function:

(6.15) δW̄n
β (kδ/n) = C1

∞∑
l=k+1

e−(l−k−1)βδ/nEs,n
kδ/nI

v,n
lδ/n.

This equals (dropping o(δ/n) terms for simplicity)

(6.16) C1
δ
∑

i λ̄
s,n
i

n

∑
l:µn

l
>kδ/n

Es,n
kδ/ne

−β(µn
l −kδ/n−δ/n).

Write the sum asKn
β (k). Then, for each β > 0, there is n(β) < ∞ such thatKn

β (k) ≤ 2
for n ≥ n(β) and all k.

Note the difference of the conditional expectations:

(6.17) Es,n
σn
k
δW̄n

β (σ
n
k+1)− δW̄n

β (σ
n
k ) = −C1E

s,n
σn
k
Iv,nσn

k
+δ/n + εv,nk ,

where

(6.18) εv,nk = C1

[
1− e−βδ/n

] ∞∑
l=k+1

e−(l−k−2)βδ/nEs,n
kδ/nI

v,n
lδ/n.

For n ≥ n(β),

εv,nk ≤ 2C1β
∑
i

λ̄s,ni

n
.

Now, use the new perturbed Liapunov function defined by Wn
β (kδ/n) + δW̄n

β (kδ/n).

The conditional difference (6.17) cancels (6.14), modulo the error εv,nk , which is
O(δβ/n) and β can be made as small as desired for large enough n. The proof is
then completed as in Theorem 6.1

7. Unreliable channels. Up to now, it was supposed that any data sent from
any source to the server arrived without error. In this section, we suppose that an
error during transmission (as distinct from a vacation) is possible. Suppose that the
server time is divided into “slots,” of duration δ > 0. That is, the work in each arrival
is an integral multiple of δ, and each δ-interval is devoted to either a job from one
of the sources, or to idling if there is no work present at the beginning of the slot.
If a vacation starts during a slot, it is assumed that the data in that slot (if any) is
retransmitted later. However, this has no effect on the heavy traffic limit. In case
of an error in transmission, the data in the slot must be retransmitted. A variety of
such situations can be readily incorporated into our general model.

If the sequence of errors is mutually independent in time, or if it does not depend
on the source, then the modeling and analytical problem is relatively simple. The
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errors would not depend on the source if the corrupting noise were at the server/base
station, or was due to, say, a general atmospheric condition which affects all sources in
the same way. On the other hand, if the errors are correlated (say, channels with bursty
noise) and are source dependent as well, then the modeling problem is complicated
by the fact that the server is allowed to poll the sources in a rather arbitrary way.
For example, suppose that the noise is bursty for the channel connecting to one of the
sources but that the channel connecting to the other is noise-free. Then, depending
on how the sources are sequenced, the correlation between the errors can take many
forms. Thus, it is hard to know the relation between the sequencing of the polling
of the sources and the channel noise. One could try to poll taking into account the
correlation. But, even if this were feasible, it is beyond our goals. For these reasons,
we will assume that the disturbing noise does not depend on the source, despite the
importance of the general problem.

The error model. Let Ie,nl denote the indicator function of the event that the
data transmitted in the lth time slot was not acceptable and needed to be retrans-
mitted. Let Se,n

i (t) (resp., Se,n(t)) denote 1/n times the number of slots transmitted
(successfully or not) from source i (resp., from both sources) by real time nt. Let Ia,nl

denote the indicator function of the event that there is available data to be transmit-
ted in time slot l from any source not on vacation. The (scaled) work that must be
retransmitted by real time nt is

(7.1) Ln(t) =
δ√
n

nt/δ∑
l=1

Ie,nl Ia,nl .

For some centering constant pe,n, write Ln(t) as

(7.2) Ln(t) =
δ√
n

nt/δ∑
l=1

[Ie,nl − pe,n] Ia,nl +
√
npe,nSe,n(t)δ.

The last term on the right of (7.2) is (see (3.2))

(7.3) pe,n
[√

nt− T v,n(t)− Zn(t)
]
.

Define

(7.4) we,n(t) =
δ√
n

nt/δ∑
l=1

[Ie,nl − pe,n] Ia,nl .

We will use the following assumptions.

A7.1. The error process is independent of all of the other driving processes. Also,
pe,n converges to the constant pe as n → ∞ and we,n(·) converges weakly to a Wiener
process, which will be denoted by we(·), and whose variance is δσ2

e .

A7.2. (The new heavy traffic condition.) There is a constant b such that

lim
n

√
n

[∑
i

ρni + pe,n − 1

]
= b.

A7.1 is an assumption on the channel and will be returned to below. By adding
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the work to be retransmitted, (3.15) becomes

(7.5)

WLn(t) = WLn(0) +
∑
i

∆̄d,n
i

[
wa,n
i (Sa,n

i (t))− wd,n
i (Sa,n

i (t))
]
+ we,n(t)

+
√
n

[∑
i

ρni + pe,n − 1

]
t+ (1− pe,n) [Zn(t) + T v,n(t)] + εn(t),

where εn(·) is a residual time error process.
Under the conditions of Theorem 3.1, with A7.1 added and the new heavy traffic

condition A7.2 used, Theorem 3.1 continues to hold, with the following changes. The
process we(·) is added to w(·). The jumps are computed by first showing that (in
the local fluid time scale) the processes of completed work during a vacation can be
asymptotically approximated by a fluid process with slope 1− pe, and they are

(7.6a)
ξv1,l =

[
((1− pe)− ρ2) τ

v
1,l − [WL(ν1,l−)− u(ν1,l−)]

]+
= [ρ1 − [WL(ν1,l−)− u(ν1,l−)]]

+
,

(7.6b) ξv2,l =
[
((1− pe)− ρ1) τ

v
2,l − u(ν2,l−)

]+
=
[
ρ2τ

v
2,l − u(ν2,l−)

]+
.

Also, we(·) is independent of w(·). With these changes, Theorem 3.2 also holds.
Theorem 4.2 will continue to hold with these changes, provided that E|we,n(t)|2 =
O(t). Similarly, the analogues of the stability results hold.
Remark. It is not possible to account for the retransmissions by simply enlarging

the work in each job by an amount that has the same distribution as the retransmit-
ted work does. This is because the controls are based on either the current queued
work or queued numbers, and not what might be expected due to future errors and
retransmissions.

Comments concerning we,n(·). First, suppose that the errors are independent
from slot to slot with P{Ie,nl = 1} = pe,n. Then Donsker’s theorem [12] implies that
we,n(·) is tight and converges weakly to a Wiener process with variance δpe(1− pe).

Now, turn to the correlated error problem. The error process concerns the chan-
nel, and is defined whether or not there is something to be transmitted. Suppose that
the error process is Markov and doesn’t depend on n, for notational simplicity. In
particular, assume that

P{Ie,nl+1 = 1|Ie,nl = 0} = p, P{Ie,nl+1 = 0|Ie,nl = 1} = q,

where p and q are in (0, 1). Then pe = p/(p + q). Let Iel denote the stationary error
process. Again, it is not hard to verify that we,n(·) converges weakly to a Wiener
process with variance

δE [Iel − pε]
2
+ 2δE

∞∑
l=1

[Iel − pε] [Ie0 − pε]

[12, 17].
We have Ia,nl = 0 if both sources are on vacation, both queues are empty, or one

source is on vacation and the other queue is empty at real time lδ. These possibilities
have negligible effect asymptotically.

Lévy processes. Many other models are possible for the error process (7.1) and
a couple of other possibilities will be outlined. One approach, which does not require
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the addition of A7.1 and uses (3.5) for the jumps, is to simply suppose that Ln(·)
converges weakly to a general Lévy jump process. For example, suppose that the noise
occurs in occasional bursts, where the rate at which the bursts occur (in real time)
is λ̄e,n/n and the duration (in real time) is

√
nτe,nl , where the durations (and the

process of starting) are mutually independent and independent of the other “driving”
random variables in the system. In this model the bursts are rare, and occur at a rate
which is of the order of that of the vacations. But λ̄e,n might be much larger than
λ̄s,n and the τe,nl much smaller than τv,ni,l .

The scheme in the last paragraph supposed a finite rate λ̄e,n for the bursts. The
rate could depend on the duration, so that shorter durations have higher rates, with
the rate going to infinity as the duration goes to zero, but in such a way that there is
a limit Lévy process.
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