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Abstract

Communications systems often have many types of users. Since the
users share the same resource, there is a conflict in their needs. This con-
flict leads to the imposition of controls on admission or elsewhere. In this
paper, there are two types of customers, GP (Guaranteed Performance)
and BE (Best Effort). We consider an admission control of GP customer
which has two roles. First, to guarantee the performance of the existing
GP customers, and second, to regulate the congestion for the BE users.
The optimal control problem for the actual physical system is difficult. A
heavy traffic approximation is used, with optimal or nearly optimal con-
trols. It is shown that the optimal values for the physical system converge
to that for the limit system and that good controls for the limit system are
also good for the physical system. This is done for both the discounted
and average cost per unit time cost criteria. Additionally, asymptotically,
the pathwise average (not mean) costs for the physical system are nearly
minimal when good nearly optimal controls for the limit system are used.
Numerical data show that the heavy traffic optimal control approach can
lead to substantial reductions in waiting time for BE with only quite mod-
erate rejections of GP, under heavy traffic. It also shows that the controls
are often linear in the state variables. The approach has many advantages.
It is robust, simplifies the analysis (both analytical and numerical) and
allows a more convenient study of the parametric dependencies. Even
if optimal control is not wanted, the approach is very convenient for a
systematic exploration of the possible tradeoffs among the various cost
components. This is done by numerically solving a series of problems
with different weights on the costs. We can then get the best tradeoffs,
and the control policies which give them.

Key words: admission control, control of communications systems, control of
queueing networks, heavy traffic limits, ergodic control, singular control, weak
convergence
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1 Introduction

Broadband-ISDN (integrated services data network) high speed networks allows
the possibility of integrating different services in one single telecommunications
network. In particular, they handle applications that require guaranteed QoS
(quality of service), such as bounded delays bounded cell loss rates, and a guar-
antee on the throughput. Such a service is called Guaranteed Performance
(GP). On the other hand, they support also more flexible applications, such
as data transfer, that are less sensitive to instantaneous variations in avail-
able bandwidth, in delays, jitter etc., and which do not require guarantees on
throughputs or delays. We call the latter “Best Effort” (BE) traffic. In the
context of ATM (asynchronous transfer mode), this corresponds to the Avail-
able Bit Rate (ABR) service category [1], which can adapt to the bandwidth
unused by the GP service classes. In context of the Internet, the BE traffic are
the TCP/IP connections, which use a congestion avoidance mechanism [17] so
as to adapt to the available bandwidth, in contrast with real-time applications
that use UDP (UDP is a protocol which does not adapt its transmission rate
to the current congestion state of the system) such as phone over Internet [5].
In particular, we suppose that the BE users share the remaining bandwidth, as
for example, in the standard Internet. (Note that, unlike ATM, the Internet
does not provide performance guarantees for real time-applications. However,
in practice, the TCP/IP connections do adapt their transmission rate to the
available bandwidth left over after the UDP sessions, see [3]).

Since the GP and BE share the same resources of the network, there is a
conflict in their needs, and the question of admission control arises. The purpose
of this paper is to analyze the impact that Connection Admission Control (CAC)
performed on GP traffic has on the BE traffic, in order to properly allocate
resources in a dynamical manner as well as guarantee QoS.

In ATM networks, a large part of the architecture has been standardized
[1]. Implementation of the CAC is however not standardized and is left to the
network manager. This has motivated much research and a large literature
has emerged. Several approaches have been used in designing CACs. The
first approach is based on characterizing the input traffic of a source by some
simple parameters, such as the effective bandwidth; basically it estimates the
bandwidth that should be given to a source to guarantee that the cell loss rate
does not exceed (in some asymptotic sense) some small number. Examples of
this approach are [10, 15, 13, 18, 19, 31, 32, 37]. A diffusion based statistical
CAC was proposed in [12].

A recent approach to admission control estimates (on-line) the consequence
of possible admission, using real-time measures of the network activity [14, 35,
36]. An optimal-control approach for call admission, using a Markov Decision
Processes) approach has been used in a number of papers [11, 16, 34]. All the
cited papers focused on the impact of admission control on GP traffic. To the
best of our knowledge, our paper is the first to consider the optimal design of
the CAC for the GP sessions in terms of the performance of both the BE and
the GP sessions.



The CAC was not intended to be performed on BE traffic, since BE traffic
is sufficiently flexible so as not to deteriorate QoS that are required by GP
connections. In particular, the ATM forum has decided [1] that ABR sessions
will not be subject to CAC (unless they require from the network a guarantee
on minimum cell rate). We shall therefore assume that BE sessions are always
admitted into the network, unless some very large limit is reached. This limit
might represent the number of sessions that can be handled simultaneously by
the switches. This limit will not depend on the available bandwidth.

Quite often, CACs are designed taking only into account the performance
requirements of GP sessions. However, as already noted in [2, 4], under ap-
propriate operating conditions in the network (in particular, the heavy-traffic
conditions, which correspond to an efficient utilization of the resources), it is
possible to improve substantially the performance (delays and throughputs) of
the BE sessions by modifying slightly the CAC for the GP sessions.

References [2, 4] focused on analyzing the performance of GP and BE sessions
for given CACs (performed on GP sessions) that take into account also the
performance of BE sessions. In this paper, we go one further step and provide a
design based on an optimization approach. We consider the optimal admission
control arising when the number of sessions and the available bandwidth are
taken to be large, and scaled in an appropriate way so as to perform in the
desirable heavy traffic region.

The approach taken is that of optimal control in the heavy traffic regime.
In this regime, the system has little spare bandwidth over what is needed to
handle the “average load.” It is shown that the physical system can be well ap-
proximated by a controlled (reflected) diffusion process, and that good controls
for this diffusion process are good for the physical system under heavy traffic.
The resulting controls are easily implementable (and are often simply linear in
the state variables) and can give a significant improvement of the performance
of the BE sessions by only a small rejection of GP sessions. The work is a
continuation of the past work on the control of communications and queueing
systems under heavy traffic conditions [29, 27, 26, 22, 30, 25, 28, 23|.

The extensive numerical results in [25] illustrated the power of such an ap-
proach. It obtained excellent controls and system performance and obtained
very useful information which would not otherwise be available. The paper [30],
concerned with trunk line problems, also showed the power of the heavy traffic
approach for modeling, simplifying and controlling very complex systems.

The control problem for the actual physical model is quite hard, if not vir-
tually impossible to solve. The system is not always Markovian. Even in the
Markovian case, the number of states can be extremely large. Additionally, even
for an uncontrolled Markovian system, the computation of the steady state over-
flows (losses) and delays is difficult. The heavy traffic approach provides much
analytical and computational simplification. The optimally controlled costs for
the physical problem converge to the optimally controlled cost for the limit prob-
lem, and a nearly optimal control for the limit problem is also nearly optimal
for the physical problem if the traffic is heavy.

In applications, the traffic is not always “heavy.” But, this regime is one of



the crucial ones for design, analogous to the case of the trunk line problem for
long distance teletraffic. The analysis illustrates efficient use of resources. In any
large system, there are many alternative uses of the resources, and continuous
tradeoffs among them. Here we can see, for example, the effect of marginal
reallocations of bandwidth within a control context. Of course, serious control
problems do exist even outside of the heavy traffic regime; for example, even if
the system is heavily overbuilt from the heavy traffic perspective, the structure
of the burstiness in arrivals can lead to important control problems. In this
regard, it is worth noting that, in the numerical study in [25] of controlled
multiplexers in the heavy traffic regime, the buffer is empty or nearly empty
most of the time, and it is the burstiness of the input which yields the losses
and the control problem.

There are many other advantages to the combined heavy traffic and optimal
control approach. Under broad conditions, it yields the appropriate dimension-
ing of the system, and shows that good performance can often be achieved with
only modestly extra bandwidth (over average requirements). The “limit” vari-
ables can be interpreted as “aggregated” states. The analysis takes advantage
of the laws of large numbers and central limit theorems that come into play as
the size of the system grows. The “limit” or aggregate equations can be used
to compute nearly optimal controls for the physical system, and to get good
estimates of various measures of performance. The relative simplicity of the
form of the heavy traffic limit process facilitates understanding the parametric
dependencies. As in [25], we can obtain both qualitative and quantitative in-
formation which is often very hard to get otherwise . To do so otherwise, one
would need to study many particular cases of systems with different parameters
and sizes whose relationships would remain obscure. The reference [33] contains
examples of other types of applications.

The method allows convenient numerical approximations (see [24, 25]) whose
complexity is much less than that of even the physical Markov systems. In
fact, the basic Markov chain approximation method of [24] has been coded for
problems of this type and is publicly available. ! The format is robust: bursty
data, priorities, time dependence, dependence of arrivals on the system state,
and other useful extensions can be readily handled.

An important question concerns the tradeoff between gains in QoS for BE
versus losses for GP. The heavy traffic formulation allows a systematic explo-
ration of this. One solves the optimization problem with various weights for
the associated losses and costs, and computes the values of the individual com-
ponents of the cost under the optimal controls. This yields the set of possible
tradeoffs, under good operating policies. One can then choose the control which
get the best performance for one component, with a constraint on the others.
Usually, optimization for its own sake is not the main interest. But the use
of optimizing or optimal control methods for exploration of the possibilities is
of greater interest and provides a powerful tool for design. The value of this

1See the home page of the Lefschetz Center for Dynamical Systems, Brown University
Dept. of Applied Mathematics home page http://www.dam.brown.edu/lcds.html. Select the
software link to get the documentation and codes.



approach was amply demonstrated in [25], and the large gains due to the use
of feedback control were demonstrated. This is equally valid for the present
problem. Indeed, numerical data shows that substantial reductions (say, 30%
or even much more) in BE delays can be obtained with only very modest levels
of rejection of GP customers. The percent rejected depends on the system pa-
rameters and the arrival rates, and it goes to zero as the system grows, for any
fixed percentage gain in delay.

The “state space”’ collapse phenomenon illustrated in Section 5, when there
are many GP and BE subclasses, allows one to explore the effects on performance
and control of complex customer requirements. One can do the numerics for
aggregations of several classes as well as for the original problem to get insights
into robustness of the model and performance under varying conditions. This
would be very hard under any current alternative approach. Indeed, the limit
allocations to the different classes are consistent with the (ad-hoc) weighted
fair-shares for different types of BE customers which were defined by the ATM
forum for sharing bandwidth (see the Section I.3 in Appendix I “Implementation
Examples on ABR Service” [1]).

The model In Section 4 can be used to study the effects of finite bandwidth
constraints on individual users. The multicast problem of Section 6 shows how
seemingly complex forms of the problem can be put into the context of a general
theory.

The structure of the paper is as follows. The basic model is presented in
Section 2, and the input-output equation is written in a way that is convenient
for the heavy traffic analysis. In the basic model, the BE customers share the
available bandwidth equally, whatever it is. The general methods used for the
analysis of this case also apply with little modification to the subsequent cases.
Section 3 deals with the weak convergence of the heavy traffic approximations
and the discounted cost function as the traffic intensity approaches unity. Many
of the ideas have been used in the references in various ways, despite the differ-
ence in the problems considered. Because of this and to save space, we provide
detailed outlines with references where possible. There is a new problem with
“tightness” of the set of the (singular) controls, but we show that they can be
approximated such that they are tight.

Section 4 considers the case where there is an upper limit to the bandwidth
that any one of the BE customers can use. This changes the dynamics and the
scaling, but the previous analysis can be carried over. In order to illustrate the
power and versatility of the approach, in Section 5 we consider extensions where
there are several classes of BE customers, which might be allocated bandwidth in
class dependent ways. There is a surprising degeneracy, which can be exploited
to simplify the analysis and subsequent numerical work.

Section 6 extends the basic model to a multicast case. Here there are two
channels (any number could be used), each with its own class of GP customers,
and own control. But the BE customers must be transmitted simultaneously on
each of the channels. Many variations of the format are possible. The ergodic
cost problem is dealt with in Section 7. In Section 7 we impose a constraint
on the rate at which GP arrivals can be rejected, so that previous results on



the ergodic cost problem can be exploited. The form of the heavy traffic limit
equations implies that this constraint is not very restrictive and this is borne
out by numerical data. But, in Section 8 we show that it is not a restriction.

The optimal mean cost per unit time for the physical system converges to the
optimal “ergodic” value for the limit system as the size of the system and time go
to infinity in any way at all. Furthermore, the limit of the pathwise (not mean)
average costs per unit time cannot be better than the optimal ergodic value for
the limit system. The pathwise average costs for the physical system can be
made to be arbitrarily close to this ideal limit by using a nice nearly optimal
(for the limit system) control on the physical system, under heavy traffic. The
pathwise results are important, since in any single application, we have just one
sample path, and the mean values are less important than the pathwise values.
Furthermore, a “nice” nearly optimal control for the limit system provides nearly
optimal values for the physical system, under heavy traffic, in both a mean and
pathwise sense.

Some of the development is similar to that in recent works on control under
heavy traffic (e.g., [29, 22, 25, 23]), although the exact form of the adaptation
is not entirely obvious for the present problem. This is particularly true of
the derivation of the basic setup in the first part of Section 3. Owing to this,
we have referred to the literature whenever possible. There remain many new
methodological features, apart from the novelty of an important application in
a broad context: The approximation of the singular controls, both for the dis-
counted and the ergodic problem, the degeneration (or state space collapse) for
the multi BE/GP class problem, the adaptation of the formulation to multicast,
and other extensions, with state dependent dynamics.

2 Problem 1: The Basic Setup

In this section, we set up the notation and evolution equations for the basic
problem. The development for the more complex problem classes is similar.
There are two classes of users, which we refer to as class 0 and class 1. Class
1 being the GP traffic and class 0 the BE traffic. As usual in the analysis of
systems under conditions of heavy traffic, the mean service capacity is slightly
greater than the mean demand. The system is parameterized by a parameter N.
Both the system capacity, excess capacity (over what is required for the average
demands) and demand grow as N — oo, with the relative excess capacity)
going to zero. This will be formalized below. A consequence of the heavy traffic
analysis is that these relationships represent good design in that very good
performance can be obtained. A well designed heavy traffic operating regime
implies that the system is not overbuilt and can well handle the demands placed
on it.

In this and in the next section, the bandwidth is normalized so that each
member of class 1 requires one unit of bandwidth. The members of class 0 share
whatever bandwidth is left. An applications paradigm is that each arrival is the
work for a “session,” whose work arrives essentially at once, and is buffered on



arrival. This models well the more general situation in which the input rate of
packets within a session is not less than the transmission rate, so that when we
allocate a given bandwidth to a session then this bandwidth is indeed used by
it. In Section 4 we shall relax this assumption. The channel is time shared,
with a guaranteed time going to the class 1 customers, and the remaining to the
class 0 customers. Thus, there is no limitation on the rate at which work can
be done on the set of class 0 customers except for the the available capacity.
Let oz;’N ,0 =1,..., denote the interarrival times for the members of class
1, and set Ea?’N = a“" To conform with standard usage, we also define the
normalized mean “rates” \»Y = 1/Na“". The service times for the members
of class 1 are exponentially distributed with constant rate p>?. Class 1 can
be controlled in that any requested admission can be denied by the controller.
The system is a “loss” system in that any customer denied admission disappears
from the system. For analytic convenience, we suppose further that there is a
constant Bg_ > 0 such that no class 0 customers are admitted to the system if

the current number of class 0 customers in the system is greater than v/ N B}. Tt
follows from the heavy traffic limit theorems (and from the numerical data) that
this is inconsequential for large enough B3_. In fact, the condition is useful only
to simplify some of the analytic details for the ergodic cost criterion, and BY
can be set equal to infinity for the discounted cost function. But we include the
finite upper bound here to unify the development. Let F%Y(t) denote 1/vN
times the number of class 0 customers not admitted by time ¢.

The time requirements for the members of class 0 are also exponentially
distributed. But the rate at which a customer of class 0 departs from the system
depends on the (random) resources available to it while it is in the system. The
“conditional mean instantaneous departure rate” for a class 0 customer at time
t is defined to be u%" times the bandwidth available to that customer at that
time. Le., if at time ¢, B(¢) is the total bandwidth unused by members of class
1, and there are A(t) members of class 0 in the system, then the probability
(conditioned on the data up to that time) of a single departure of a member of
class 0 in the time interval [t,+6) is u%~ B(t)6/A(t) + o(6), and the probability
of more than one departure in that interval is o(8). The set of interarrival times,
and the service times for class 1 are assumed to be mutually independent. This
independence of the interarrival times is a good description of reality, since we
are working at the session level, where this property has often been observed. 2
Long range dependence in the arrival process is not relevant as it might be at
the packet level.

We assume that there is b (parameterizing the “excess capacity,” which might
be negative) such that the channel capacity is

AN \LN
Cy=N [“O—N + /H—N] +bVN. (2.1)

Suppose that \»Y — \; and p»"Y — p;, all positive. Thus, the mean arrival

2See. e.g., Liu (INRIA, Sophia Antipolis, France), Measurements Over the Web, private
communication, to be submitted.



rates and the channel capacity are all O(NV), and the channel capacity is O(v/' N)
greater than the mean requirements. For appropriate b, this will be seen to be
sufficient for good behavior. We also make the innocuous assumptions that

{

and that there are o2 such that

. . 2
oV | 50, N } is uniformly integrable, (2.2)

E

az,N
1- = ] — o2 (2.3)

In common cases, the arrival processes are assumed to be Poisson. Then all mo-
ments of the terms in (2.2) are uniformly (in 4,7, N) bounded. If the interarrival
intervals for class i are constant, then ¢ = 0. If the arrival stream for class i is
Poisson, then ¢ = 1. Define the scaled mean arrival process

) 1
SHN(t) = N [# of class ¢ arrivals by time {]
and the normalized and centered sum
1 [wVi] ot
WaN(t) = — 1- L1,
0= gr L |1

where [Nt] denotes the integer part.

As usual in heavy traffic scaling, all of the basic system variables are scaled
by 1/v/N. Define X% (t) to be 1/y/N times the number of members of class 0
in the system at time ¢, and set

1 ALN
XLV (t) = — |# of class 1 in system at time ¢ — Nﬁ]
'u, ’

VN

Thus X 1% (t) is the scaled number of class 1 customers centered about the mean,
if there were no rejections, and an infinite channel capacity. Define A% (t)
(resp., D*N(t)) to be 1/v/N times the number of arrivals (resp., departures) of
class i by time ¢, and F"V(t) denotes 1/+/N times the number of arrivals of class
1 up to time ¢ which the controller did not admit. Thus, A»Y (t) = VNSV (t).
The (non decreasing) control process F*V(-) is assumed to be admissible in
that it is (w,t) measurable and its value at time ¢ depends only on the data
which is available up to time ¢t.
The system balance equations are

XON(t) = XON(0) + A%V () — DON(t) — FON (1), (2.4a)

XEN(t) = XUN(0) + AV () - DY (8) - FUN (1) - UBY (1), (2.4b)



where UM (t) is 1/+/N times the number of class 1 customers that could not
be admitted due the entire channel being occupied by class 1 customers. This
last term will disappear in the limit. We will suppose that the set

{X"N(0),N} is tight (bounded in probability). (2.5)

If this set is not tight, then there will be a long delay before the heavy traffic
regime is entered. The set {X%"(0)} is always tight, since B} < oco. It is
also supposed that the initial condition is independent of the subsequent arrival
times, and service times for class 1.

In order to simplify the convergence proofs, one needs to put the input and
output processes into a more convenient form.

Representation of the input processes. Following a common practice in
weak convergence analysis, we decompose the arrival process as

1 NSHN (1)
Ai,N _ -
D=UF &
=1 (2.6a)

NSEN (1) oV

1 NS (1) oV 1
l l
= — -+ = ——
Note that
NS*N(¢)
i,N
ay
=1

equals ¢ minus the time since the last arrival before or at ¢. Thus, by (2.6a),

LN i, N i N iN _ PPN (1)

AN () = WOV (SEN (4) + AN VN T (2.6b)
where p®" (t) is the time since the last arrival before or at ¢, divided by the mean
interarrival interval. The sequence of processes p»(-)/v/N converges weakly
to the “zero” process. It does not affect any of the subsequent calculations and
for the sake of notational simplicity, it will be omitted in all of the subsequent
system equations after (2.11).

Representation of the output processes. Owing to the exponential distri-
bution of the service time for the class 1 customers, D>V (-) can be decomposed
into the sum of the integral of the instantaneous conditional mean rate at which
DN (.) increases, and a martingale process D" (-). To do this, first note that
the conditional mean instantaneous rate of increase of DV (-) at t is "V /v/N
times the number of class 1 customers in the system at t.

We have the decomposition

t 1,N _
DN (t) = ,u,l’N/ [Xl’N(s) + \/N—;\Ll ~ | ds+ D" (t). (2.7)
O b

10



The Doob-Meyer increasing process associated with the martingale is just 1/v/N
times the integral in (2.7); namely,

1,N t )\I,N

A1, _ K
(D N)(t)—\/N ;

The factor 1/v/N appears due to the definition of D" (t) as 1/v/N times the
number of departures by time ¢. Similar decompositions were used in [22, 27].

Let I%M(t) denote the indicator function of the event that there are class
0 customers in the system at t. The departure process for class 0 is similarly
decomposed into the integral of the conditional mean instantaneous rate at
which D% (.) increases, and a martingale D%V ().

In preparation for this, first note that the available bandwidth per class 0
customer at time ¢ is

[XLN(S) +VN (2.8)

—— | ds.
sy

Cx = [VNXUN(t) + NALY [tV |
VNXON()

1%%(),

which equals

N)\O,N/MO,N + b\/N— \/NXl’N(t) IO,N

t).
VRXON (D) ®)
Thus the conditional mean instantaneous rate at which D%/ () increases at t is
A0 1,N 0,N
Hence,
0,N on [ A% 1,N 0,N H0,N
D% (t) = u> /0 [ Nm—l—b—X’ (s)]] (t)ds + D>V (t), (2.9a)

which we rewrite as

t 0,N B
DOV (t) = MO’N/ [\/N:O—N +b— Xl’N(s)] ds + D%N(t) = YON(t). (2.9Db)
0 b

The term Y%V (-) is a reflection term; it corrects for the difference in the integrals
in (2.9a) and (2.9b), and it can increase only when X%%(t) = 0. The Doob-
Meyer increasing process associated with D%V (.) is

cps - [

=75 \/NMO—N +b—X1’N(s)] 1%V (s)ds,
o :

which is written more conveniently as

t /\O,N b Xl,N(s):|
0,N o,N
’ —_—t = ——F| I ds. 2.10
g /o [MO’N VN VN (s)ds ( )

11



Now, putting all of the above representations together and canceling the
+v/NA>Y terms yields the forms:

XON (1) = XON(0) + WOV (52 () — u® [ go(X ¥ (5))ds

AO,N 0,N 0,N PO’N(E) (211a)

=DV () =F>" )+ Y (¢) — ,

(6= FN () + YOV (0) = B
t
XI,N(t) _ Xl,N(O) 4 WI,N(SI,N(t)) _ MLN XI’N(S)dS

1,N 1,N 1,N PI’N(E) (2.11b)

D> (t) — F7 (¢t U7 (t ,

()= F2N () = U (1) = B
where we define

go(@) =b—a', (2.12)

and the Y%V (¢) term compensates for the fact that there are no departures of
class 0 customers at time ¢ if X% (¢) = 0. It assures that X% (¢) will stay non
negative.

Comments on weak convergence. The path space for all of the random
processes is D¥[0, ), the space of functions which are right continuous, have
left hand limits and take values in Euclidean k—space for appropriate integers
k. The Skorohod topology is used [6, 9]. This is the most common and con-
venient choice in heavy traffic analysis. The following is a convenient criterion
for tightness in this space. It will be used implicitly. Let {Y"(-)} be a sequence
of processes with paths in D0, c0), with probability one. Let 7"(t) denote the
stopping times with respect to the filtration engendered by Y"(-) and which are
no larger than ¢. If

limsup sup E(QA|Y™(r+6)—-Y"(r)|) =0, (2.14)
=0 n reTn(t)

for each t, and
{Y"(t) : n,t} is tight, (2.15)

then {Y™(-)} is tight [9].

3 Discounted Cost Function and Weak Conver-
gence

The convergence theorem implies that only a bandwidth excess of order O(v/N)
is needed for good performance.

Although the set of applications is new, the setup so far is similar to that of
many other problems of control of queues under heavy traffic. See, for example,
[29, 22, 25, 23]. The main new questions concern the control functions FL.V(-).
We will be concerned with two types of cost functions; the discounted and the

12



average cost per unit time (to be called the ergodic cost function). Until Section
7, we concentrate on the discounted problem. Much of the analysis carries over
to the ergodic case with little change. Also, analogous procedures are used
for the convergence proofs for all of the problem formulations in the following
sections.

Let 8 > 0,¢; > 0, where 3 can be as small as we wish, and let k() be a
non negative continuous function with £(0) = 0. The discounted cost function
is defined by

CY (@, F'N) = E / B R(XON ())ds + E / e S GdF N (s). (3.1)
0 0 -

The second term penalizes the rejections. We do not penalize the loss UM/ (+),
since it is zero in the limit as N — oo no matter what the controls are. The first
term can be quite general. If k(-) is linear, then it simply penalizes the waiting
time for class 0 customers. More generally, it can be non linear. For example, it
might be zero for small values of the argument (if the delays at small values are
considered to be unimportant), or it might increase superlinearly to discourage
long delays. The allowed generality of the cost function is one of the advantages
of the approach. Define V" (z) = inf 1. CF (z, F*V), where the inf is over the
admissible controls.

The basic structure of the convergence proofs is similar to those in the cited
references to controlled queues in heavy traffic, except for the questions of tight-
ness and approximation of the control functions. After stating the convergence
theorems, the proofs will be outlined and references given for many of the details.

Define B4V () = WiN (85N (.)) — DAV ().

Theorem 3.1. Let € > 0 be small but arbitrary, and let FYN(-) be e—optimal
controls. Suppose that {FVN(.), N} is tight® . Then the set

{XN0), BN (), PPN ()i = 1,2Y7(), N}

is tight. The weak sense limit of any weakly convergent subsequence satisfies

XO(t) = X°(0) — o /t 90(X (s))ds + B°(t) + Y°(t) — F°(t), (3.2a)
0

XHt) = X10) — m /Ot X'(s)ds + B*(t) — F'(t), (3.2b)

where the B*(-) are mutually independent Wiener processes with variance pa-
rameters Xi(1 + 02). 0 < X°(t) < BY, and Y°(-) is the reflection term at zero.
FO(.) is the reflection term at the upper bound. The other processes are non
anticipative* with respect to the Wiener processes.

3By Theorem 3.3, this tightness assumption entails no loss of generality.
4The associated ﬁltra.tiqn here; and ip subsgquent uses of “non anticipative” is that generated
by all of the processes (X*(-), B*(-), F*(-), Y*(:),i = 0,1).
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Comments on the proof. Details for similar results are in |22, 23, 25, 29, 27],
and we will only outline the sequence of ideas. First, by the renewal theorem
SN (.) converges weakly to the deterministic (limit scaled mean arrival rate)
process with values \;t. By Donsker’s Theorem [6, 9], W% (-) converge weakly
to mutually independent Wiener processes with variance parameters o2. Hence
the WY (SN (.)) converge to mutually independent Wiener processes W(-)
with variance parameters \;o?2.

The set of martingales {D%"(-);i, N} can readily be proved to be tight via
the criterion (2.14), (2.15). This is done by a direct computation using the
fact that their associated Doob-Meyer increasing processes (2.8) and (2.10) are
bounded by a constant times ¢. The fact that the scaled discontinuities go to
zero as N — oo implies that their weak sense limits have continuous paths with
probability one.

With the above tightness results available on the “driving terms” W& (S5 (.)), D5V (),
and the tightness assumption on the control terms, the tightness of { X1V (-), ULY (-), N}
can be readily proved if the XV in (2.11b) were replace by some bounded
functions. For the general case, the tightness follows by a standard truncation
argument [21]. This tightness implies that the sequence UL (-) has “zero”
weak sense limits, since the “upper boundary” for X'V gets pushed to in-
finity as N — oo. The tightness of {X%¥(-)} also implies the tightness of
{XON(),YON(), FON(.), N}. In fact, the tightness of the {F®¥(.)} can be
shown even without tightness of the controls, since the controls only decrease
XUN(.) (hence X%V (-)) and F%¥(-) is a reflection process at an upper bound-
ary. Indeed, one can show that F% (-) is asymptotically continuous with proba-
bility one. If it were not asymptotically continuous then the asymptotic discon-
tinuity and the properties of the other driving terms for X% (-) would imply
that asymptotically there is a jump to the interior of [0, BY] from the upper
boundary, which is impossible, since the individual steps go to zero as N — o
and F®V(-) can increase only on the boundary. The tightness of {Y%¥(-), N}
implies that I%% (-) can be non zero only on set whose Lebesgue measure goes to
zero a N — oo. Hence, 1> (-) has no asymptotic influence on the Doob-Meyer
increasing process associated with the martingale D% (-).

Now, given the tightness, extract a weakly convergent subsequence, with
the weak sense limits being denoted by X*(-), etc. It can be shown that the
weak sense limits D?(-) are mutually independent Wiener processes which are
independent of the W(-), and have the variance parameters \;. The Wiener
property of the limits of the D" () is proved as in [22, Theorem 3.1]. The
mutual independence is a consequence of the independence conditions and the
definition of “conditional mean instantaneous rate” via a conditional expecta-
tion, and an analogous computation is in [22, Theorem 3.1]. The fact that (3.2)
holds follows from the weak convergence. The non anticipativenss properties are
proved by standard “martingale” means as in [29, Theorem 5.1], [22, Theorem
3.1] or [23, Theorem 2.1| W
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Definition. The discounted cost function for (3.2) is
Co(z,F') = E / =P k(X(s))ds + E / e 3 cidFi(s).  (33)
0 0 p

Define an admissible control F''(-) for (3.2) to be a non decreasing process which
is non anticipative with respect to the Wiener processes. If F(-) is absolutely
continuous, with derivative u(-), then we say that u(-) is admissible if it is non
negative, measurable and non anticipative. Define Vg(x) = infp1 Cév (z,F1),
where the inf is over the admissible controls. We say that F'**V (-) has a derivative
which is bounded by R if for each ¢t and s > 0, FLV(t +s) — FLN(t) < Rs +
1/V/N. The 1/V/N term is needed since FL'V(-) is piecewise constant with
jumps 1/v/N.

Theorem 3.2. Let XV(0) = X (0) (weak convergence) Then

Vg (X7(0)) — V(X (0)). (3-4)

Discussion of the Proof. By Theorem 3.3, it can be assumed without loss of
generality that for each fixed € > 0, there is some set of e—optimal controls for
(2.11), (3.2), with uniformly bounded derivatives; hence the set is tight. Owing
to the discounting, as noted in the proof of Theorem 3.3, we can suppose that
there is T, < oo such that the F'**"(-) do not change after time T.. It is sufficient
to work with this set below.

Given € > 0, let F'V(.) be a sequence of e—optimal controls. Let X~ (0) —
X (0). By Theorem 3.1, {X%N (), XLV () FLN()} is tight. Let N index a
weakly convergent subsequence with weak sense limits (X°(-), X1(-), F1(-)).
Then, by the weak convergence and Fatou’s Lemma,

lim inf V(XN (0)) > Va(X(0)).

This and the e—optimality of F1'V(.) for each N implies that

€ + lim inf Vi (xXN(0) > lim inf Cy (XN (0), F-M)

> CH(X(0), ) > V(X(0)). (33
Since € is arbitrary, (3.5) implies that
lim inf V' (XN(0)) > Va(X(0)). (3.6)
Now we prove the reverse inequality to (3.5), namely,
nmNsup V3 (XN(0)) < Va(X(0)). (3.7)

To do this we apply the following widely useful approach. Note that, for each
initial condition, the distribution of the limit process X(-) depends on the pair
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(F1(-), B(+)). For each fixed € > 0, we first find an e—optimal pair (F<!(-), B¢(+))
for the limit process with the property that there is a sequence of admissible
controls F&LN(.) for (2.11) such that (define BN (.) as BY(-) was defined
but under control F&LN(.)) {XN(0), F&LN(.), B&N(-))} converges weakly to
(X(0), F&'(-), B(-)) and also that

CH (XN (0), oY) — Cp(X(0), ') < V(X(0)) +e. (3-8)

For any € > 0, there is an F*!(-) and a sequence of admissible controls { F&1V (-)}
satisfying the requirement (3.8). See, e.g., [28, Section 5]. The sequence of
controls given by the reference is admissible and the F&LV(T,) are uniformly
bounded. It does not necessarily have a bounded derivative, and might not even
be tight in the Skorohod topology. [A time transformation methods was used in
the reference to circumvent the tightness problem. But the method used here
is simpler in the current case, since Theorem 3.3 shows how to alter the control
sequence (without loss of generality) so that we have bounded derivatives (hence
tightness) with (3.8) holding (with perhaps e replaced by 2¢).]
Now, (3.8) and the fact that (due to the non optimality of F<N(.))

V5 (XN (0)) < CF/(X7(0), FobN)
yields (3.4). &

Comment on the optimal controls. The comments on the form of the
optimal control in Section 7 also hold for the discounted cost problem. In
particular, numerical data show that there is a piecewise linear or nearly linear
switching curve such that the optimal control is to reject above and accept
below, with any decision allowed when on the curve. For large IV, this control
will be nearly optimal for the physical system. These comments on the shape
of the switching curves are based on (very consistent) numerical computations,
but not on proofs.

Comment on tightness. An e—optimal sequence {F%"(-), N} need not be
tight in general. Let X" (¢y) > 0. Consider the example of a control which
rejects until X1V () reaches the value zero, and then stops. Since the required
time for X" (-) to reach zero is of the order of X'V (ty)/v/N, the control
clearly converges to a step function in an obvious way. But, owing to the fact
that it increases in small steps (of size 1/v/N), the sequence is not tight in the
Skorohod topology. There are many ways of dealing with this problem. We can
adapt the time transformation method of [26, 24]. But, owing to the relative
simplicity of the dynamics and cost function there is a simpler way, which avoids
the extra notation and concepts.

Theorem 3.3. It can be supposed that the controls in Theorems 3.1 and 3.2 are

tight. In fact, it can be supposed that they have uniformly bounded derivatives
for each € > 0.
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Proof. Fix € > 0. Since By < oo, {k(X%N(t)), k(X°(t)); N,t} is uniformly
bounded. 3 Thus, due to the discounting, there is T, < oo and a sequence of
€/2—optimal controls which do not change after time T.. Note that the control
which is identically zero has uniformly (in N) bounded costs.

The existence of T, < oo can be seen from the following argument. From
any time T on, and with no control after that time, the limit cost is

E / ePU(XO(t)dt + E / e=PleodFO(1).
T T

The first term obviously goes to zero as T — 0o, uniformly in the past values
of the control. The same thing can be said of the second term, owing to the
properties of the solution to (3.2a). A similar argument applies to the physical
system and controls F1:¥V(-). We need only work with controls for which the
sequence of costs is uniformly bounded.

For large enough K < oo, the sequence defined by F}(’N(-) = FUN()AK
will be 3¢/4—optimal, and similarly for Fj(-) = F'(-) A K. To see this, note
that whatever the controls in the previous paragraph are, the boundedness of
the costs imply that

sup EFYN(T,) < 00, EFY(T.) < 0. (3.9)
N

Furthermore,

lim sK]pP {[F"M(T.) - FPN(T)AK] #0} =0,

3.10

limp P{[F*(T.)— F*(T.) AK] £0} =0. (3.10)
(3.9) and (3.10) and a straightforward analysis using Fatou’s Lemma implies
that the costs and systems associated with the use of F4 (\)AK (resp, F*(-)AK
for the limit system) are asymptotically (as K — 00) no worse (uniformly in
N) than the costs for the original untruncated controls.

Now that we know that there are 3¢ /4—optimal controls F1V (-), F*(-) which
do not increase after T, and that are uniformly bounded, we can show that we
can bound the derivative as well: More precisely, we can show that there are
R < o0 and e—optimal controls which satisfy:

Fi(t+s) — Fa(t) < Rs, (3.11)

Fl(t+s)— Fp™N(t) < Rs + 1/VN, (3.12)

for all ¢, s > 0. In particular, let F5(-) denote the largest control which satisfies
(3.11), but is no greater than F'(-), and let Fllz’N(~) be the largest control which
satisfies (3.12) and which is no greater than FLV(-).

5Even if BS_ = oo, by imposing a growth rate k(z%) = O(|z°|1+%) for large 20, 0 < § <
1, and assuming that supy E|X%N(0)|?2 < oo, Ek(X®N (%)) is at most O(t?) for large t,
uniformly in the control (and analogously for the limit system).

17



Since K < oo and R is as large as desired, any jump in F'**¥ (-) can be reached
by F é’N(-) in an arbitrarily short (uniformly in N and in the realization) time
afterwards Thus, excluding a set of measure which goes to zero (uniformly in
N) as R — oo, FUN(t) — F}%’N(t) goes to zero (uniformly in N) as R — oc.
This and the boundedness of the F' functions imply that X1V (¢) — X}Q’N(t)
is bounded and (excluding sets of arbitrarily small measure) converges to zero
uniformly in N. Similar remarks hold for F1.V(-), F}?‘N() These results imply
that the costs converge as well.

The 1/+/N term appears in (3.12) since F»VV(-) is piecewise constant with
an increment of 1/v/N at each rejection. B

4 Upper Limit to the Bandwidth for the (BE)
Sharing Customers

In the model of the previous two sections, the class 0 customers shared the
available bandwidth, whatever it was, and used all of it. In general, it might
not be possible for all of the available bandwidth to be used. For example,
there might be local restrictions on the rate at which data can enter the channel
buffer (e.g., bounded modem speed, etc.). This possibility changes the problem
a little, and we will indicate the few required adjustments. Such examples are
further illustrations of the versatility of the approach.

Suppose that the mazimum bandwidth that any single class 0 customer
can use is Cy. The main difference in the development concerns the departure
process for class 0 customers and the structure of the appropriate cost function.
We now redefine

_ # of class 0 customers at time t — NA®Y /(Cou®?)

Nic .

Note that now X% (t) is centered around a mean value, assuming that each
class 0 customer uses exactly Cy units of bandwidth. In Sections 2 and 3, the
number of class 0 customers in the system was O(vV/N), and X% (t) measured
that actual number, scaled by 1/ V'N. Now, the number in the system will be
O(N), and X% (t) measures the deviation from the mean number, scaled by
1/v/N. We suppose that class 0 customers are rejected if XV () > B, where
B?I_ < 00. Theoretical and numerical results show that this will have negligable
effect if BY is large.

The martingale decomposition (2.9) remains valid, but the instantaneous
conditional mean departure rate is different, being determined by whether or not
the available capacity per class 0 customer is greater than Cy. The conditional
mean instantaneous rate at which D% (-) increases at time  is

XON(t)

i ilable B tt
uﬁ[# of class 0 in system at ¢]xmin available BW a

, Co| I%N (1),
# of class 0 in system at ¢ 0 ®)
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which equals

0,N
IO’N(t)Mﬁ x min [available BW at ¢, Co(# of class 0 in system at t)]
= IO’N(t)ﬂ « min | M2 +bVN - VNXV(#), © (M + \/NXO’N(t)ﬂ
vN poN O\ Copoy
= N NNV + 10N (1) g, (XN (1),
(4.1)
where we define
g1(z) = min [b — 2*, Coz°] . (4.2)

Now, analogously to what was done in Section 2, we can write the decom-
position as

t
DON(t) = AN/ Nt + / OV g1 (XN (s))ds + DN (t) — YO (¢),
0

where the Doob-Meyer increasing process associated with the martingale D%V ()
is
t
. 1
<D"N > (1) = / [)\O’N + ——pO Vg (XN (s)| IOV (s)ds.
0 VN
The dynamical equation is (2.11) with (2.11a) replaced by

XO’N(t) — XO’N(O) 4 WO’N(SO’N(t))

t
0N [ eV (o = 50N () - PN 0N,
0
and the limit equation is (3.2) with (3.2a) replaced by
i
X°(t) = X°(0) - po / g1(X(s))ds + B°(t) — F(t). (4.4)
0

In the cost function (3.1), the function k(-) was assumed to be non negative.
This made sense since X% (¢) was non negative. Now, since X% (¢) can take
any sign, we suppose that k(z°) takes the sign of 2° and is zero if z° = 0. Note
that for large negative z°, the departure rate is essentially limited by the Cp
limitation, and the control has little effect. Also, suppose that

k(@) = O(la"]), supE | XN (0)]* < oo (4.5)

Under the given conditions, Theorems 3.1 to 3.3 hold.

The savings in waiting time for the class 0 customers (for the controlled
problem) are of the order of that of the model in Sections 2 and 3. But, since
there are many more customers in the system at any time, the savings per
customer are less. We are essentially concerned with “marginal” savings, at a
“marginal” cost.
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Comments on the proofs. The proofs outlined in Section 3 work here as
well, with essentially the same details. The only differences are due to the fact
that in the present case the X% (t) are not bounded below. But in the proofs,
the second moment bound

sup E |X0’N(t)

|2
N,t,F1.N

< 00 (4.6)
is used in lieu of the zero lower bound. (4.6) is proved by use of a dominating
system. The second moments are bounded by a constant plus the second mo-

ments of the following system, which is defined on the interval (—o0c, 0], and the
reflection term F%¥ () now acts at the origin, and keeps the state non positive:

XON(8) = X0+ WON (S (1) =N [ XON (s~ D ()~ PN ).

(4.7)
The proof of (4.6) for the model (4.7) is done by a Liapunov function technique,
and can be found in [22, page 771]

5 Extension. Several BE and GP Subclasses

The developments in the previous sections can be extended to the case where
there are multiple subclasses of any of the classes (and similarly for the models
in the subsequent sections). We will illustrate only one of the many possibilities,
working with the setup in Sections 2 and 3. Suppose that there are now two
types of BE (class 0) customers, called class 01 and class 02, with parameters
A0BN 06N i — 1,2, We suppose that the natural analogs of the conditions in
Sections 2 and 3 hold. There is a surprisng and very useful degeneracy, which
simplifies both the analytical problem and the numerical analysis.
Analogously to the formula (2.1), we let the channel capacity be
/\Oi,N )\I,N
CN =N lz W + m

k2

+ V/Nb. (5.1)

The bandwidth available at time ¢ for both subclasses 01 and 02 is

206N

The processes are defined analogously to what was done in Section 2. E.g.,
DO%N (.} is the number of departures of subclass 0i by time ¢, divided by v/N.

Until otherwise noted, let us assume that the available bandwidth is shared
equally among all class 0 customers, irrespective of the subclass. Then the total
conditional mean instantaneous rate at which D%% (.) increases at t is (following
the idea used in Section 2 and (assuming that there are class 0 customers in the
system)

0i,N R
s N [# of subclass 0i in system at ] aval a

total # of class 0 in system at t’
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which equals

204N

> :NW —VNXbN(t) + VNb
0i,N x 04,N (4 J 5.9
H (t) \/sz XO04N (¢) (5.2)
Define 01 N/ 01,N
A k) M b
~N _ = _ 1im 5V
=5y o= e (53)

The system is degenerate in that if the costs are bounded in N, then the
ratios XL (¢) /(XOLN (¢) + X922 (1)) converge to @ as N — co. Thus we need
only analyze the system with class 1 and one of the subclasses 0i. Only an
informal argument will be given. We note in passsing that this convergence
relation is an example of what is called state space collapse in the heavy traffic
analysis of queueing systems. It is not the usual type, which is concerned with
multiclass queues under the workload formulation.

Let us examine the mean rates of increase of A°»™(.) and D" (.). The
“mean rate” at which A% () increases is VNV . Define BN = 3. [\9%N /u05N].
Set

B XOl,N(t)
a"(t) = XOLN(7) + XO2N(£)"

Using the fact that the available bandwidth is partitioned equally among all the
class 0 customers, the conditional mean instantaneous rates at which D% (-),4 =
1,2, resp., increase at t are, resp.,

I:\/NBN _XI,N(t) + b] /LOl’NaN(t),

[VNBY — XN (t) + 0] u™N (1 - a¥ (1))

The differences of the dominant arrival and departure terms for the two sub-
classes are, resp.,
VN ALY — BN OLN N ()] (5.4a)

VN N2V — BN 02N (1 — oMV (1))]. (5.4b)

For the case of Section 2, the analogs of these terms have the value zero.

Let € > 0 be small. If, for large N, a™ (t) € [a—¢€,a + €], then (5.4a) implies
that there is a large force (of the order of v/N) returning it to this interval.
Similarly, (5.4b) implies that (1 — o' (¢)) must be very close to (1 — @). The
contribution of the non dominant terms is relatively small in comparison.

The degeneracy situation is similar if there are more than 2 subclasses.

Many interesting variations of the multiple subclass problem can be ana-
lyzed. For example, we might wish to alter the above formulation to allow each
of the 0i subclasses a different fraction of the available bandwidth. More con-
cretely, suppose that there are positive numbers k; such that for each unit of
bandwidth allocated to a customer of subclass 01, we allocate k2/k1 units of
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bandwidth to each customer of subclass 02. Then the dominant term in the
conditional mean instantaneous rate at which D% (-) increases at t is

N
05N o XN (1) BTN . (5.5)
VN (b XOUN (£) + ky XO2N (1))
Redefine a® (t):
01,N
aN(t) = M (5.6)

TS RXTN@)

Then, the difference between the dominant input and output terms is (5.4), but
with the new value of a” () used. Thus, we see that the new value of a’¥(t) is
very close to a for large V.

Note that the weighted fair-share for different types of BE customers in the
above equations is the one defined by the ATM forum for sharing bandwidth
among ABR users (see the Section 1.3 in Appendix I “Implementation Examples
on ABR Service” [1]).

6 Multicast: The Limit Dynamical Equations and
The Discounted Cost Function

Now, consider the case where there are two channels. There are three classes of
customers. Class 0 is as in Section 2, but must be transmitted simultaneously
and with the same instantaneous rate on both channels. Class i, ¢ = 1,2,
is to be transmitted on channel ¢ only. We make the natural analogs of the
assumptions of Sections 2 and 3, defining A%Y(-), D»N(-), X%V (-),i = 0,1, 2,
etc., analogously to what was done there. Analogously to (2.1), the capacity of
channel ¢ is assumed to be

. i,N
Cy :szﬁmﬂ/ﬁ, bi > 0. (6.1)

Any number of channels and 0 subclasses could also be used, with an arbitrary
assignment of the subclasses to the channels.
At time ¢, the bandwidth available for class 0 customers on channel i is

)‘O,N

N +b'VN — XV (t)VN.

0N

Thus, the conditional mean instantaneous rate at which D% (.) increases at t
is determined by the channel with the largest available bandwidth and (analo-
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gously to what was done in Section 2) is

,LLO’N\/NXO’N(t) y

o,N 0,N
N’\O—N + b VN — XUV (t)VN N’\O—N +byVN — X2N(t)VN
min B , 2 %N ().
VNXON () VNXON(2)
(6.2)
This equals

[V 4 0N go (XN (1))] 1M (8), (6.3)

where we define
g2(z) = min [by — XBV(¢), by — X2V (¢)]. (6.4)

Thus analogously to what was done in Section 2, we can write
t
DOV (t) = ANV Nt + / g2(X N (s))ds + DN (t) — YO (1),
0
where the Doob-Meyer increasing process associated with the martingale is

< DN > (t) = /Ot [/\O’N + %gz(XN(S))] 1%N(s)ds.

The analog of (2.11) is

XON(t) = XON(0) + WON (SN (£)) — &N /0 (X (9)ds (6.6a)

—DO’N(t) + YO’N(t) _ FO’N(t)

7

and for i =1, 2,

XON(t) = XPN(0) + WEN(SPN(E)) =t /0 t XN (s)ds
—DN(t) — FoN (1) — UM (1),

(6.6b)

where the Y%V (¢) term compensates for the fact that there are no departures
of class 0 customers at time ¢ if X% (¢) = 0, and U (¢) compensates for the
class i arrivals lost due to a full system (when the entire channel is occupied by
class i customers).

The discounted cost function is still (3.1), but now the sum has three terms.
The analysis given in Section 3 holds here in the same way and the limit equa-
tions are

XO(t) = X°(0) — o / t g2(X(s))ds + BY(t) + Y°(t) — F°(¢t), (6.7a)
0
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XUt) = X(0) — ps /Ot X(s)ds + B*(t) — F'(t),i = 1,2, (6.7b)

where the B*(-) are mutually independent Wiener processes with variance pa-
rameters \;(0? + 1). The associated cost function is (3.3), and we still have

V5 (X7(0)) — Va(X(0)), (6.8)
if XV(0) = X(0).

The model of Section 4. Now, suppose that each class 0 customer can use
at most a bandwidth Co. Then define X% (t) as in Section 4, and let B} < oco.
The development is a combination of those of Sections 3 and 4. Now, the
conditional mean instantaneous rate at which D% (-) increases at t is obtained
as the minimum of three terms, depending on whether the available capacities
in channels 1, 2, or Cy is the limiting factor. It is

©ON
——|# of class 0 in system at ¢
Vi [# y ]
min avail BW .in chlatt 7 avail BW .in ch2att L Co| 1N (1),
# of class 0 in system at ¢t~ # of class 0 in system at ¢
(6.9)
Define
g3(z) = min [by — 2*, by — 27, Coz’]. (6.10)

Then (6.9) can be written as
[VRADY 4 10 go (XN (0))] 1% (1),

All of the previous results continue to hold with g3(-) replacing go(-)-

7 The Ergodic Cost Function: The Basic Model:
Bounded Control Rate

For concreteness, we work with the system model and assumptions of Sections 2
and 3, although all of the results hold for all of the other models. In this section,
we will suppose that the controls F-V(-) and F1(-) (for the limit system) have
bounded derivatives in the sense used in Theorem 3.3, as follows: There is a
constant R, which can be as large as we wish, such that Fl(t) < Rfor all t, and
for all t,s > 0, F"N(t+s)— FN(t) < Rs+1/v/N. Thus, the maximum “rate*
of refusing admission to class 1 customers is bounded by v NR.

The reasonableness of the bounded derivative assumption is also seen from
the form of the limit equation (3.2), which (informally) suggests that one loses
very little by bounding the derivative of F'(-). Furthermore, it is completely
borne out by our numerical data. The next section shows that we can make this
assumption in the proofs with no loss of generality.
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Although useful in applications, the mathematical reason for the assumption
of bounded control “derivatives” concerns the mathematics of the ergodic cost
problem. Little is known about the ergodic cost problem for the limit system
when the control functions are arbitrary right continuous functions. But a great
deal is known when they have uniformly bounded derivatives. In that case, for
the current non degenerate model (3.2), there is an optimal feedback control
which is time independent and the optimal value g(x) (defined below) does
not depend on x. More importantly, for our purposes, for any € > 0, there is
an e—optimal time independent feedback control u(-) such that u(-) = F<1(.)
is arbitrarily smooth, and under which there is a unique stationary measure.
The F<'(-) plays the role of the F*¢(-) in Theorem 3.2. The basic convergence
results are quite technical. They are in [20] for the unconstrained (no reflect-
ing boundaries) problem, with extensions to the constrained problem being in
[22, 23]. Indeed, under our basic setup, the needed convergence results can be
obtained from [23] by appropriate identification of terms.

Define the cost functions

cN(XN(o)J,FUV):/0 BN ($)ds + Y eF Y (T),

Y& (X7(0),T) = inf EC(X™(0),T, F"")/T,
7R (XY(0)) = limsup 75 (X™(0), T).

For the limit system, define the analogous quantities, with the N dropped. If
there is no rate R restriction, we drop the subscript R. We also suppose that
(with little loss of generality)

sup E| XYY (0))? < oo. (7.1)
N

In Section 3, it was shown that, for the discounted cost problem and large
enough R, we can get as close to optimality as we wish. The proof in Theorem
3.3 used the fact that the discounting implied that we need concern ourselves
only with a finite time interval. The proof is more subtle for the ergodic cost
problem, and is given in the next section.

The results in [23] will apply if we have tightness of the doubly indexed (both
t and N are indices now) set of processes

{XN(t+),BN(t+)— B (t), F"N(t+ ) — FYN(t); N, t}. (7.2)

The tightness holds for the set of F%V(t + ) — FLN(t) processes by the as-
sumption on boundedness of the derivative. The set {WHY(S4N (¢t + ) —
WHN(S4N(4); N, t} is tight due to the independence properties of the inter-
arrival intervals, (2.2), the weak convergence of the SV (t + ) — S»M(¢), as
N — oo and for any sequence ¢, and the use of the criterion (2.14), (2.15).
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A standard Liapunov function argument (using the Liapunov function | X1V|?)
and the “ R—derivative” restrictions on the controls can be used to prove directly
that

sup E |X1’N(t)

|2
t,N,F1.N

< 0. (7.3)
Here, the sup is over the F'V which satisfy the R—derivative restriction. Then,
tightness can be shown for the set of D*N (¢t +-) — D" (t) processes by a direct
application of the criterion (2.14), (2.15) and the use of (7.3) to bound the
expectation of the Doob-Meyer processes associated with DN (t 4 -) — D%V (t).
The proof of the tightness of the doubly indexed sequence { XV (¢t +-); N, t} is
then the same as the proof of tightness of { X% (), t} where the initial conditions
vary over a tight set (the X% (¢) are bounded by By).

Given the tightness of (7.2) and the non degeneracy of the limit system (3.2)
(the set of driving Wiener processes is non degenerate, in fact the components
are mutually independent with positive variances), the following results follow
by a direct application of the results and ideas in [23].

1 (XN(0),T) = Ar, (7.4)

as T — oo and N — oo in any way at all, where Jg is the infimum of the costs
for the limit system over controls with derivatives bounded by R, and it does
not depend on the initial condition.

Furthermore, for any € > 0,

[eN(XN(0),T,FMY)
gfgp{ ) <Fn— } _o, (7.5)

where N, T can go to their limits in any way at all, and F*¥(-) is an arbitrary
sequence of controls. There is a converse to (7.5), which says that a good control
for the limit system is a good control for the physical system. Given € > 0, let
F&1(.) be an e—optimal control with smooth derivative u¢(-) and an adaptation
Fe&LN () to the physical system such that

lim P

cN(XN(0),T, F1N)
N,T

7 27R+%}=0, (7.6)

The results of the next section imply that we can replace g in (7.5) and (7.6)
by ¥

The control u(-) can be adapted for use on the physical system in many
ways, for large N. For example, by rejecting an arrival of class 1 at ¢ with
probability (conditioned on the past system data) u¢(X ™ (t))/[\"V+/N]. Alter-
natively, we need not have the rejection choices being random, provided that
VN times the number rejected when the state is “near” & converges to u¢(x) as
N — o0.

Comments on the controls. Numerical data show that the derivative F'(t) =
u(t) of the optimal control takes either the value R or zero, with the regions
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separated by a piecewise linear or nearly linear switching curve. One applies
this control to the physical system as in the last paragraph. [This procedure is
asymptotically equivalent to rejecting all arrivals when the state is above the
switching curve.] Equation (7.6) holds for such discontinuous controls as well.
This is important in applications since such controls are easily implemented.
Numerical data show that the switching curves converge nicely to piecewise
smooth (or even linear) curves as R — oo. (7.6) holds for this curve a well.
Then we reject all arrivals of class 1 when the state is above the switching
curve. Analogous remarks hold for the discounted cost problem.

Comment. Note that both (7.5) and (7.6) deal with pathwise average costs,
not with average costs. Since any application is a single realization, the con-
vergence of pathwise average costs is more important than the convergence of
expectations. The inequalities (7.5) and (7.6) say that for large N, the opti-
mal controls for the physical problem are (asymptotically) only negligibly better
than the use of a nice almost optimal control for the limit system.

Finally, we simply note without further comment that the methods in [20,
22, 23] can be adapted to prove that limy g 8V, (X (0)) = 7.

8 The Ergodic Cost Problem: The Basic Model:
Arbitrary Controls

Now, return to the problem of bounded derivative controls. We will show that
we can approximate any optimal or nearly optimal control by a control with
which has a “derivative” bounded by R, for large enough R. In particular:

Theorem 8.1.
lilr%n [¥ —4gr] = 0. (8.1a)

lilr%n lim;up [N () — 7R ()] = 0. (8.1b)

Proof. A detailed outline of the steps will be given. Unlike as in Theorem 3.3,
we can not restrict ourselves to a finite interval. We need to show that for any
6 > 0, there is Rs < oo such that there are é—optimal controls for both the
physical and the limit system with bounded rate R;.

The development proceeds in several steps. The steps will be outlined (in-
formally to save space) for the physical system. The details are a little simpler
for the limit system.

1. Given € > 0, show that there is a B. < oo such that the optimal cost will
change by no more than ¢ if we do not reject when X1V (t) < —B..

2. Let € > 0. Allowing only controls which do not reject if XV (t) < —B,
for some given 0 < B < 00, show that there is K. < oo such that if we further
restrict the controls such that the increments F*Y (n+1) — F**¥(n) are at most
K, for all n, N, then the optimal cost will change by no more than e.
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3. Let € > 0. Allowing only with controls satisfying the restrictions of the
first two steps for some finite B, K, show that there is R, < oo such that the
optimal cost will change by at most € if we further restrict the controls to have
maximum “derivative” R..

Step 1 is the least difficult to accept even without a proof, since it is quite
reasonable that there is a B < oo such that an optimal or nearly optimal
control that would not reject if X%V (¢) < —B. The proof is a formalization of
the following idea. Given a control F*V(-) and a B > 0, define another control
FEMN(t) < FLN(t) where Fp™(t) is as close as possible to FLN(t), but acts
only when X1V (¢) > —B. For large B, the change in X% (-) is slight. To save
space, we concentrate on the outline for the other steps.

Thus, we start by supposing that there is 0 < B < oo such that there are no
rejections if X1V (t) < —B. We will show that, given € > 0, there is K, < oo,
such that we lose less than e in the cost if we restrict the control to satisfy
FYN(p+1)— FYN(n) < K, for all N,n,w.

Owing to the fact that we do not reject if XV (t) < —B, a Liapunov function
argument can be used to get that there is C' < oo such that

sup E|XSNo) <c. (8.2)
N, F1.N

Also, the same —B restriction and (8.2) can be used to show that

sup E[F"N(n+1)- Fl’N(n)]2 < 00. (8.3)
n,N,FL.N

The sup in (8.2) is over all controls satisfying our — B restriction. The proof of
(8.3) computes a worst case on each interval, which is a control taking X1V (n)
satisfying only (8.2) to —B as quickly as possible, then keeping it there until the
end of the interval, and repeating on the next interval, etc. The uniform mean
square boundedness of the part due to keeping X 1'% (-) at —B on [n, n+1] follows
from the reflection mapping and the mean square bounds on the martingales
driving (2.11b). For the reflection mapping and the Lipschitz continuity of the
reflection term as a function of the driving processes, see [8],[7, Proposition 2.1].

Given any F1V(.) satisfying our restriction, we proceed to approximate it
by bounding the increments by K. The approximation will be denoted by
Fi2V (), and the associated processes denoted by X X¥(-). Define Fi2"(-) such
that it satisfies the restriction Fio" (n+1) — F2™ (n) < K , it is no greater than
FLN(.), and tries to keep X g (-) as close as possible to X1V (.).

We always have X 2™ (t) > XN (t), hence X% (¢) > X%V (¢). It is not hard
to see that, for large enough K, X}(’N(-) will repeatedly catch up to and equal
XBLN(.). We can decompose time into successive intervals where X1V (#) <
X}(’N(t), and where X1V (t) = XII(’N(t). The key to the proof of step 2 is the
observation that, as K — oo, a larger percentage of time will be taken up by
the latter intervals. More precisely, for any Ty < 00, it can be shown that

limlimsup sup P {Xl’N(s) # X;(’N(s) for some s € [t,t + To]} =0. (8.4)
K N tFinN
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(8.4) follows from the observations made before it. Choose the control F3 (-) as
described. Then, starting at time ¢ — k for large k, the probability that X ;(’N ()
catches up to X1V (-) and equals it on [t,t + Ty] goes to unity as K — oo.

Note that if X?(’N(t) = 0, then X%M(¢) = 0. We next bound the “return
times“ to the boundary 2° = 0. Indeed, it can be shown that

lim limsup sup supP {X?(’N(t +s) # 0, for some s < T|data to t} =0.
T—o0 N t,Fll(‘N,K w
(8.5)
This can be shown by a weak convergence argument, using the fact that it holds
for the limit process, as follows. The worst case for proving (8.5) is where there
is no control since the control only decreases X% (t). Thus, suppose that there
are p > 0, t, and N,, — 00, T,, — oo such that (no control)

limsup P {X%""(t, + s) # 0, for some s < T, |data to t,} > p. (8.6a)

We will show a contradiction to (8.6a). Actually, it is more direct to show that
the assertion

limsup P {Y*™" (t,, + T,,) — YN (t,,) = O|data to t, } > p. (8.6b)

is false. The falsity of (8.6b) implies the falsity of (8.6a).
A Liapaunov function argument using (7.1) and the fact that there is no
control can be used to prove that

sup E| XN (t,)? < 0. (8.7)

Now, extract a weakly convergent subsequence of X V= (¢, + -), and note that
its limit X (-) satisfies (3.2). The distribution of X!(0) depends on the selected
convergent subsequence. But, owing to (8.7), E|X1(0)|? is bounded uniformly
in the selected convergent subsequence. Using this last fact, the properties of
(3.2) and the weak convergence now imply that (8.6b) cannot hold unless p = 0.
Now note that (a key point), if X?(’N(t) =0and XLN(t) = Xfl(’N(t), then the
two processes start again at ¢ with equal initial values.

The above results imply the following. For any 6 > 0, with a probability
arbitrarily close to one, the fraction of time that |X%V(t) — X%~ ()| > 6 on
any time interval goes to zero as K — 00, uniformly in the time interval and in
(large) N. This implies that the change in the k(-) part of the cost can be made as
small as desired by making K large enough. By construction, F*N () > F;(’N(t),
hence the control cost is no greater for the approximating control. We omit the
details of the fact that

E[Fg"(T) - F*™(D))/T

can be made as small as desired by making K large. But it can be proved by a
weak convergence argument and the facts established above.
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Thus for large enough K, we lose as little as desired by restricting F1V (")
such that F¥(n +1) — FY¥(n) < K for all N,n. This completes step 2.

Now, we turn to step 3 and make a few comments concerning the k(-) com-
ponent of the cost. Given a control F1'%V(.) satisfying the restrictions of steps
1 and 2 (with constants B and K, resp.), find a suitable approximation with
a bounded “derivative”. Let R denote the derivative bound. Define a control
F}%’N(-) with derivative bounded by R, such that F}%’N(t) < FUN(t), but where
the associated process X 5™ (-) is allowed to catch up with XV (-) when pos-
sible. It will catch up repeatedly, for large enough R. This is because the
maximum number of rejects on any time interval of unit length is 2K/v/N.
Since K is bounded and R large, except for an arbitrarily small time subinter-
val the number of rejects on any time interval [n,n + 1] can be made as close as

desired to what is needed, uniformly in N,n. Additionally, | X1V (t) — X ;N(t)

is uniformly (in N,¢) bounded. Thus, the values of XN (¢) and X 5™ () will
be arbitrarily close when X%’N(t) (hence, X% (t)) hits zero, or very shortly
thereafter (at most a time K/R+ O(1/v/N) later).

Note that the approximation problem is more subtle than in step 2, since we
cannot guarantee that X" (-) will equal XV () on longer and longer intervals.
[E.g., if FYV(-) jumps periodically, or if the limit is singular with respect to
Lebesgue measure.]

The following properties can be proved. First, by a Liapunov function argu-
ment, it can be shown that

. LN |2
limsup sup FE ‘XR’ (t)‘ < 00.
Nt RFLN

Using this, it can be shown that
. LN 2
limsup sup E sup ‘XR’ (s)‘ < 00, (8.8)
N n,R,F}%'N n<s<n+1

with a similar estimate holding for the X1V (.). The above comments imply that

T4+t
lim lim sup sup E sup /
R T

XN (5) = X;N(s)‘ ds =0, (8.9)
N T 4<T

for any T' < 00, and where 7 are stopping times. Now use an argument based
on recurrence to X%/ () to zero analogously to what was done in in step 2 to
get that the k(-)—costs are close for large R. Obviously, the component of the
cost due to F}a’N(-) is no greater than that due to F"(.). Again, by a weak
convergence argument, it can be shown the overflow costs also converge, and
the details are omitted.

9 Data

Some typical data is given in the tables below. The cost function is co EX°(1) +
EF'(1)+5EF°(1), all stationary values. B} = 6.4, and larger values made little
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difference. The individual components of the cost function are tabulated, and we
write EF°(1) = 0 if it is less than 10~*. The fraction of lost class 1 customers is
EF'(1)/[\MV/N], so it depends on N. The tables indicate the potential tradeoffs
between the time gained for class 0 and the lost class 1 customers.

Table A: M1 :.5,u0 = 1,)\1 :1,)\0 :170'% = 1,0’3 = 1,b:2.5

EXO(1) | EF'(1) | EF°(1) | %savings % Rejection of class 1

N=100 | N=10% | N=10*
no cont. .555 0 .0032 na 0 0 0
=25 .267 .489 0 52% 4.89 1.55 .489
co =10 .184 1.01 0 67% 1.01 319 .101

Table B: H1 = .257/,“) = .25,)\1 = .5,)\0 = 170'% = 170'3 = ].,b =2.5

EXO(1) | EF(1) | EF°(1) | %savings % Rejection of class 1

N=100 | N=10% | N=10*
no cont. 1.57 0 .002 na 0 0 0
co =25 424 1.463 0 73% 1.463 .386 .1463
co =10 299 2.34 0 81% 2.34 .740 .234

Table C: M1 :1,/1/0 = l,Al = 17)\0 = 1,0’% :1,0'3 =3,b:25

EXO(1) | EF'(1) | EF°(1) | %savings % Rejection of class 1

N=100 | N=10% | N=10*
no cont. .853 0 .004 na 0 0 0
=5 .557 .750 0 35% 750 .237 .0750
co =10 415 1.77 0 51% 1.77 316 177

In the above examples and in all other cases that we tested numerically,
a considerable saving in the global performance is obtained. The price payed
for this saving is the rejection of class 1 customers. However, the fraction of
rejected class 1 customers is acceptable for large N. As is seen in the tables, it
is of the order of 1% for N = 1000, and less than 0.5% for N = 10000. We thus
conclude that for large systems operating at a heavy traffic regime, we may gain
considerably in overall performance of the system at a the cost of rejection a
very small fraction of GP calls.
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