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Abstract—Delay tolerant Ad-hoc Networks leverage the mobil-
ity of relay nodes to compensate for lack of permanent connectiv-
ity and thus enable communication between nodes that are out of
range of each other. To decrease delivery delay, the information
to be delivered is replicated in the network. Our objective in this
paper is to study a class of replication mechanisms that include
coding in order to improve the probability of successful delivery
within a given time limit. We propose an analytical approach that
allows to quantify tradeoffs between resources and performance
measures (energy and delay). We study the effect of coding on
the performance of the network while optimizing parameters that
govern routing. Our results, based on fluid approximations, are
compared to simulations which validate the model.

Index Terms—Forward correction, fountain codes, delay toler-
ant networks

I. I NTRODUCTION

Delay tolerant Ad-hoc Networks make use of nodes’ mo-
bility to compensate for lack of instantaneous connectivity.
Information sent by a source to a disconnected destination
can be forwarded and relayed by other mobile nodes. There
has been a growing interest in such networks as they have
the potential of providing many popular distributed services
[1]–[3].

A naive approach to forward a file to the destination is by
epidemic routing in which any mobile that has the message
keeps on relaying it to any other mobile that falls within its
radio range. This would minimize the delivery delay at the
cost of inefficient use of network resources (e.g. in terms
of the energy used for flooding the network). The need for
more efficient use of network resources motivated the use of
less costly forwarding schemes such as the two-hops routing
protocols. In two-hops routing the source transmits copiesof
its message to all mobiles it encounters; relays transmit the
message only if they come in contact with the destination.
The two-hops protocol was originally introduced in [4].

In this paper we consider another aspect, i.e, the tradeoff
between network resources and delay. We assume that the file
to be transferred needs to be split intoK smaller units: this
happens due to the finite duration of contacts between mobile
nodes or when the file is large with respect to the buffering
capabilities of nodes. SuchK smaller units (which we call
chunks or frames) need to be forwarded independently of the
others. The message is considered to be well received only if
all K frames are received at the destination.

After fragmenting the message into smaller frames, it is
convenient to better organize the way information is storedin
the relay nodes. We aim at improving the efficiency of the

DTN’s operation by letting the source distribute not only the
original frames but also additional redundant packets. This
results in a spatial coding of the distributed storage of the
frames. We consider coding based on either forward error
correction techniques or on network coding approaches. Our
main contribution is to provide a close form expression for the
performance of DTNs (in terms of transfer delay and energy
consumption) as a function of the coding that is used. Also,
we derive scaling laws for the success probability of message
delivery.

The paper is organized as follows. In Sec. I we revise the
state of art and outline the major contributions of the paper.
In Sec. II we describe the model of the system and in Sec. III
we derive the main results for the case of erasure codes.
Sec. IV is devoted to the analysis of fountain codes; for both
cases, we discover and then study an interesting phenomenon
of phase transition. Sec. III and IV involve also the design of
energy-aware forwarding policies where the source forwards
packets with some fixed probability that we optimize. In
Sec. V we study an alternative class of forwarding policies,
namely threshold type policies, that achieve the same energy
restrictions. The performances of the aforementioned coding
techniques in the case threshold policies are then derived.
Sec. VI reports on simulation results in case of synthetic
mobility and real-world traces. A concluding section ends
this paper.

Related Works The idea to erasure code a message and
distribute the generated code-blocks over a large number of
relays in DTNs has been addressed first in [5] and [6]. The
technique is meant to increase the efficiency of DTNs under
uncertain mobility patterns. In [5] the performance gain is
compared to simple replication, i.e. the technique of releasing
additional copies of the same message. The benefit of erasure
coding is quantified in that work via extensive simulations for
various routing protocols, including two-hops routing.

In [6], the case of non-uniform encounter patterns is ad-
dressed, showing that there is strong dependence of the optimal
successful delivery probability on the allocation of replicas
over different paths. The authors evaluate several allocation
techniques; also, the problem is proved to be NP–hard.

General network coding techniques [7] have been proposed
for DTNs. In [8] ODE based models are proposed under epi-
demic routing. Semi-analytical numerical results are reported
describing the effect of finite buffers and contact times; a
prioritization algorithm is also proposed.
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Symbol Meaning
N number of nodes (excluding the destination)
K number of frames composing the message
M number of frames needed to decode with success probability

1 − δ, δ > 0 (fountain codes)
H number of redundant frames
λ inter-meeting intensity
τ timeout value
Xi(t) number of nodes having framei at time t (excluding the

destination)
X(t) sum of theXis
X(t) sum of theXis whenui(t) = 1, ∀i = 1, 2, . . . , K
E(t) energy expenditure by the whole network in[0, t ]
x maximum number of copies due to energy constraint
z :=X(0)
ε energy per frame
ui(t) forwarding policy for framei
pi static forwarding policy for framei; p = (p1, p2, . . . , pK)
p sum of thepis
Di(τ) probability of successful delivery of framei by time τ
Ps(τ) probability of successful delivery of the message by timeτ ;

Ps(τ, K, H) is used to stress the dependence onK andH

TABLE I
MAIN NOTATION USED THROUGHOUT THE PAPER

The work in [9] addresses the use of network coding
techniques for stateless routing protocols under intermittent
end-to-end connectivity. A forwarding algorithm based on
network coding is specified, showing a clear advantage over
plain probabilistic routing in the delivery of multiple packets.

Finally, an architecture supporting random linear coding in
challenged wireless networks is reported in [10].

Novel contributions
The main contribution of this paper is the closed form

description of the performance of Delay tolerant Ad-hoc Net-
works under the two-hops relaying protocol when a message
is split into multiple frames. Our fluid model accounts both
for the overhead of the forwarding mechanism, captured in
the form of a given bound on energy, and the probability of
successful delivery of the entire message to the destination
within a certain deadline. The effect of coding is included
in the model and both erasure codes and fountain codes are
accounted for in closed form. The two coding strategies are
characterized in the case of static probabilistic forwarding
policies and in the case of threshold policies.

Leveraging the model, the asymptotic properties of the
system are derived in the form of scaling laws. In particular,
there exists a threshold law ruling the success probability
which ties together the main parameters of the system.

To the best of the authors’ knowledge, the results contained
in this work represent the first description in closed form of
the behavior of erasure codes and fountain codes in challenged
networks.

II. T HE MODEL

For the ease of reading, the main symbols used in the paper
are reported in Tab. I.

Consider a network that containsN + 1 mobile nodes.
We assume that two nodes are able to communicate when

they are within reciprocal radio range, and communications
are bidirectional. We also assume that contact intervals are
sufficient to exchange all frames: this let us consider nodes
meeting times only, i.e., time instants at which a pair of not
connected nodes fall within reciprocal radio range.

Also, let the time between contacts of pairs of nodes be
exponentially distributed with given inter-meeting intensity λ.
The validity of this model been discussed in [11], and its
accuracy has been shown for a number of mobility models
(Random Walker, Random Direction, Random Waypoint).1

We assume that the transmitted message is relevant during
some timeτ . We do not assume any feedback that allows the
source or other mobiles to know whether the messages has
made it successfully to the destination within timeτ .

The source has a message that containsK frames. If at
time t it encounters a mobile which does not have any frame, it
gives it framei with probabilityui, and we letu =

∑
i ui ≤ 1

(we shall consider both the case whereui depends ont and
the case where it does not). For the message to be relevant, all
K frames should arrive at the destination by timeτ . Let Xi(t)
be the number of the mobile nodes (excluding the destination)
that have at timet a copy of framei. Denote byDi(τ) the
probability of a successful delivery of framei by timeτ . Then,
given the processXi (for which a fluid approximation will be
used), we have

Di(τ) = 1 − exp
(
−λ
∫ τ

0
Xi(s)ds

)

This expression has been derived in [13] for the fluid model.
The probability of a successful delivery of the message by

time τ is thus

Ps(τ) =

K∏

i=1

Di(τ) =

K∏

i=1

[
1 − exp

(
−λ

∫ τ

0

Xi(s)ds

)]

where we assumed that the success probability of a given
frame is independent of the success probability of other
frames; this decoupling assumption is confirmed by our nu-
merical experiments.

A. Fluid Approximations

Let X(t) =
∑K

i=1 Xi(t). Then we introduce the following
standard fluid approximation (based on mean field analysis)
[14]

dXi(t)

dt
= ui(t)λ(N − X(t)) (1)

Taking the sum over alli, we obtain the separable differential
equation

dX(t)

dt
= u(t)λ(N − X(t)) (2)

whose solution is

X(t) = N + (z − N)e−λ
R

t

0
u(v)dv, X(0) = z

1We recall that studies based on traces collected from real-life mobility [2]
argue that inter-contact times may follow a power-law distribution, but recently
the authors of [12] have shown that these traces and many others exhibit
exponential tails after a cutoff point.
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Thus,Xi(t) is given by the solution of

dXi(t)

dt
= −ui(t)λ(z − N)e−λ

R

t

0
u(v)dv (3)

Constant policies

In the case of constant policies, we letui(t) = pi, p :=
(p1, p2, . . . , pK), andp =

∑
i pi. Hence it follows

Xi(t) = Xi(0) + (N − z)
pi

p

[
1 − e−λpt

]
(4)

Let us assumeXi(0) = 0 for ∀i = 1, 2, . . . ,K: hence,

Xi(t) = N
pi

p

(
1 − e−λpt

)
(5)

B. Taking Erasures into Account

So far we have assumed that the transmission of a frame is
always successful. Assume that this is not the case and that
the transmission of a frame fails with some probabilityq. We
assume that the process describing whether packets transmis-
sions are successful or not is i.i.d. We assume moreover that
a packet that suffers from unrecoverable transmission errors
at a mobile is discarded so that it does not occupy memory
space in the relay node; this ensures that such a mobile node
can still act as a relay at the next meeting with another mobile
having a packet to be transmitted.

Losses such as those just described do not need an extra
modeling: we may replace the rateλ of inter-meetings between
two nodes byλ(1−q), i.e., the rate of the potentially successful
inter-meetings of the nodes. This can be used in the equations
that we derived in describing the dynamics of the system and
its performance measures.

An additional type of loss may occur at the destination:
this is the case when it is not mobile and it is connected
to an external network (possibly a wired one): in this case
losses may occur in that part of the network. Assume that a
loss there occurs with probabilityq′. We do not assume any
feedback that would allow the DTN to know about events that
occur at the external network. In order to be able to recover
from such losses we assume that the destination may keep
receiving copies of the same frame. In particular, a mobile
that has transmitted a frame to the destination will keep the
copy and could try to retransmit it to the destination at future
inter-meeting occasions. This additional type of loss process
does not alter the fluid dynamics ofXi(t). Its impact on the
performance is by replacingλ in (1) by λ(1 − q′).

C. Non-constrained problem.

The success probability when usingp is

Ps(τ,p) =

K∏

i=1

(
1 − exp(−λ

∫ τ

0

Xi(v)dv)
)

=

K∏

i=1

[
1 − exp

(
− λ

p

∫ τ

0

Npi

(
1 − e−λpv

)
dv
)]

=

K∏

i=1

Z(pi) (6)

whereZ(pi) := 1 − exp
(
L(τ, p)pi

)
and (7)

L(τ, p) :=
N

p2

(
1 − λpτ − e−λpτ

)

For fixed ratiospi/p, Ps(τ,p) is increasing inp and is
maximized atp = 1.

Let P ∗
s (τ) be the optimal delivery probability for the

problem of maximizingPs(τ) with p fixed. The proof of the
following can be found in the Appendix of [15].

Theorem 2.1: p
∗ = (p/K, ..., p/K) is the unique solution

to the problem of maximizingPs(τ) s.t.
∑

i pi = p, pi ≥ 0.

D. Constrained problem.

Denote byE(t) the energy consumed by the whole network
for the transmission of the message during the time interval
[0, t]. It is proportional toX(t)−X(0) since we assume that
the message is transmitted only to mobiles that do not have the
message, and thus the number of transmissions of the message
during [0, t] plus the number of mobiles that had it at time zero
equals to the number of mobiles that have it. Also, letε > 0 be
the energy spent to forward a frame during a contact. We thus
haveE(t) = ε(X(t)−X(0)). In the following we will denote
x as the maximum number of copies that can be released due
to energy constraint.

We compute in particular the optimal probability of suc-
cessful delivery of the message by some timeτ under the
constraint that the energy consumption till timeτ is bounded
by some positive constant.

DefineX(t) to be the solution of (2) whenu(t) = 1, i.e.

X(t) = N + (z − N)e−λt

Note thatX(t) = X(pt).

Denoteσ(z) := X
−1

(x + z) given X(0) = z, which is
the time elapsed untilx extra nodes (in addition to the initial
z ones) receive the message in the uncontrolled system. We
have

σ(z) = − 1

λ
log

(
N − x − z

N − z

)
(8)

For p = σ(z)/τ we obtain the expression

L(τ, p) =
N

p2

(
log
(
1 − x

N − z

)
+

x

N − z

)
(9)
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Theorem 2.2: Consider the problem of maximizingPs(τ)
subject to a constraint on the energyE(τ) ≤ εx.
(i) If X(τ) ≤ x+z (or equivalently,τ ≤ σ(z)), then a control
policy u is optimal if and only ifpi = 1/K for all i.
(ii) If X(uminτ) > z + x (or equivalently,uminτ > σ(z)),
then there is no feasible control strategy.
(iii) If X(τ) > z + x > X(uminτ) (or equivalently,τ >
σ(z) > uminτ ), then the best control policy is given bypi =
p∗/K where

p∗ =
σ(z)

τ
(10)

and the optimal value is

P ∗
s (τ) =

[
1 −

(
1 − x

N − z

) N
p∗K

exp
(
− N

p∗K

x

N − z

)]K

Proof: Part (i) and (ii) are obvious. Part (iii) follows from

the fact thatX
(σ(z)

τ τ
)

= X(σ(z)) = x + z, so that the

energy bound is attained forp∗ = σ(z)
τ ; also, the expression

for P ∗
s (τ) follows from an immediate application of the result

in Thm. 2.1 to (7).

III. A DDING FIXED AMOUNT OF REDUNDANCY

We addH redundant frames and consider the new message
that now containsK + H frames. If at timet the source
encounters a mobile which does not have any frame, it gives
it frame i with probability p.

Let Sn,p be a binomially distributed r.v. with parametersn
andp, i.e.

P (Sn,p = m) = B(p, n,m) :=

(
n

m

)
pm(1 − p)n−m

The probability of a successful delivery of the message by
time τ is thus

Ps(τ,K,H) =

K+H∑

j=K

B(Di(τ),K + H, j),

whereDi(τ) = 1 − exp(−λ
∫ τ

0
Xi(s)ds).

A. Main Result

Lemma 3.1: The maximum ofPs(τ,K,H) over {pm ≥
0,m = 1, ...,K + H} under the constraint

∑K+H
i=1 pi = p

is achieved atpm = p/(K + H).
The proof can be found in the Appendix of [15].

Using the same arguments as those that led to Theorem 2.2,
together with Lemma 3.1 yields the following:

Theorem 3.1: Consider the problem of maximizing
Ps(τ,K,H) over pi, i = 1, ...,K + H, subject to a constraint
on the energyE(τ) ≤ εx.
(i) If X(τ) ≤ x+z (or equivalently,τ ≤ σ(z)), then a control
policy u is optimal if and only ifpi = 1/(K + H) for all i.
(ii) If X(uminτ) > z + x (or equivalently,uminτ > σ(z)),
then there is no feasible control strategy.

(iii) If X(τ) > z + x > X(uminτ) (or equivalently,
τ > σ(z) > uminτ ), then the best control policy is given by
pi = p∗/(K + H) wherep∗ is given in (10) and the optimal
value is

P ∗
s (τ,K,H) =

K+H∑

j=K

B (p̂,K + H, j)

where
p̂ = 1 − exp(L(p∗, τ)p∗/(K + H))

B. Properties and Approximations

We now derive further characterizations for the optimal
success probability; these results will provide both bounds
for the case of block coding and help also in the analysis
of fountain codes.

Corollary 3.1: P ∗
s (τ,K,H) is increasing withH.

Proof: We make the following observation. FixK and
H and a vector(p1, ..., pK+H) whose entries sum up top∗

(given in (10)). Then the success probability is the same as
when increasing the redundancy toH +1 and using the vector
(p1, ..., pK+H , 0). By definition, the latter is strictly smaller
thanP ∗

s (τ,K,H+1) (which is the optimal success probability
with H + 1 redundant packets).

The above is in particular true when takingpi =
p∗/(K + H) (which maximizesPs(τ,K,H)), and hence
P ∗

s (τ,K,H) < P ∗
s (τ,K,H + 1).

Now we provide two useful bounds forP ∗
s (τ,H,K).

First, it is possible to derive the asymptotic approximation
of P ∗

s (τ,H,K) for H → ∞. For the sake of notation, let
V = L(p, τ)p; the following holds

P ∗
s (τ,H,K) = eV

H+K∑

s=K

(
H + K

s

)(
e−

V
H+K − 1

)s

= 1 − eV
K−1∑

s=0

(
H + K

s

)( −V

(H + K)s
+ o((H + K)−s)

)

For large values ofH + K, the s-th term of the right-hand
summation writes

(
H + K

s

)( −V

H + K

)s

=
(H + K)!

s!(H + K − s)!

(−V )s

(H + K)s

∼ (−V )s

s!es

1
(
1 − s

H+K

)H+K
∼ (−V )s

s!

where the Stirling formula applies,n! ∼
√

2πn (n
e )n, with

f ∼ g meaninglimH→∞ f/g = 1.
Corollary 3.2: For K ≥ 1 andτ ≥ 0,

lim
H→∞

P ∗
s (τ,H,K) = 1 − eL(p,τ)p

K−1∑

s=0

[−L(p, τ))p]s

s!

We note that in sight of the monotonicity stated in Cor. 3.1,
the limit is reached from below.
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Fig. 1. a) Success probability using erasure codes forN = 300, K = 25, p = 1 under different values ofλ; λ1 = 0.22·10−03s−1, λ2 = 0.091·10−03s−1

λ3 = 0.065 · 10−03s−1 b) Success probability using erasure codes forλ1, N = 300, p = 1 under different values ofK c) Success probability using
fountain codes – upper and lower bound as given in Cor. 4.1 – using p = 1, δ = 0.02 for various values ofN = 50, 125, 300, 500, 5000, versus normalized
number of transmitted framesK/N .

Also, the binomial bound [16, Thm 1.1] applies. For1 ≤
m ≤ n − 1, andu > 1, defineu throughm = ⌈upn⌉. Then

P (Sn,p ≥ m) ≤ n1/2

(2πm(n − m))1/2

u1−upn

1 − u

(
1 − p

1 − up

)(1−up)n

In Fig 1a) we reported the numerical comparison of the
optimal delivery probability as a function of the number of re-
dundant frames, for a particular setting. The asymptotic bound
is reported as an horizontal dot-slashed line; the binomial
bound is reported with slashed line. We notice that the bi-
nomial bound proves a good approximation for lower success
probabilities, i.e., at smaller values ofλ. The relative increase
of the success probability under erasure codes is apparent:for
instance, the success probability withλ = 0.22 · 10−03s−1

increases from0.12 for H = 0 to one with a few redundant
frames (H = 12); the maximum attainable improvement,
though, is dictated by the upper bound.

In Fig 1b) the optimal delivery probability is depicted as a
function of the number of redundant frames, at the increase
of K; even in this case the binomial bound proves a better
approximation for lower success probabilities, as it appears in
the case ofK = 60.

C. Phase transition

In what follows we elaborate based on result from Thm. 3.1,
and we study the case of large values ofN . Let us assume
that the total number of frames,H + K, grows as a function
of N , i.e., H + K = (H + K)(N).

The question we would like to answer is, in the asymptotic
regime, what is the effect of redundancy onto the delivery
probability, that is, how the number of redundant frames
should scale with respect to the total number of frames.

We assume throughout that the following limits exist:

K̂ := lim
N→∞

K(N)/N and Ĥ := lim
N→∞

H(N)/N

Notice that this implies of course that the energy constraint
should grow at most linearly withN and we thus assume that

the limit x̂ := limN→∞ x(N)/N > 0 exists2.
Proposition 3.1: Introduce the threshold

Γ0 := λτ
(
1 +

x̂

log(1 − x̂)

)
,

then, the following holds:

limN→∞ Ps(τ, K, H) =

8

>

>

>

<

>

>

>

:

0 if bK + bH ≤ Γ0

0 if bK + bH > Γ0 and bK > Γ0

1 if bK + bH > Γ0 and bK < Γ0

The proof is reported in the Appendix of [15]. We conclude
that there exist a phase-transition effect. Its thresholdΓ0 is the
same as that we shall obtain later for the fountain codes.

The way we interpret such result is that, in order to deliver
with high probability the message, for largeN , theK message
frames should not exceed such threshold, but the sum of the
encoded ones should.

IV. FOUNTAIN CODES

Each time the source meets a node, it sends to it (with
probability p) a packet obtained by generating a new random
linear combination of theK original packets. Using fountain
codes, we know that for anyδ in order for the destination to be
able to decode the original message with probability at least
1−δ, it has to receive at leastM := K log(K/δ) packets [17,
Chap 50]. A useful expression for largeK will be used later:
if we write M = K(1 + α) then α that guarantees that the
destination can decode the original message with probability
of at least1 − δ is given by

α =
(log(K/δ))2√

K

The number of packets that reach the destination during the
time interval [0, τ ] has a Poisson distribution with parameter

2In what follows we will exclude the trivial casebx = 0, which corresponds
to the case when no relaying is allowed.
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−L(τ, p∗)p∗ wherep∗ is given in (10) and whereL(τ, p∗) is
given in (9).

The probability that less thanM packets reach the destina-
tion is given by

PM (τ) =

M−1∑

i=0

(−L(τ, p∗)p∗)i

i!
exp(L(τ, p∗)p∗) (11)

We conclude thatP ∗
s (τ) ≥ 1 − δ − PM (τ).

Finally, we can leverage Cor. 3.2 and obtain
Corollary 4.1: Given p∗ as in (10),

1 − δ − PM (τ) ≤ P ∗
s (τ) ≤ 1 − PM (τ)

We notice that the bound on the right-end of the inequality is
obtained by using redundancy as in the previous section for
H ≥ M , then taking the limit ofH → ∞.

A. Numerical examples: a phase transition

In Fig 1c) we reported the representation of the bounds de-
scribed above: the two bounds provide a tight characterization
of the performances of fountain codes; in particular, we notice
that PM (τ), which in fact is the CDF of a Poisson r.v., tends
to one asK increases: this causes the success probability to
tend to zero asK increases. The intuition is that, for a large
number of transmitted frames, the probability of receivingall
of them successfully within the given deadline decreases faster
than the gain obtained by adding redundancy through fountain
codes.

But, the numerical insight of the model says more of the
performance attained by fountain codes. In fact, in Fig 1c)
we reportedP ∗

s versus the normalized number of transmitted
frames K/N , for increasingN . Interestingly, the success
probability becomes more and more close to a step function at
the increase ofN . We thus observe a phase transition: above
a given number of transmitted frames, the success probability
vanishes, and below the same threshold success occurs with
probability one.

We shall study this phenomenon analytically in the next
subsection.

B. Analysis Asymptotic behavior

We now want to understand the behavior of the foun-
tain codes for large values ofN in the asymptotic regime
K = K(N) ≤ N ; in what follows, we will assume that

K̂ := limN→∞ K(N)/N exists. This implies of course that
the energy constraint should grow linearly withN and we thus
assume that the limit̂x := limN→∞ x(N)/N exists. We can

rewrite−L(τ, p∗)p∗ = N · Γ(0)
0 , where we obtain

Γ
(N)
0 = − 1

p∗

(
1−λp∗τ −e−λp∗τ

)
= λτ

(
1+

x
N−z

log(1 − x
N−z )

)

Γ0 := lim
N→∞

Γ
(N)
0 = λτ

(
1 +

x̂

log(1 − x̂)

)

We have

P
(N)
M (τ) =

K(N)(1+α)−1∑

i=0

(N · Γ(N)
0 )i

i!
exp(−N · Γ(N)

0 )

We notice thatP (N)
M (τ) = Pr{XN ≤ K(N)(1 + α) − 1},

where XN is a Poisson r.v. From the Strong Law of Large
Numbers we havelimN→∞ XN/N = Γ0 P-a.s. Thus

lim
N→∞

P
(N)
M (τ) = 1 − lim

N→∞
Pr(XN ≥ K(N))

=

{
1, if K̂ > Γ0

0, if K̂ < Γ0

from which we can deduce

limN→∞ Ps(τ)

{
≥ 1 − δ, if K̂ < Γ0

= 0, if K̂ > Γ0

where we used Cor. 4.1.
This demonstrates the effect of phase transition observed

numerically in Fig 1c).

V. THRESHOLD POLICIES

The way the energy constraints are handled so far is by
using only a fraction of the transmission opportunities. This
was done uniformly in time by transmitting at a probability
that is time independent; we will refer to this strategy asstatic
policy. In this section we consider an alternative way to dis-
tribute the transmissions: we use every possible transmission
opportunity till some time limit and then stop transmitting.
This is motivated by the ”spray and wait” policy [18] that is
known to trade off very efficiently message delay and number
of replicas in case of a single message.

In addition we need to specify the values ofpi: the proba-
bility packet i when there is an opportunity to transmit (and

the time limit has not yet elapsed). We have
∑K

i=1 pi = 1.
In the lack of redundancy, we recall that the success

probability writes

Ps(τ,p) =

K∏

i=1

(
1 − exp(−λ

∫ τ

0

Xi(v)dv)
)

Clearly, transmitting always when there is an opportunity
to transmit is optimal if by doing so the energy constraint are
not violated. This can be considered to be a trivial time limit
policy with a limit of r = τ . Otherwise, the optimal valuer
for a threshold is the one that achieves the energy constraints,
or equivalently, the one for which the expected number of
transmissions during time interval[0, r] by the source isx;
as before,x is related to the total constraint on the energy
through the constraintE(τ) ≤ εx. The valuer of the time
limit is then given byσ(z), see eq. (8).

Since we considered a time limit policy,Xi(v) first grows
till the time limit r is reached and then it stays unchanged
during the interval(r, τ ]. For the non-trivial case wherer =
σ(z) we thus have:



7

0 10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1

Number of redundant frames H

S
uc

ce
ss

 p
ro

ba
bi

lit
y

x=70, K=15,30, N=300, τ=3000 s

Static policy
Threshold policy

K = 15

K = 30

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Number of frames K

S
uc

ce
ss

 p
ro

ba
bi

lit
y

x=70, δ=0.05, N=300, τ=3000,7000 s

Static policy

Threshold policy

τ = 7000s

τ = 3000s

a) b)

Fig. 2. A comparison of success probability with erasure codes when using threshold and static policies;N = 300, x = 70, τ = 3000, 7000: a) Erasure
Codes,K = 15, 30 b) Fountain codes,δ = 0.05.

Ps(τ,p) =

K∏

i=1

[
1 − exp

(
− λ

∫ σ(z)

0

Npi

(
1 − e−λv

)
dv

−λ(τ − σ(z))Xi(σ(z))
)]

=
K∏

i=1

Z̃(pi)

whereZ̃(pi) := 1−exp
(
piL̃(τ)

)
, piL̃(τ) := −λ

∫ τ

0
Xi(v)dv

and where we have by eq. (5) and (8)

Xi(σ(z)) = Npi

(
1 − e−λσ(z)

)
=

Npix

N − z

Also, the integral can be expressed as
∫ σ(z)

0

Xi(v)dv = −Npi

λ

[
− x

N − z
+ log

(
1 − x

N − z

)]

In particular, the following holds

L̃(τ) =
Nx

N − z
+ N log

“

1 −
x

N − z

”

− λ(τ − σ(z))
Nx

N − z

= −
Nx

N − z
λτ − β(z), where

β(z) = − Nx

N − z
− N

(
1 − x

N − z

)
log
(
1 − x

N − z

)
≥ 0.

Finally, thepi’s are selected to be all equal (and to sum to
1) due to the same arguments as in the proof Theorem 2.1 as
here too,log(Z̃) is concave in its argument.

In the case of redundancy, the calculations are similar to
those in eq. (12), where

Ps(τ, H, K) =

H+K
X

s=K

 

H + K

s

!

Z̃
s(pi)(1 − Z̃(pi))

N−s (12)

Hence, givenH ≥ 0, it holds

P ∗
s (τ,H,K) = exp

(
−

Nx
N−z λτ + β(z)

H + K

)
(13)

×
H+K∑

s=K

(
H + K

s

)[
exp

(
Nx

N−z λτ + β(z)

H + K

)
− 1

]s

Here again, we used the fact that the success probability is
maximized for equalpi’s, i.e.

p∗i (t) =

{
1/(H + K) if t ≤ σ(z)

0 if t > σ(z)

and P ∗
s (τ,H,K) is given as in eq. (13). The proof follows

the same lines as that of Lemma 3.1.
As a final remark, consider the trivial case where the energy

constraint is not active:τ < σ(z), i.e., it is optimal to transmit
all the x packets up to timeτ ; in this case results from
Thm. 3.1 hold.

Now we want to specialize the use of threshold policies
in the case of fountain codes when the energy constraint is
active:τ ≥ σ(z). In this case, the number of packets that reach
the destination during the time interval[0, τ ] has a Poisson

distribution with parameterΛ = −L̃(τ) = Nx
N−z λτ +β(z); the

probability that less thanM = K log(K) packets reach the
destination is given by

PM (τ) = exp

(
− Nx

N − z
λτ − β(z)

)M−1∑

i=0

1

i!

( Nx

N − z
λτ+β(z)

)i

and the statement of Cor. 4.1 holds accordingly (notice that
when the energy constraint is not active, we fall back to the
original form of Cor 4.1).

A. Comparison with static policies

Here we would like to see what is the relative performance
of static and threshold policies, both for fountain codes and
erasure codes. In Fig. 2a) and Fig. 2b) we reported on the case
a bound on energy existsx = 70; in such case,σ(z) = 1000 s.
As concerns erasure codes, when the number of frames is high
(30) the usage of a large number of redundant frames proves
much more effective compared to static policies. Conversely,
a for a lower number of frames, the advantage of threshold
policies is less marked.

In the case of fountain codes, threshold policies are again
more efficient than static policies, and the effect is more
relevant for large values of the time constraintτ . We recall
that we refer tooptimal static policies.
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Fig. 3. a) Simulation results for the success probability of erasure coded messages, static policy,H = 10, 20, N = 200, τ = 80000 s, x = 70. b) Same as
a) but under threshold policies c) Simulation results for thesuccess probability of fountain coded messages, static policy, N = 200, τ = 80000 s, x = 70,
δ = 0.02.

VI. N UMERICAL VALIDATION

In this section we provide a numerical validation of the
model. Our experiments are trace based; message delivery is
simulated by a MatlabR© script receiving as input pre-recorded
contact traces.

Synthetic Mobility

We considered first a Random Waypoint (RWP) mobility
model [19]. We registered a contact trace using Omnet++ with
N = 200 nodes moving on a squared playground of side5
Kms. The communication range isR = 15 m, the mobile
speed isv = 5 m/s and the system starts in steady-state
conditions in order to avoid transient effects [20]. The time
limit is set to τ = 80000 s, which corresponds roughly to1
day operations, and the constraint on the maximum number
of copies isx = 70. With this first set of measurements, we
want to check the fit of the model for the erasure codes and
fountain codes. In the case of erasure codes, we fixedH = 10
and 20 and increased the number of message framesK. We
selected at random pairs of source and destination nodes and
registered the sample probability that the message is received
at the destination by timeτ . As seen in Fig. 3a) the fit with
the model is rather tight and an abrupt transition from high
success probability to zero is visible. Also, in Fig. 3b) we
reported on the results obtained in case of threshold policies;
the fit is similar to what obtained for static policies, confirming
the gain of performance with respect to static policies.

We repeated the same experiment in the case of fountain
codes, as reported in Fig. 3c) for static policies; in this case
the code specific parameter isδ = 0.02 and again we increased
K. Even in this case we see that the threshold effect predicted
by the model is apparent.

Real World traces

Our model captures the behavior of a sparse mobile ad
hoc network under some assumptions: the most stringent is
the uniformity and the stationarity of intermeeting intensities.
We would like now to understand what is the impact of non-
uniform and non-stationary encounter patterns. We considered
two sets of experimental contact traces:

Haggle: in [2] and related works, the authors report exten-
sive experimentation conducted in order to trace the meeting
pattern of mobile users. A version of iMotes, equipped with
a Bluetooth radio interface, was distributed to a number of
people, each device collecting the time epoch of meetings
with other Bluetooth devices. In the case of Haggle traces,
due to the presence of several spurious contacts with erratic
Bluetooth devices, we restricted the contacts to a subset having
experienced at least50 contacts, resulting in19 active nodes.

CN: the CN dataset has been obtained by monitoring21
employee within Create-Net and working on different floors of
the same building during a4-week period. Employees volun-
teered to carry a mobile running a Java application relying on
Bluetooth connectivity. The application periodically triggers
(every60 seconds) a Bluetooth node discovery; detected nodes
are recorded via their Bluetooth address, together with the
current timestamp on the device storage for a later processing.

Fig 4 a) and b) depict the results of experiments performed
with these data sets. A major impact is played by the non-
stationarity of traces. This is mainly due to “holes” appearing
in the trace which impose unavoidable cutoff effects on the
success probability. In particular, in the case of fountain
coding, for K > 1, i.e., when the original file is actually
fragmented, the performance is rather poor. This is due to
the increase withK of the number of framesM required for
decoding, exacerbated by the reduced size of the network. For
example, forK = 3 and δ = 0.05 it holds M = 13, i.e. M
is close toN for the Haggle trace and larger thanN/2 for
the CN trace; this means that, in order to deliver the message,
basically almost all nodes should meet the destination and
deliver a frame withinτ .

With erasure codes, both traces show the characteristic cut-
off of performances at the increase ofK. The decay, though,
depends on the trace considered; in particular, a close look
to the two data sets showed that the Haggle trace has higher
average inter-meeting intensity compared to the CN trace over
the considered interval; the shape seen in Fig 4a) resembles
more closely the theoretical sigmoid cutoff predicted by the
model.
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Fig. 4. a) Simulation results for the success probability of static policies, Haggle trace,N = 17, τ = 80000 s, x = 17 andδ = 0.05 b) Simulation results
for the success probability of static policy, CN trace,N = 21, τ = 80000 s, x = 19 andδ = 0.05.

VII. C ONCLUSIONS ANDREMARKS

We have considered in this paper the tradeoff between
energy and probability of successful delivery in presence of
finite duration of contacts or limited storage capacity at a
node: it can store only part (a frame) of a file that is to
be transferred. To improve performance we considered the
generation of erasure codes at the source which allows the
DTN to gain in spatial storage diversity. Both fixed erasure
codes (Reed Solomon type codes) as well as rateless fountain
codes have been studied.

Fountain codes can be viewed as special case of general
network coding such as those studied in [7], [8], [10]. We note
however that in order to go beyond fountain codes (in which
coding is done at the source) and consider general network
coding (where coding is also done in the relay nodes), one
needs not only change the coding approach but one should
allow storage of several frames at each relay node. Also,
interesting hints come from the presence of non-stationary
patterns arising in real world traces. New tradeoff issues arise
which we shall study in future work.
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