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Abstract

To this day, traffic in cellular networks is still mainly
real-time. However, with the deployment of new technolo-
gies, such as HDR (High Date Rate) and HSDPA (High
Speed Downlink Packet Access), this situation is bound to
evolve rapidly and elastic traffic will significantly increase.
These novel technologies implement opportunistic schedul-
ing, taking advantage of the delay-tolerance of elastic traf-
fic, to augment the global capacity of the system. Previous
work has shown that ”Proportional Fair” (PF) is an op-
portunistic scheduler that provides a good compromise be-
tween fairness and efficiency. Nevertheless, the hypotheses
according to which these results are obtained are not al-
ways valid in real environments. In this paper, we propose
a modified version of PF that not only introduces flexibility
in sharing resources between active users but also allows
for a fair allocation of resources in realistic environments.

1. Introduction

Data Traffic is increasingly popular in 3G mobile net-
works. New technologies like HDR [1] and its equivalent
in 3GPP, HSDPA [6], offer higher data rates than previous
architectures notably through opportunistic scheduling:
time is divided into short intervals and the base station
(BS) transmits at full power to a single user per time slot
(intra-cell interference cancellation); the scheduler reaps
the benefits of multi-user diversity over short time-scales
and determines how the resources are allocated over longer
time-scales.

A scheduler has usually two contradictory targets: max-
imizing the overall throughput and guaranteeing fairness.
The well-know PF scheduler transmits to the user with
the highest data rate relative to its present realized mean
data rate in order to conjugate fairness and efficiency.
Yet, PF is a rigid and non-adaptable scheduler as it falls
short from enabling the system to define which trade-off

between efficiency and fairness is targeted. Moreover, in
a homogeneous environment, PF has only a ”fair power”
sharing but can still be considered as ”unfair” as the
throughput perceived by users decreases with distance.
More importantly, this restricted ”fairness” is not fulfilled
with heterogeneous fading. Hence, in a realistic environ-
ment, under PF scheduling, users with the most variable
channel conditions receive the least amount of slots [4].

To cope with these drawbacks, we suggest in this paper
an alternative scheduler, termed Weighted PF (WPF),
which is a hierarchical scheduler that allows to fully control
the trade-off between fairness and efficiency. To introduce
the required control, we define different classes of users.
At its first hierarchical level, WPF distributes the slots
between the defined classes in a Weighted Round Robin
(WRR) fashion. At its second level, users inside each
class are served by means of PF (the PF scheduler takes
independent decisions inside each class). We define the
users’ classes in such a way that, on the one hand, users
belonging to a given class have comparable Signal-to-
Noise Ratios (served according to PF, they will obtain
comparable feasible rates) and, on the other hand, fading is
homogeneous inside each class; thus, applying PF induces
a strict fairness in accessing resources for users belonging
to the same class (we stress on the fact that it is not possible
to reach this target when applying PF to the whole cell
due to heterogeneous fading). By doing so, not only will
we control the resource allocation but also obtain in a real
environment the behaviour that PF provides only in an
idealistic environment.

The rest of the paper is organized as follows. In Sec-
tion 2, we present the cell partitioning. In Section 3, we
analyze the performances of the WPF scheduler; in particu-
lar, we obtain analytical results for the mean rate for a fixed
number of users for PF and WPF in an environment with
heterogeneous fading. In Section 4, we present an analyt-
ical study for WPF under dynamic traffic conditions. We
conclude in Section 5.



2 The cell Partitioning

To obtain different classes of users with comparable
SNRs (Signal-to-Noise Ratio), we divide the cell into dif-
ferent geographical zones; each Zone z corresponding to the
set of users whose distance to the BS ranges from a minimal
value rz to a maximal value rz+1. We decided to segment
the cell in only three zones (z = 0, 1, 2) since increasing
the number of zones limits the number of users per zone
and therefore reduces the gain resulting from multi-user di-
versity. Consequently, users in Zone 0 are those whose dis-
tance to the BS ranges between r0 = 0 and r1, users in Zone
1 are those located between r1 and r2, while users in Zone
2 are those located between r2 and r3 = �, where � is the
ray of the cell. To justify our choice of the values taken by
r1, r2 and r3, we introduce the radio model we use.

2.1 The Radio Resource

In this section, we describe the model adopted for the
radio resource and compute the feasible rate of each user
accordingly.

2.1.1 The Propagation Model

The power received by a given user depends on the radio
channel state and varies with time due to user mobility and
fading effects (shadowing and multi-path reflections). In
our model, the mobility will not be included, nor will the
slow fading be.

Let P be the transmission power emitted by the BS, γk

the free space path loss and xk the fast fading (of unit mean)
for user k. The power received by a user k situated at a
distance r from the BS, at time t, is then given by:

Pk(r, t) = P · γk (r) · xk (t) (1)

The adopted model for the free space path loss is the
following:

γk = 1 if r ≤ ε and γk = ( ε
r )β otherwise

where β is the path loss exponent (taking values between
2 and 5) and ε is the maximum distance at which the full
power P is received.

2.1.2 The feasible rate

For user k, the Signal-to-Noise Ratio and Energy-per-bit to
Noise Density Ratio [7] are respectively equal to:

SNRk =
Pk

(η + Ik)
,

Eb

N0
=

W

Rk
· SNRk (2)

where Rk is the feasible rate of user k, W the cell band-
width, η the background noise and Ik the interference due
to other BSs.

For a given target error probability, Eb

N0
must be greater

than a given threshold σk . Assuming the equality, the feasi-
ble data rate of a user k is then:

Rk =
W

σk
· SNRk

In the vast majority of references, σk is taken as a constant
in order to preserve the linearity between Rk and SNRk.
This assumption is not valid when different types of mod-
ulation are used which is the case for HDR and HSDPA
systems. Thus σk will vary with the feasible rate and hence
with the distance from the BS. Therefore, we consider in
our model different values of σk per zone (σk is then re-
placed by σz in Rk, for z = 0, 1, 2). In practice, the way we
define the zones induces that inside Zone 0 and Zone 2, σk

is indeed constant and equals 6.5dB and 2.5dB respectively
[1]. For Zone 1, we define σ1 as the mean value of σk in
this zone. The feasible rate of user k in Zone z is then:

Rk,z =
W

σz
· SNRk

We denote by C0 the maximum peak rate offered by the
used coder and by r∗ the maximum distance at which this
peak rate is achieved in the absence of fading, i.e.,

r ≤ r∗ ⇔ R = C0

We suppose that the interference Ik is constant inside
each zone (it increases with the zone index). Hence, Ik will
be replaced by Iz . Using (1), (2) and knowing that C0 is
the maximum peak rate that can be attained, we have the
following:

Rk,z(r, t) = min

[
C0,

W

σz
· P · γk (r) · xk (t)

(η + Iz)

]
(3)

Assuming that C0 can be achieved, i.e. r∗ ≥ ε, we get from
the path loss model and (2) the following:

C0 =
W · P

σ0 · (η + I0)
· ( ε

r∗ )β (4)

Using (3) and (4), the feasible rate of a user k in Zone z is
therefore given by:

Rk,z(r, t) = C0 · min[(
r∗
r

)β · xk (t) · Kz, 1] (5)

with Kz = σ0
σz

· ( η+I0
η+Iz

).

The average feasible rate of a user k in Zone z, denoted
by Ck,z, is then:

Ck,z(r) = C0 · E[min[(
r∗
r

)β · xk (t) · Kz, 1]] (6)



2.2 Delimiting the cell into zones

As mentioned earlier, PF falls short from realizing exact
fairness in a realistic environment where users experience
heterogeneous fading. To be more precise, in order for all
users in the PF algorithm to get access to the channel the
same asymptotical fraction of time and get the same average
power independently of their distance to the BS, two main
assumptions must be met:

• Assumption I: the fading must be homogeneous and
independent among users.

• Assumption II: either the instantaneous rate must scale
linearly with the instantaneous SNR or all users must
have the same average SNR.

Unfortunately, in practice, these assumptions are not
valid: first, users do not experience the same type of fading
which is a very complex phenomenon that varies widely
across users. As a result, while the random variables
representing the fading effects are independent among
users, they are not identically distributed. The principal
impact of this lack of homogeneity is an unfair distribution
of slots amid active users: users with the most variable
distributions (typically those who are the furthest away
from the BS) receive the least amount of slots. Second,
the linearity between the feasible rate and SNR is too
optimistic except for users with low SNR (again, typically
for users far from the BS) and users are unlikely to have the
same mean SNR.

Our target is to define the previously introduced zones
in such a way that the two cited assumptions become more
realistic inside each zone. For that reason, we will follow
the approach taken in [2] as it serves well our purposes (al-
though the reasons why the zones were introduced in the
cited paper are completely different). We take a path loss
exponent β=4 as we consider urban environments. The ran-
dom variables xk are exponentially distributed (with unit
mean) as we consider Rayleigh fading.
We define the zones as follows:

2.2.1 Zone 0

Users in this zone are those who get the maximum peak
rate C0 with probability equal to 0.95. Hence, from (5), r1

is given by:

P
(
Rk,0(r1, t) = C0

)
= 0.95 ⇒

P
(
(
r∗
r1

)4 · xk · K0 > 1
)

= 0.95 ⇒

e−(
r1
r∗ )4 = 0.95 ⇒ r1 = (− ln(0.95))1/4r∗

The mean rate of a user k in Zone 0 is then Ck,0(r) ≈ C0.

2.2.2 Zone 2

Users in this zone are those who do not get C0 with proba-
bility equal to 0.95. Hence, from (5), r2 is given by:

P
(
Rk,2(r2, t) �= C0

)
= 0.95 ⇒

P
(
(
r∗
r2

)4 · xk · K2 < 1
)

= 0.95 ⇒

e
−(

r2
r∗ )4· 1

K2 = 0.05 ⇒ r2 = (− ln(0.05)K2)1/4r∗
To obtain the value of r2, we need to determine the value
of K2. For that, we consider hexagonal networks where the
interference suffered by a user in a given cell is almost ut-
terly generated by the 6 neighbouring BSs. This assumption
is fairly valid in an urban environment where the path loss
is at least equal to 4. An approximation of this interference
is given by [2]:

I(r) =P · [γ(2�− r) + 2 · γ
(√

(�− r)2 + 3�2
)

+

γ(2� + r) + 2 · γ
(√

(� + r)2 + 3�2
) ]

We take � = 2 · r∗ as larger values of � induce very small
rates at the border of the cell [2].

If η 	 I ⇒ η+I0
η+I2

→ I0
I2

≈ I(r1)
I(�) ≈ 0.31 and

if η � I ⇒ η+I0
η+I2

→ 1. Due to the fact that
η+I0
η+I2

is an increasing function in η, we have that

0.31 ≤ η+I0
η+I2

≤ 1. Knowing that σ0
σ2

≈ 2.51 [1], we deduce
that 0.78 ≤ K2 ≤ 2.51.

The mean rate of a user k in Zone 2 is then
Ck,2(r) ≈ C0( r∗

r )4K2 and the distribution of the
feasible rates is approximately that of Ck,2(r) · xk(t).

2.2.3 Zone 1

Users in this zone are consequently those who get their
maximum peak rate C0 with non-negligible probability. We
assume that, for this intermediate zone, the distribution of
the feasible rate is approximately the same for all users:

x′
k(t) ·Ck,1 =

∫ r2

r1

C0 ·min[(
r∗
r

)4 ·xk(t) ·K1, 1] · 2rdr

r2
2 − r2

1
(7)

with x′
k being the unit mean random variable representing

the variations, due to fading, around the mean rate Ck,1 of
user k in Zone 1. This approximation is made in order to
obtain homogeneous fading in this zone.

From (7), we get the following:

C1 =
∫ r2

r1

E[min[(
r∗
r

)4K1 · xk (t) , 1]] · 2rdr

r2
2 − r2

1



with E[min
[
( r∗

r )4K1 · xk (t) , 1
]
] = 1−e

−( r
r∗ )4 1

K1

( r
r∗ )4 1

K1

.

To compute K1, we proceed as for Zone 2.
We take K2 = 1.7 and thus r2 ≈ 1.5 · r∗. If
η 	 I ⇒ η+I0

η+I1
→ I0

I1
≈ I(r1)

I(r2)
≈ 0.71 and if

η � I ⇒ η+I0
η+I1

→ 1. We deduce that 0.71 ≤ η+I0
η+I1

≤ 1.
Having that σ0

σ1
≈ 1.3 [1], we finally have that

0.92 ≤ K1 ≤ 1.3.

We conclude that despite the heterogeneity of fading all
over the cell, by dividing it into the three previous zones,
we can fairly assume the homogeneity of fading within
each zone, required to obtain a ”fair” scheduling (applied
among users of the same zone). Hence, Assumption I holds
in our proposed model. Besides, Assumption II is valid in
our model for Zones 0 and 2, and better approximated for
Zone 1.

In summary, for user k in Zone z, we can write the
feasible rate as Rk,z = Ck,z ·Xk,z by defining Xk,z as being
the variations due to fading (of unit mean) around the mean
rate Ck,z. More explicitly, we have for Zone 0 Xk,0 = 1,
for Zone 1 Xk,1 = x′

k (which is a function of xk and is
given in details in Appendix 6.1) and for Zone 2 X k,2 = xk .

Remark: There exist different methods which enable the
BS to localize users and hence to classify them into different
zones [8].

3 Analytical study of PF Vs. WPF

The PF algorithm is thoroughly studied in [5] in the
case of homogeneous fading. We start by reminding some
results from the cited paper that we use in our analysis.

At time slot t, PF schedules the user with the highest
feasible rate relative to its current average throughput, i.e.,

user k∗ = argmaxk[
Rk(t)
Tk(t)

]

with Tk(t) being the exponentially smoothed throughput
given by:

Tk(t + 1) = (1 − 1
τ

) · Tk(t) +
1
τ
·Rk(t) · 1luser(t)=k (8)

where 1luser(t)=k is the indicator function which equals 1 if
user k was chosen at time slot t and 0 otherwise. τ is a time
constant that captures the time-scales of the PF scheduler.

Since the random variables representing the fading are
i.i.d, we have that:

Tk(t) = Ck · Uk(t)

where Ck is the mean rate of user k and Uk are identically
distributed random variables.

If 1
τ → 0, then:

Tk → Ck · g(n)
n

(9)

where n is the total number of active users and
g(n) = E[max(X1, .., Xn)] is the PF scheduling gain. In
practice, τ has large values as this offers the opportunity
of waiting a long time before scheduling a user when its
channel quality is maximal: the scheduler is then expected
to better exploit multi-user diversity. Hence, we adopt
formula (9) in our analysis.

Next, in subsection 3.1, we analyse the WPF scheduler.
Since there is not an exhaustive study of PF with hetero-
geneous fading in the literature, we propose, in subsection
3.2, an approximate analysis for PF in a realistic environ-
ment. In subsection 3.3, we corroborate the validity of our
results through simulation.

3.1 The WPF Scheduler

In our model, an independent PF scheduler is applied
among users belonging to the same zone and thus experi-
encing homogeneous fading. Therefore, we can adopt the
result in (9) for each zone. Namely, in Zone z, the exponen-
tially smoothed throughput of user k is given by:

Tk,z → Ck,z · gz(nz)
nz

(10)

where nz is the total number of active users in Zone z and
gz(nz) = E[max(X1,z, .., Xnz,z)].

3.1.1 Average Rate

The average rate of a user k belonging to Zone z is then:

χk,z,WPF =
Ck,z

nz
· gz(nz) · P(αz) (11)

with event αz={Zone z is served}.

Proof : The average rate of a user k in Zone z served
according to WPF is:

E[Rk,z · 1l{Rk,z

Tk,z
= maxl=1..nz

Rl,z

Tl,z
} · 1l{αz}]

=Ck,z · E[Xk,z · 1l{ Xk,z
gz(nz)

nz

= maxl=1..nz

Xl,z
gz(nz)

nz

}] · P(αz)

=Ck,z · E[Xk,z · 1l{Xk,z = maxl=1..nz Xl,z}] · P(αz)



Since the random variables Xk,z are i.i.d, we obtain the fol-
lowing:

Ck,z

nz
· E[max(X1,z, .., Xnz,z)] · P(αz)

We denote by Gz(nz) the scheduling gain in Zone z,
defined as the ratio of what the user receives as compared
to a simple RR (Round Robin) scheduling in this zone and
given by:

Gz(nz) =
χk,z,WPF

Ck,z

nz

= gz(nz) · P(αz)

The average rate per user in Zone z is then:

χz,WPF =
Cz · Gz(nz)

nz

where Cz is the mean rate perceived by a user in Zone z.
Namely, C0 in Zone 0, C1 in Zone 1 and C2 = C0K2 ·∫ �

r2
( r∗

r )4 2rdr
�2−r2

2
in Zone 2.

3.2 The PF Scheduler

We analyse a model where PF selects a user among all
users present in the cell while adopting for the exponentially
smoothed throughput the value taken by formula (10). We
make this approximation in order to have a tractable model
by supposing that formula (10) remains valid for a user in a
given Zone z under plain PF. We prove the validity of this
assumption through simulation in subsection 3.3.

3.2.1 Average Rate

The average rate of a user k belonging to Zone z is then:

χk,z,PF =
Ck,z

nz
· E[Zz · 1l{Zz · nz

gz(nz)
>

Zj · nj

gj(nj)
, ∀j �= z}]

(12)
with Zj = max{X1,j, ..., Xnj ,j}.

Proof : The average rate of a user k in Zone z served
according to PF is:

E[Rk,z · 1l{Rk,z

Tk,z
= maxj=0,1,2 maxl=1..nj

Rl,j

Tl,j
}]

=Ck,z · E[Xk,z · 1l{ Xk,z
gz(nz)

nz

= maxj maxl
Xl,j

gj(nj)
nj

}]

=Ck,z · E[Xk,z · 1l{ Xk,z
gz(nz)

nz

>
Zj

gj(nj)
nj

, ∀j �= z}·

1l{ Xk,z
gz(nz)

nz

=
Zz

gz(nz)
nz

}]

=Ck,z · P(A) · E[Xk,z · 1l{ Xk,z
gz(nz)

nz

>∀j �=z
Zj

gj(nj)
nj

}|A]

with event A = {Xk,z = Zz}. The random variables Xk,z

being i.i.d, formula (12) follows.

We deduce from (12) the scheduling gain in Zone z de-
noted by Gz(n0, n1, n2) and defined as the ratio of what the
user receives as compared to a simple RR scheduling (the
detailed formulae are found in Appendix 6.1):

Gz(n0, n1, n2) =
χk,z,PF

Ck,z

nz

The average rate per user in Zone z is then:

χz,PF =
Cz · Gz(n0, n1, n2)

nz

3.2.2 Access Probability

To evaluate the impact of heterogeneous fading on the
access probability when applying PF to the whole cell, we
define the following probabilities (the detailed formulae are
found in Appendix 6.2):
a = P(Z2 · C2

T2
> Z1 · C1

T1
), b = P(Z2 · C2

T2
> C0

T0
) and

c = P(Z1 · C1
T1

> C0
T0

).

Therefore, the probability to serve a user in Zone 2
is P2 = a·b

n2
, the probability to serve a user in Zone 1 is

P1 = (1−a)·c
n1

and the probability to serve a user in Zone 0

is P0 = (1−b)·(1−c)
n0

.

If we had homogeneous fading all over the cell,
the probability of a user k to be selected would
be the same for all users in the cell and is given by
P = P(Xk = max(X1, .., Xn)) = 1

n .

3.3 Numerical results

We present in this section our numerical experiments
performed to illustrate the previous results. The num-
ber of users in each zone is fixed and equal to 10 (
n0 = n1 = n2 = 10 and thus n = 30). We take C0 = 1,
r∗ = 1, K2 = 1.7 and K1 = 1. As a result, we get
r1 ≈ 0.5 and r2 ≈ 1.5. Rayleigh Fading is considered
corresponding to an exponential distribution of the process
xk(t).

Users are served according to PF and according to our
WPF that comprises three different scenarios:

• WPF(1,1,1) where slots are distributed fairly across
zones (P(α0) = P(α1) = P(α2) = 1/3).

• WPF(1,1,4) where, in order to favor far users who are
penalized by their small rates, Zone 2 is given four



more slots than Zone 1 and Zone 0 (P(α0) = P(α1) =
1/6 and P(α2) = 2/3).

• WPF(4,2,1) where, in order to increase the total
capacity, Zone 0 is given twice as many slots as Zone
1 and the latter is given twice as many slots as Zone 2
(P(α0) = 4/7, P(α1) = 2/7 and P(α2) = 1/7).

In all experiments, we determine the average rate per
user and display the results for users belonging to the same
zone for PF and for WPF. We compare the results obtained
by simulation to those obtained numerically from χ z,PF

and χz,WPF .

Results are shown in Table 1 and indicate that the
analytical formulae provide highly accurate estimates of
simulation results and thus our proposed approximation for
PF is valid. As for performance, we see, in WPF(1,1,1),
that there is a conservation in the mean rate in Zone 0 and
Zone 1 in comparison with PF, contrary to Zone 2 where a
slight degradation is witnessed. This loss is compensated
for by the increase in the probability to access the channel
for users in Zone 2. Indeed, from subsection 3.2.2, P 0 and
P1 are roughly equal to 1/30 (as in the homogeneous case
from P ) while P2 is approximately equal to 0.017 (whereas
P gives 1/30 for the homogeneous case). This means that
with heterogeneous fading, the PF algorithm favors close
users who are scheduled about twice as often as far users.
Yet, in WPF, if the system wants to share resources fairly
between users, it can give one time slot to each zone suc-
cessively as it is done in WPF(1,1,1) where P(αz) = 1/3.
In other words, the probability to choose a user will be
1/3 · 1/10 (recall that users in the same Zone z have the
same probability 1

nz
to be selected) exactly as in the ideal

homogeneous system. Far users will then have the same
chance to be scheduled as close users and hence the lost eq-
uity in the distribution of slots among users will be restored.

Furthermore, the system can now be entirely controlled
as a significant flexibility in the allocation of resources is
introduced:

• If the system seeks to realize a fair rate sharing, it can
give more slots to far users who are disadvantaged as
compared to nearer users due to their small feasible
rates, as for instance in WPF(1,1,4) where users in
Zone 2 perceive a gain of 50% in comparison with PF.

• However, if the system wants to maximize the overall
throughput without causing the starvation of distant
users (as it is done in the Max SNR scheduler that
always serves the user with highest rate [4]), it can
give more slots to close users than to far away users.
Indeed, in WPF(4,2,1), users in Zone 0 perceive a gain

Zone 0 PF WPF(1,1,1) WPF(4,2,1) WPF(1,1,4)
NUM 0.034 0.034 0.065 0.0167
SIM 0.033 0.033 0.061 0.0167

Zone 1 PF WPF(1,1,1) WPF(4,2,1) WPF(1,1,4)
NUM 0.033 0.0297 0.026 0.0165
SIM 0.033 0.0315 0.0274 0.0160

Zone 2 PF WPF(1,1,1) WPF(4,2,1) WPF(1,1,4)
NUM 0.013 0.010 0.0042 0.0195
SIM 0.012 0.011 0.0045 0.0208

Table 1. Average Rate per user

of 76% as compared to PF leading to a gain in global
rate of approximately 20%.

Figure 1. Mean Rate per Zone and Total Mean
Capacity

We graphed in Figure 1 the mean rate per Zone and
the Total Mean capacity of the cell for PF and for WPF
(from simulations results of Table 1). The variations of
curves with the variation of scenarios highlight the men-
tioned trade-off between fairness and efficiency and clearly
show how it is now fully controlled.

4 Dynamic Model of WPF

We deduce from formula (11) in subsection 3.1 that
each zone, in our WPF system, behaves like a Generalized
Processor Sharing (GPS) queue whose service rate is
Gz(nz)

nz
(we refer here to the definition of GPS given in [3]

which denotes a PS queue where the rate at which users
are served is an arbitrary positive function of the number
of users). In particular, Zone 0 behaves like a simple PS



system owing to the fact that g0(n0) = 1. Whereas with
heterogeneous fading, PF loses the symmetry properties
of the GPS discipline because the rate at which users
are served in a given Zone z is a function of the number
of users in all zones as we can see from formula (12).
Therefore, our proposed model, contrary to PF, is fully
tractable in the dynamic case.

We assume that data flows arrive as a Poisson process of
intensity λ ·ds in any area of surface ds. Flow sizes are i.i.d
and S is the corresponding random variable. We denote by
ρ = λ · E[S] the traffic load and by dρ(r) = ρ · 2πrdr
the traffic load generated by users whose distance to the BS
ranges between r and r + dr. Such a system has the well-
known insensitivity property which means that performance
depends mainly on the load factor (and on the maximum
number of users in presence of an admission control pol-
icy) and not on the distribution of the flow size which is
continually changing given the ever varying nature of data
applications. Thus, our scheduling approach, in addition to
making the system more flexible, simplifies dimensioning.

4.1 Analytical Model

From [3], we obtain the stationary distribution of the
number of users in Zone z:

πz(x) =

∏x
i=1

ρz

Gz(i)∑nz

k=0

∏k
i=1

ρz

Gz(i)

where ρz is the load in Zone z and nz is the maximum
number of admitted users in this zone.

More explicitely, we have the following:

For Zone 0, ρ0 =
∫ r1

r0

dρ(r)
C0

= ρπr2
1

C0
.

For Zone 1, ρ1 =
∫ r2

r1

dρ(r)
C1

= ρπ(r2
2−r2

1)
C1

.

For Zone 2, ρ2 =
∫ �

r2

dρ(r)
C0·( r∗

r )β = ρπ(�β+2−rβ+2
2 )

C0·r∗β·(β+2)
.

Using Little’s law, we find that the flow throughput Th i,z

of user i in Zone z, defined as the ratio of the mean flow size
E[S] to the mean flow duration, is given by:

Thi,z = Ci,z · ρz · (1 − Bz)
E[nz]

where Bz = πz (x = nz) is the blocking probability and
E[nz] =

∑nz

i=1 i · πz(i) is the mean number of active users
in Zone z.

4.2 Simulation Results

We present here numerical experiments that we per-
formed to illustrate the above results. We consider a system

where users initiate file transfer requests as a Poisson
process of intensity λπ�2 and traffic demand is uniformly
distributed in the cell. Rayleigh Fading is considered
corresponding to an exponential distribution of the process
xk(t). At most 10 users are admitted simultaneously in
each zone to guarantee a minimum rate of C(�)

30 . Guar-
anteeing a minimum rate is a QoS notion appropriate for
non-real time users. New transfers generated in a zone
where there are already 10 transfers in progress are blocked
and lost. Flow sizes are independent and exponentially
distributed with mean equal to 2500 Kbits (which means
equal to 1 for C0 = 1).

We determine the throughput per user and display
the average throughput for users belonging to the same
zone. Users are served according to our WPF(1,1,1). The
simulation results obtained are compared to the normalized
throughput Thi,z

Ci,z
of subsection 4.1.
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Figure 3. Average Throughput for Zone 1

Figures 2, 3 and 4 depict the mean throughput as a func-
tion of the file arrival rate respectively for Zone 0, Zone 1
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Figure 4. Average Throughput for Zone 2

and Zone 2. We can see how the analysis and simulation
curves are nearly indistinguishable for Zone 0 and Zone 2
because both of these zones behave perfectly like a GPS
system. Yet, for Zone 1, the analytical model gives less
accurate predictions because the approximation made for
this zone is not totally valid since it still experiences het-
erogeneous fading in a realistic environment: the closest
users in Zone 1 have almost always fixed rates while the
farthest users in the same zone have continuously varying
rates. Nonetheless, we can fairly consider that the proposed
analytical model approximates very well the behaviour of
our WPF scheduler.

5 Conclusion

In this paper, we propose a new scheduling approach
for new generation cellular networks. The approach is
based on the partitioning of the cell into zones in such a
way that inside each zone the fading and SNR are quite
homogenous. We propose a hierarchical scheduler, named
WPF, which, at a first level, serves the zones in a WRR
fashion and, at a second level, serves users within each
zone with independent PF schedulers. Our analytical
study (validated by simulation) shows how our approach
allows controlling the trade off between global efficiency
and fairness, a capability that PF lacks for. Moreover, we
propose an analytical model for the PF algorithm under
realistic heterogeneous fading conditions that we validate
by simulation. An analysis of WFP under dynamic traffic
conditions is also provided.

6 Appendix

We denote by u = 1
K1

·( r1
r∗ )4, v = 1

K1
·( r2

r∗ )4, K = C0K1
C1

and Zj = max{X1,j, ..., Xnj ,j}.

6.1 Computing Gz(n0, n1, n2):

From (7), we know that Xk,1 = x′
k is a function of

Xk,2 = xk. Hence, we obtain the following:

x′
k = f(xk) =

⎧⎪⎪⎨
⎪⎪⎩

K√
uv

·xk if xk≤u

K(2√xk−√
u− xk√

v
)

(
√

v−√
u) if u≤xk≤v

K if xk ≥ v

The random variables Xk,2 being exponentially distrib-
uted, we have that:

g2(n2) = E[max(X1,2, .., Xn2,2)] =
∫ ∞

0

P(Z2 > s)ds

=
∫ ∞

0

1 − (1 − e−s)n2ds =
n2∑
i=1

1
i

g1(n1) = E[max(X1,1, .., Xn1,1)] =
∫ ∞

0

P(Z1 > s)ds

=
∫ f(v)

0

1 − (1 − e−f−1(s))n1ds

with

f−1(s) =
{ √

uv
K ·s if 0≤s≤f(u)

(
√

v−[v−(
√

uv+s
√

v(
√

v−√
u)

K )]
1
2 )2 if f(u)≤s≤f(v)

And g0(n0) = 1 (because Xk,0 = 1).

We denote by h2(z) and h1(z) the density functions of
respectively Z2 and Z1 which are given by (Z0 = 1):

h2(z) = n2e
−z(1 − e−z)n2−1

h1(z) =

{
n1e−f−1(z)(1−e−f−1(z))n1−1

f′◦f−1(z)
if 0≤z<f(v)

(1−(1−e−v)n1)·δ(z−f(v)) if z≥f(v)

The gain in Zone 2 is G2(n0, n1, n2) =

E[Z2 · 1l{ Z2n2

g2(n2)
≥ Z1n1

g1(n1)
} · 1l{ Z2n2

g2(n2)
≥ n0}] =

E[Z2 · 1l{ Z2n2

g2(n2)
≥ Z1n1

g1(n1)
≥ n0}]+

E[Z2 · 1l{ Z2n2

g2(n2)
≥ n0 ≥ Z1n1

g1(n1)
}] =∫ ∞

g1(n1)n0
n1

h1(z1)
∫ ∞

g2(n2)n1
g1(n1)n2

·z1

z2h2(z2)dz2dz1+

P(Z1 ≤ g1(n1)n0

n1
)
∫ ∞

g2(n2)n0
n2

z2h2(z2)dz2



The gain in Zone 1 is G1(n0, n1, n2) =

E[Z1 · 1l{ Z1n1

g1(n1)
≥ Z2n2

g2(n2)
} · 1l{ Z1n1

g1(n1)
≥ n0}] =

E[Z1 · 1l{ Z1n1

g1(n1)
≥ Z2n2

g2(n2)
≥ n0}]+

E[Z1 · 1l{ Z1n1

g1(n1)
≥ n0 ≥ Z2n2

g2(n2)
}] =∫ ∞

g2(n2)n0
n2

h2(z2)
∫ ∞

g1(n1)n2
g2(n2)n1

·z2

z1h1(z1)dz1dz2+

P(Z2 ≤ g2(n2)n0

n2
)
∫ ∞

g1(n1)n0
n1

z1h1(z1)dz1

The gain in Zone 0 is G0(n0, n1, n2) =

E[1l{Z1n1

g(n1)
≤ n0} · 1l{Z2n2

g(n2)
≤ n0}] =

P(Z2 ≤ g2(n2)n0

n2
) · P(Z1 ≤ g1(n1)n0

n1
)

6.2 Computing the probabilities a, b & c:

a = P(
Z2C2

T2
>

Z1C1

T1
) = P(Z1 < Z2

g1(n1)n2

g2(n2)n1
)

=
∫ ∞

0

P(z1 < s · g1(n1)n2

g2(n2)n1
) · h2(s)ds

=
∫ g2(n2)n1

g1(n1)n2
·f(v)

0

(1 − e
−f−1(s

g1(n1)n2
g2(n2)n1

))n1h2(s)ds+∫ ∞

g2(n2)n1
g1(n1)n2

·f(v)

h2(s)ds

b = P(
Z2C2

T2
>

C0

T0
)

= P(Z2 >
g2(n2)n0

n2
) =

∫ ∞

g2(n2)n0
n2

h2(s)ds

c = P(
Z1C1

T1
>

C0

T0
)

= P(Z1 >
g1(n1)n0

n1
) =

∫ ∞

g1(n1)n0
n1

h1(s)ds
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