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Abstract

A central scheduling problem in wireless communications is that of allocating resources to one of

many mobile stations that have a common radio channel. Much attention has been given to the design of

efficient and fair scheduling schemes that are centrally controlled by a base station (BS) whose decisions

depend on the channel conditions of each mobile. The BS is the only entity taking decisions in this

framework based on truthful information from the mobiles on their radio channel. In this paper, we

study the scheduling problem from a game-theoretic perspective in which some of the mobiles may be

noncooperative. We model this as a signaling game and study its equilibria. We then propose various

approaches to enforce truthful signaling of the radio channel conditions: a pricing approach, an approach

based on some knowledge of the mobiles’ policies, and an approach that replaces this knowledge by

a stochastic approximations approach that combines estimation and control. We further identify other

equilibria that involve non-truthful signaling. We finally discuss the proportional fair framework under

the noncooperative setting.

I. INTRODUCTION

Short-term fading arises in a mobile wireless radio communication system in the presence

of scatterers, resulting in time-varying channel gains. Various cellular networks have downlink

shared data channels that use scheduling mechanisms to exploit the fluctuations of the radio

conditions (e.g. 3GPP HSDPA [3] and CDMA/HDR [6] or 1xEV-DO [2]). The scheduler design

and the obtained gain are predicated on the mobiles sending information concerning the downlink

channel gains in a truthful fashion. In a frequency-division duplex system, the base station (BS)

has no direct information on the channel gains, but transmits downlink pilots, and relies on

the mobiles’ reported values of gains on these pilots for scheduling. A cooperative mobile will
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truthfully report this information to the BS. A noncooperative mobile will however send a signal

that is likely to induce the scheduler to behave in a manner beneficial to the mobile.

Our paper is concerned with game-theoretic analysis of downlink scheduling in the presence of

noncooperative mobiles. We consider the BS to be a player as well, and assume that the identity

of players that do not cooperate is common knowledge. We model this game as a signaling game

which is somewhat uncommon in that there are several players that send signals (the mobiles

whose signals correspond to the reported states of the channel) and one follower who reacts

to the signal - the BS who decides to whom to allocate the channel. The utility of the BS is

assumed to be the social optimum, i.e., the sum of throughputs. The equilibria of this game and

distributed ways to achieve them are the focus of our research reported here.

Contribution of the paper: We begin with the case in which the BS does not use any extra

intelligence to deal with noncooperative mobiles. We show that the Perfect Bayesian Equilibrium

(PBE) of the signaling game, are babbling type (i.e., the base station’s strategy is to ignore the

mobile’s signal and use only prior statistical information of the noncooperative mobiles). A

somewhat surprising result is that these are the only equilibria.

At the other extreme we have the ’separating’ equilibria in which the mobiles signal the true

channel value. We present three ways to obtain these as equilibria of the game, each requiring

some other type of extra intelligence or involvement of the BS. The first relies on capabilities of

the BS to estimate the real downlink channel quality (at a later stage based probably on the rate

at which the actual transmission took place), combined with a pricing mechanism that creates

incentives for truthful signaling.

The second approach requires that the BS has some knowledge of the policy used by the

mobiles. More precisely, it requires the BS to know the probabilities with which various signals

are used (in addition to knowing the channel statistics).

The third approach takes advantage of the fact that the game is repeated, and replaces the

knowledge required in the previous method by an estimation procedure. The actual procedure

that combines estimation and control is based on stochastic approximation algorithm for which

truth revelation is an ε-Nash equilibrium. This algorithm and its analysis are inspired by Kushner

& Whiting’s work on the proportional fair sharing algorithm (PFA) [15].

Within the two last settings we described an equilibrium (or ε-equilibrium) similar in nature

to mechanism design in which the BS’s strategy creates incentives for truth revealing (ITR). We
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call this a truth revealing equilibrium (TRE) at which the BS uses an ITR policy. However the

settings of this paper differ from the mechanism design paradigm; we do not consider explicit

pricing and furthermore, the BS is also modeled as a player.

In a game setting, a natural question that arises is whether other equilibria exist. Can a player

get more by not signaling truthfully? The answer is a possible yes - when the BS does not use

ITR. We show that there indeed exist non-efficient equilibria at which a noncooperative mobile

gains more by non-truthful signaling. At such equilibria, the BS gets a utility that may be lesser

than that of a TRE but greater than that of a babbling equilibrium.

Finally, we briefly discuss the noncooperation setting within the proportional fairness frame-

work.

Prior work. (1) Proportional fair sharing and other related algorithms were intensely analyzed

as applied to the CDMA/HDR system. See [9], [6], [5], [20], [4], [8], [16]. These results are

applicable to the 3GPP HSDPA system as well. Kushner & Whiting [15] analyzed the PFA using

stochastic approximation techniques and showed that the asymptotic averaged throughput can be

driven to optimize a certain system utility function (sum of logarithms of offset-rates). All the

above methods assume that the centralized scheduler has complete information of all relevant

quantities.

(2) Mobiles in our setting are more informed than the BS; they have access to their individual

channel realization which is private information. If mobiles exploit the ignorance of the BS to

their advantage, and the BS is aware of this possibility, we have a signaling game as discussed

earlier with several lead players or senders (mobiles) and one follower or receiver (BS). See [14]

for an illuminating survey on this topic with example applications to marketing, labor services

market, insurance deductibles, and evolutionary biology. Our interest will be in a game with

“cheap talk”; this is a signaling game where the sender incurs no cost for his signals [14, Sec.

7]. It is well-known that such games admit a babbling equilibrium. There are situations where

other equilibria exist. Interestingly, there are situations where cheap talk helps (Farrell [10]), i.e.,

cheap talk induces a truth-revealing equilibrium while the game with no communication has no

equilibrium.

(3) Mechanism design is another area where a less informed social planner induces truth

revelation from the more informed players via an appropriate choice of an allocation mechanism

and pricing; see [11] for a tutorial survey. Pricing mechanisms have been extensively studied

March 16, 2009 DRAFT



4

in the context of networks (see [12], [18]). A related problem of screening arises when the

receiver is the more informed party and the uninformed senders make the proposals for trade.

(4) Effect of noncooperative mobiles was recently considered in [13], where the special

case of maximum rate algorithm was simulated and shown to improve the noncooperative

mobile’s throughput by 5% but decrease the overall system throughput by 20%. Then, observing

that the presence of more mobiles in the system resulted in less aggressive signaling, they

proposed that the BS advertise the presence of an inflated number of mobiles in the system;

the noncooperative mobiles take this advertisement to be true1. Nuggehalli et al [17] considered

noncooperation by low-priority latency-tolerant mobiles in an 802.11e LAN setting capable of

providing differentiated quality of service. They provide an incentive mechanism in the form of

collision free access (CFA) : a guaranteed fraction of allocation to CFA induces truth revelation.

Price & Javidi [19] consider an uplink version of a problem where the mobiles are the informed

parties on the valuation of the uplinks (queue state information is available only at the mobile).

They provide incentives in the form of allocation on the downlink to induce truth revelation.

Paper outline: After providing a brief system and problem description (Section II, Section III),

we consider the downlink cheap-talk signaling game comprising of informed noncooperative

mobiles (all or a few) and a less-informed BS in Section IV. The signaling game admits

only babbling equilibria. We then describe in Sections V, VI the three approaches to obtain

a truth revealing equilibrium (TRE) based on ITR policies of BS. Other equilibria are identified

in Section VII. Section VIII provides some preliminary results on proportional fair sharing

algorithm. We end the paper with a concluding section. Most of the proofs are placed in the

Appendix placed at the end of the paper.

II. PROBLEM FORMULATION

We consider the downlink of a wireless network with one base station (BS). There are K

mobiles competing for the downlink data channel. Time is divided into small intervals or slots.

In each slot one of the K mobiles is allocated the channel. Each mobile m can be in one

of the states hm ∈ Hm, where Hm is finite valued. We assume fading characteristics to be

independent across the mobiles. Let h := [h1, h2, · · · , hK ]t be the vector of channel gains in

a particular slot. The channel gains are distributed according to: pH(h) =
∏K

i=1 pHi(hi), where

1They do not address the possibility of this advertised number being just another signal.
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{pHm ;m ≤ K} represents the statistics of the mobile channels. We assume that the mobiles

estimate the channel hm perfectly using the pilot signals sent by BS. The mobiles send signals

{sm} to BS; these are indications of the channel gains. Some mobiles (with indices 1 ≤ m ≤ K1

where 1 ≤ K1 ≤ K) are assumed to be noncooperative and may signal a better channel condition

to grab the channel even when their channel is bad. We assume that signals are chosen from the

channel space itself, i.e., sm ∈ Hm for all mobiles. BS makes a scheduling decision based on

signals s := [s1, s2, · · · , sK ]t.

Utilities: If the channel is allocated to mobile m, it gets a utility f(hm) which only depends

upon its own channel state. An example utility is f(hm) = log(1+hmSNR) where SNR captures

the nominal received signal-to-noise ratio under no channel variation. The utility of the BS is

taken to be sum of the utilities of all the mobiles. Optimizing the sum utility at the BS results

in an efficient solution. It however may be unfair because far-off mobiles may be ignored for

they are not likely to contribute to efficiency. In this paper, we mainly study efficient solutions.

This is fair in symmetric mobiles case, but not for asymmetric mobiles. Extensions to obtain

fairness for asymmetric mobiles are discussed in Section VIII.

Common Knowledge : The channel statistics {pHm ;m ≤ K} and the information about which

mobiles are noncooperative is common knowledge (i.e., known to all the mobiles and the BS). If

the BS does not know which mobiles are cooperative, it will treat every mobile as noncooperative

and in this case K1 = K. In Sections V-B to VII wherein the BS estimates either the signal

statistics or the average utility of the mobile, the BS can detect the noncooperative mobiles.

We conclude this section with a motivating example that illustrates the problems and solution

approaches considered in this paper.

A. A motivating example

To illustrate the main concepts, we consider two mobiles. The first one has a constant radio

channel that allows it to have a rate of 8 units whenever it receives the channel, i.e,. H1 = {h0
1}

and f(h0
1) = 8, and the second has three channel states H2 = {h1

2, h
2
2, h

3
2} with probabilities

(pH2(h
1
2), pH2(h

2
2), pH2(h

3
2)) = (1/4, 1/2, 1/4) and utilities (f(h1

2), f(h2
2), f(h3

2)) = (10, 2, 1).

Mobile 1 (mobile 2) achieves its maximum utility of 8 (of 1/4 ∗ 10 + 1/2 ∗ 2 + 1/4 ∗ 1 = 15/4,

respectively) when the channel is always allocated to it. BS achieves its maximum utility (defined

as the sum of utilities) of 1/4∗10+3/4∗8 = 34/4 if it schedules to mobile 2 when this mobile’s
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channel is 10 and to mobile 1 otherwise. This is thus a game between the BS and the mobile 2

(mobile 1’s signal is of no consequence). The deciding entity, the BS, will allocate the channel

to the mobile with the maximum utility, thereby maximizing its own (sum) utility. Note that

the BS can make this decision based only on the signals from the mobiles. With the above

scheduling policy, mobile 2 obtains a utility of only 1/4 ∗ 10 = 10/4 if it truthfully signals its

channel state. However, it can achieve its maximum utility of 15/4 it it always reports a good

channel (h1
2) regardless of its true channel state.

Now, suppose that the BS is aware of this possible noncooperative behavior. If the BS does

not use any further information, other than the signals from the mobiles, it can achieve a better

utility of 8 by always allocating the channel to mobile 1. When the BS sticks to this policy,

mobile 2 can not improve its utility in any way. Thus, the policy of the BS to ignore the signals

from mobile 2 and always allocate the channel to mobile 1 and any policy at the mobile 2 is a

Nash equilibrium (NE). Such an NE is a babbling equilibrium ([21]).

If the BS is successful in extracting the true channel information from the mobile 2 (mecha-

nisms to do this will be discussed in later sections) then it can achieve its maximum sum utility

of 34/4. This truth revealing NE, if it exists and henceforth called as TRE, is commonly referred

to as a separating equilibrium ([21]). It is interesting to note that the above two NE are two

extremes in the sense that one is the NE at which the BS’s utility is minimum among all possible

NE while the other is the NE at which the BS’s utility is maximum.

In Sections IV and V we generalize the above example. We then return to this example in

Section VII to illustrate further ideas.

III. MODEL AND BACKGROUND

We now formalize our notation and assumptions : For a set C, let P(C) be the set of probability

measures on C. A policy of mobile m is a function {µm(.|hm)} that maps a state hm to an element

in P(Hm). A policy of the BS is a function β = {β(.|s)} that maps each signal s to an element

in P({1, 2, · · · , K}). In later sections this policy can also be a function of other parameters.

The utility of the mobile m depends only upon the true channel hm and the allocation A of

the BS, where A ∈ {1, · · · , K}, given by: Um(sm, hm, A) = 1{A=m}f(hm), while that of BS is

UBS(s,h, A) =
∑N

m=1 Um(sm, hm, A).
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Remarks on choice of utility: A noncooperative mobile gets utility f(hm) when scheduled,

regardless of the signal sent by the mobile and without the transmitter knowing the true channel.

This is reasonable given the following observations. (1) The reported channel is usually subject

to estimation errors and delays, an aspect that we do not consider explicitly in this paper. As a

consequence, the current channel may be either higher or lower than the true report. To address

this issue, the BS employs a rateless code, i.e., starts at an aggressive modulation and coding

rate, gets feedback from the mobile after each transmission, and stops as soon as sufficient

number of redundant bits are received to meet the decoding requirements. This incremental

redundancy technique supported by hybrid ARQ is already implemented in the aforementioned

standards (3GPP HSDPA and 1xEV-DO). Then a rate close to the true utility may be achieved.

For example, in the first slot the BS transmits a packet at an aggressive rate r0 bits / second.

If the transmission fails, an equal number of additional redundancy bits are transmitted in the

next slot, and so on, until the packet is successfully received. The cost of feedback is assumed

negligible. If the number of retransmissions were L ≥ 1, the utility achieved is r0/L. If each

such transmission unit is sufficiently small, r0/L will be close to f(hm). The key aspect here is

that once allocated, the BS physical layer will persist until the packet is successfully transported

or maximum number of retransmissions is reached. (2) Scheduling is done by BS’s MAC layer

while the coding is done at the physical layer. There may be two different signals sent by the

mobile - one to the scheduling entity of the BS, and the other to the physical layer. Suppose

that the mobile noncooperatively signals to the BS’s scheduler, but is truthful to the physical

layer. The latter, knowing hm, chooses a code rate that matches the true channel state and attains

utility f(hm), but the scheduler decides based on sm.

Define h−m := [h1, · · · , hm−1, hm+1, · · · , hK ], pH−m(h−m) := Πj 6=mpHj(hj) and µ−m(s−m|h−m)

:= Πj 6=m;j≤K1µj(sj | hj) Πj 6=m;j>K1δ(hj = sj) to exclude mobile m. Define µ(s|h) = µ1(s1 |

h1)µ−1(s−1|h−1).

Hence the instantaneous utility of mobile m, when its channel condition is hm, when the

mobiles use strategies µ := {µm;m ≤ K1}, and when the BS uses strategy β, is

Um(µ, hm, β) = Eh−m

[∑
s

Um(sm, hm,m)β(m | s)µ(s | h)

]

= f(hm)Eh−m

[∑
s

β(m | s) µ(s | h)

]
.
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Throughout when arg maxS has more than one element, we write i = arg maxS to mean

i ∈ arg maxS. By j := arg maxS we mean that j is a chosen element of arg maxS.

Strategic form games and Nash equilibrium: A strategic form game is described by a triplet

consisting of a set of players, a policy/strategy set for each player, and the utility of each player.

In our setting, this triplet for the K1 + 1-player game is

((1, .., K1), BS), (µ1, .., µK1 , β), (E[Um];m ≤ K1,E[UBS]) . (1)

A Nash Equilibrium (NE) for this game is a strategy-tuple (µ∗1.., µ
∗
K1
, β∗) that satisfies

µ∗m = arg max
α

Ehm [Um(α, hm, β
∗)] for all m ≤ K1

β∗ = arg max
γ

Eh[UBS(µ∗,h, γ)].

IV. SIGNALING GAME AND BABBLING EQUILIBRIUM

The signaling game for downlink scheduling is described as follows: K1 mobiles with the

lowest indices are the leaders or senders in the signaling game. The BS is the only follower or

receiver. The true channel hm represents the true type of leader m with signal sm. The policies

and utilities of the game are defined in previous paragraphs.

A refinement of NE for such games is a Perfect Bayesian Equilibrium (PBE). This is based

on rationale of credible posterior beliefs (Kreps & Sobel [14, Sec. 5], Sobel [21]).

Definition 4.1: [Posterior beliefs π := {πm;m ≤ K1}] π(hm | sm) is the BS’s belief of the

posterior probability that the mobile’s true channel is hm given its signal is sm.

Definition 4.2: [Perfect Bayesian Equilibrium (PBE)] A PBE is a strategy profile (µ∗1, · · · , µ∗K1
; β∗)

and a posterior belief profile π∗ such that : Given posterior belief profile π∗i , for each signal

vector s, the BS chooses β∗ such that

β∗(· | s) ∈ arg max
γ∈P((1,··· ,K))

∑
j>K1

γ(j)f(sj) +
∑
j≤K1

γ(j)
∑
hj

π∗j (hj | sj)f(hj). (2)

Given β∗, each mobile i ≤ K1 chooses µ∗i , such that,

µ∗i (· | hi) ∈ arg max
α∈P(Hi)

∑
si∈Hi

α(si)

∑
s−i

β∗(i | s)
∑
h−i

pH−i(h−i)µ
∗
−i(s−i|h−i)f(hi)

 (3)

for each hi ∈ Hi. For each i ≤ K1, si ∈ Hi, the BS updates,

π∗i (hi | si) =
pHi(hi)µ

∗
i (si | hi)∑

h′∈Hi pHi(h
′)µ∗i (si | h′)

, (4)
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if the denominator in (4) is nonzero, and π∗i (· | si) is any element in P(Hi) otherwise.

In Definition 4.2, (3) ensures that (µ∗1, · · · , µ∗K1
) is an NE of the subgame of noncooperative

mobiles, (2) ensures that β∗ is the Bayes-Nash equilibrium of the subgame with the BS, and (4)

determines a consistent Bayesian approach to determining posterior beliefs.

In the sequel, we will come across two types of PBE ([21]). The first is the babbling

equilibrium where the sender’s strategy is independent of its type, and the receiver’s strategy is

independent of signals. The second is the desirable separating equilibrium where sender sends

signals from disjoint subsets of the set of available signals for each type. Clearly then, the receiver

gets complete information about the true types of the leaders. If this equilibrium is achieved, the

BS can design a scheduling algorithm as in a fully cooperative environment. Hence a separating

PBE is a Truth Revealing Equilibrium (TRE) that we already defined in Section I.

We will now show that without any extra intelligence to combat noncooperation, i.e., if the

BS schedules based only upon the signals from the mobiles, there exist only babbling equilibria.

The following theorem characterizes all the possible PBE of the signaling game.

Theorem 1: The above K1 + 1 player signaling game has a PBE of the following type (for

all i, hi, si): With i∗NC := arg maxi≤K1 E [f(hi)], i∗C(s) := arg maxi>K1 f(si) and i∗(s) :=

arg maxi∈i∗NC∪i∗C E [f (hi) | si] for all s,

µ∗i (si = s′i|hi) equals any fixed µi ∈ P(Hi),

π∗i (hi|si) = pHi(hi) and

β∗(i|s) equals any fixed γs ∈ P(i∗(s)).

Further, these are the only type of PBE for this game.

Proof : Please refer to the Appendix. �

In the above equilibrium, the (noncooperative) mobile’s strategy is to send a signal independent

of the channel value, and the BS’s strategy is to ignore the signals from the noncooperative

mobiles and use only prior information and the information from the cooperative mobiles. Hence

it is a babbling equilibrium. Further, possibility of a ’separating’ PBE (TRE) is ruled out.

The scheduling policy of the babbling PBE of Theorem 1 results in the following utility for

the BS :

U∗cop := Ehm;m>K1

[
max

{
max
i>K1

f(hi), max
m≤K1

E[f(hm)]

}]
. (5)

March 16, 2009 DRAFT



10

It is the best utility that the BS can get using only information from cooperative mobiles and

the statistics of noncooperative mobiles. In Example II-A, U∗cop was 8. Note that the BS uses

very little information here to attain U∗cop (only the signals and prior information). To do better,

the BS has to use extra intelligence. In the next section we obtain the desirable TRE (Truth

Revealing Equilibrium) via two different approaches.

V. SEPARATING EQUILIBRIUM

We realized in the previous section that we have only babbling equilibria in the presence of

noncooperative mobiles.

In this section we obtain the desired TRE using two different approaches . The first approach

introduces a negative cost into the mobile’s payoff for erroneous reporting while in the second

approach the BS uses the (predicted) signal statistics along with the signals while scheduling.

The next section also obtains a TRE using more practical policies.

A. Penalty for deviant reporting

The BS does not have access to the true channel state of the mobile. But based on the actual

throughput seen on the allocated link, the BS may extract the squared error {(hi− si)2; i ≤ K1}

after the transmission is over. This error can used to punish the mobiles for deviant reporting.

More precisely, let mobile i report si when its channel is hi and suppose it succeeds in getting

the channel. For a ψ ∈ (0,∞), let us impose a penalty proportional to the squared error if it

exceeds ci, as follows:

Ui(hi, si, A) = 1{A=i}
(
f(hi)− ψ1{(hi−si)2>ci}(hi − si)2

)
,

where ci > 0 is chosen small enough such that for all hi ∈ Hi, {si : (si − hi)2 ≤ ci}∩Hi = {hi}.

If we now choose ψ such that

ψ > max
{i≤K1, (hi,si)∈Hi×Hi:(hi−si)2>c1}

{
f(hi)

(hi − si) 2

}
, (6)

then it is clear that Ui(hi, si, A) is negative whenever the action A is i, i.e., any deviant signaling

results in negative utility to the mobile. This new utility function is very related to a pricing

mechanism which is a powerful tool for achieving a more socially desirable result. Typically,

the pricing is used to encourage the mobile to use system resource more efficiency and generate
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revenue for the system. Usage-based pricing is an approach commonly encountered in the

literature. In usage-based pricing, the price a mobile pays for using resource is proportional

to the amount of resource consumed by the user. In our case, the price corresponds to the cost a

mobile pays for deviant reporting if it exceeds ci. Through pricing, we obtain a separating PBE

for the modified game :

Theorem 2: With ψ satisfying (6), the K1 + 1-noncooperative game with the modified cost

has the following separating PBE:

µ∗i (si|hi) = δ{hi=si}(si) for all i ≤ K1 and hi ∈ Hi,

π∗i (hi|si) = δ{si=hi}(hi) for all i ≤ K1 and si ∈ Hi and

β∗(i|s) = 1{i=A∗(s)} for all s

A∗(s) := i if i ∈ arg max
j
f(sj)

Proof : Please refer to the Appendix. �

B. By ’Predicting’ the Signal Statistics

In this section, we assume that the BS is able to ’predict’ the statistics of the signals generated

by all the mobiles, perhaps based on observations of past behavior, before the game is executed.

With pSm(s) :=
∑

h µm(s|h)pHm(h) for all s ∈ Hm and for all m, let Ps := (pS1 , pS2 , · · · , pSK )

represent the tuple of the signal probabilities of all the mobiles. The BS policy is now a

probability measure over the set of mobiles for each signal vector s and each Ps and hence

is given by β(.|s,Ps). This results in a completely different game and we obtain a TRE using

this new (more intelligent) policies.

The new game is still an incomplete information game but is no more a signaling game. We

now consider a simple K1 + 1 player strategic form game. The rest of the details of the game,

i.e., all the utilities and the policies of the mobiles, remain the same as that in the previous

sections.

Consider the following ’predictive’ policy β∗p of the BS: BS allocates the channel to the mobile

with maximum signaled rate if its signal statistics are same as its true channel statistics. If not

the BS allocates the channel to the cooperative mobile with maximum signaled rate among the

cooperative mobiles.

March 16, 2009 DRAFT



12

Policy β∗p at BS and the truth revealing signals (i.e., µ∗m(s|h) = δ(s = h) at all the mobiles

forms a NE, i.e., a TRE, because: If a mobile over signals the channel state such that his signal

statistics does not match with the true channel statistics the BS never allocates him the channel.

If a mobile generates a noncooperative signal such that the signal statistics remain the same as

the true channel statistics, he will have to lose the channel in one of his good states for a gain

of the channel in one of his bad states.

At a TRE, the BS obtains the following utility :

U∗max := Eh

[
max
i≤K

f(hi)

]
. (7)

It is the utility that the BS can get by using the truthful information from all the mobiles. The

utility 8.5 of the motivating example basically represents its U∗max. It is easy to see that this is

the maximum utility that the BS can get and hence is also the maximum utility of the BS at

equilibrium among all the possible NE.

VI. STOCHASTIC APPROXIMATION

We saw in the previous section that the desired TRE was obtained by either introducing a

negative cost for deviant reporting or by predicting the signal statistics. The negative cost depends

on the square of the error between the actual channel and the reported signal. The BS should

estimate this error (after successful transmission) using the actual rate obtained by the mobile on

the assigned channel. Such a penalty-based mechanism may however be difficult to implement

in practice.

The second approach to achieve the TRE needs estimates of signal statistics. Any estimation

procedure will have errors and it will be interesting to study the impact of these errors on the

desired NE. In this section we directly estimate the average (signaled) throughput of all the

mobiles and use these estimates to obtain more realistic (truth revealing) policies at the BS.

A policy based on stochastic approximation is proposed. It operates over several time slots

and estimates parameters online. Such an approach is also well-suited to track changes in model

parameters. Our policy has a “corrective” feature because the BS continually (i) estimates the

average throughput that each mobile gets; (ii) estimates the excess utility that each mobile

accumulates beyond its cooperative share (its share in a cooperative setting); (iii) applies a

“corrective” term based on the excess utility. The resulting estimates are then used to make

scheduling decisions.
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We define an appropriate K1+1-player strategic form game and show that a “corrective” policy

at the BS, along with the truth-revealing strategies at mobiles, forms an ε-Nash equilibrium, and

the policy is thus near-TRE2.

We begin by first defining the policies and utilities of the players involved in the game (some

notations of this section are different from the rest of the paper). The policy of a BS is a

time-varying function whose action at time k depends on the signals sent by the mobiles up

to and including time k. Throughout this section, we model channel gains as bounded random

variables taking values on a continuum and satisfying assumption A.3 given below. The policy

of a mobile m for m ≤ K1 is given by a measurable signal map sm : Hm 7→ Hm that satisfies

assumption A.2 given below. For the sake of uniformity we define sm(hm) = hm for m > K1,

i.e., the cooperative mobiles report the true channel. Thus, the signaled utility at time k is

f(sm(hm,k));m ≤ K, while the true utility is f(hm,k);m ≤ K.

Next we define the utilities of mobiles, BS. Let φm,k be the slot-level utility derived by mobile

m in slot k. Note that 0 ≤ φm,k ≤ f(hm,k) and φm,k = 0 if the channel is not assigned to mobile

m in slot k. We then set for all m ≤ K,

Um = lim
k→∞

1

k

∑
l≤k

φm,l and UBS =
K∑
m=1

Um,

if all the limits exist. In a TRE, the BS achieves the maximum sum utility U∗max given in (7)

while the mth mobile gets

U∗m = θ0
m := Eh

[
f(hm)1{f(hm)≥f(hj) for all j 6=m}

]
.

Note that BS can calculate θ0 := (θ0
1, · · · , θ0

K) with its available knowledge. We now propose

the following iterative “corrective” scheduling algorithm at the BS:

θm,k+1 = θm,k + εk

(
f̃m,k+1Im,k+1 − θm,k

)
,

f̃m,k+1 = f(sm(hm,k+1))−
(
θm,k − θ0

m

)
∆, (8)

Im,k+1 = 1{f̃m,k+1≥f̃j,k+1 for all j 6=m}, (9)

with initial conditions θm,0 = θ0
m for all m. The BS for each mobile i) tracks average reported

utility via θm,k, ii) computes excess utility θm,k − θ0
m, relative to the mobiles cooperative share

2This ε-Nash equilibrium is in fact slightly stronger equilibrium than NE.
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in a TRE, iii) subtracts the excess from the instantaneous signaled utility after magnification by

∆, and uses the updated values to make a current scheduling decision. The choice of ∆ depends

on ε.

If BS schedules mobile m in slot k, the latter gets a utility

f̄m,k := max
{

0,min
{
f̃m,k, f(hm,k)

}}
. (10)

Indeed, if f̃m,k < 0 for the selected mobile, no transmission is made. If f̃m,k < f(hm,k),

transmission is made at lesser rate to get a slot-level utility of f̃m,k. If f̃m,k ≥ f(hm,k), our

remarks on utilities in Section III provide a slot-level utility of f(hm,k). Thus the achieved

utility in slot k is (10). Consequently, utility for mobile m is Um = limk→∞
1
k

∑k
l=1 f̄m,lIm,l,

which can be rewritten as limit of,

θ̄m,k+1 = θ̄m,k + εk
(
f̄m,k+1Im,k+1 − θ̄m,k

)
, (11)

where θ̄m,k = k−1
∑

l≤k f̄m,lIm,l and εk = 1/(1 + k). Thus the mobile and the BS utilities are

Um = lim
k→∞

θ̄m,k for all m ≤ K and Ubs =
∑
m

Um. (12)

Analysis of the policy: Let S = (s1, s2, · · · sK) represent a strategy profile. (last K − K1

maps are identity maps).

Assumptions : We assume the following :

A.1 The function f is bounded, invertible and continuously differentiable. The function f−1 is

also continuously differentiable;

A.2 The signal maps sm are such that the density of the random variables sm(hm) are bounded;

A.3 The processes {hm,k}k≥1 are stationary Markov chains for each mobile m, and independent

across mobiles. The random variable hm,1 is a bounded random variable with bounded

density for each m.

One of the most common approaches to analyze a stochastic adaptive algorithm is based on

the ordinary differential equation (ODE) approximation theory ([15], [7] etc.). In this section we

use the ODE approximation theory to analyze the utilities (12) and obtain optimality properties

of policy (8). Define θk := (θ1,k, · · · , θm,k), θ̄k := (θ̄1,k, · · · , θ̄m,k) and Θk :=
(
θk, θ̄k

)
. We will

show that the trajectories of (θk, θ̄k), in any finite time scale, converge to the solution of the
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ODE system

�
θ (t) = HS(θ(t))− θ(t); θ(t0) = θ0 (13)
�

θ̄ (t) = H̄S(θ(t))− θ̄(t); θ̄(t0) = θ̄0 (14)

HS
m(θ) := Eh

[
f̃Sm(hm, θ)I

S
m(h, θ)

]
H̄S
m(θ) := Eh

[
f̄Sm(hm, θm)ISm(h, θ)

]
f̃Sm(hm, θ) := f(sm(hm))− (θm − θ0

m)∆

ISm(h, θ) := 1{f̃Sm(hm,θ)≥f̃Sj (hj ,θ) for all j 6=m}.

f̄Sm(hm, θm) := max
{

0,min
{
f̃Sm(hm, θm), f(hm)

}}
.

By Lemma 1 of Appendix, the above ODE system has a unique solution for any finite time

scale. Define t(r) :=
∑r

k=0 εk, m(n, T ) := arg maxr≥n{t(r)−t(n) ≤ T}. Let Θk :=
(
θk, θ̄k

)
. Let

Θ(t, t0, (θ0, θ̄0)) represent the solution pair of the ODEs (13) and (14) with the initial condition

Θ(t0) = (θ0, θ̄0).

Theorem 3: Assume A.1–A.3 and that the step sizes {εk} satisfy assumption B.0 of Ap-

pendix. For any T > 0, for all δ > 0, for any h, and when (hn,Θn) is initialized with (h, (θ, θ̄)),

Pn:h,θ,Θn

{
sup

{n≤r≤m(n,T )}
|Θr −Θ (t(r), t(n), Θn)| ≥ δ

}
→ 0

as n→∞ uniformly for all (θ, θ̄) ∈ Q1, where Q1 is a subset of the bounded set of solutions

of the ODEs (13), (14) until time T . In the above, Pn:h,Θn denotes distribution of (hn+k,Θn+k)

with hn = h,Θn = (θ, θ̄).

Proof : Please refer to the Appendix. �

By the above theorem the trajectory {θ̄i,k; i ≤ K} is approximated by the solution of the ODE

(14). Thus, one can study its limit via the attractors of the ODE (14). We hence analyze the

utilities (12) by replacing the limits of the trajectoies with the the attractors of the above ODE.

Any attractor θ∗ of the ODE (13) satisfies

θ∗m − θ0
m =

Eh

[
f(sm(hm))ISm(h, θ∗)

]
− θ0

m

1 + ∆E [ISm(h, θ∗)]
.

If E
[
ISm(h, θ∗)

]
= 0 (mostly occurs when θ0

m = 0) then clearly θ∗m = 0. If not, for large enough

values of ∆, θ∗m ≈ θ0
m, i.e., either θ∗m = 0 or θ∗m ≤ θ0

m + o(1/∆). Further, any attractor of ODE
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(14) satisfies θ̄∗ = H̄S(θ∗) leading to θ̄∗ ≤ θ∗. Thus,

Um ≈ θ̄∗ ≤ θ∗m ≤ θ0
m + o(1/∆). (15)

Let S = I be the truth revealing strategy profile (sm(hm) = hm for all hm, m). Clearly θ0 is

a zero of RHS of ODEs (13), (14). One can easily show that it will indeed be an attractor by

showing that the derivative of HS(θ)−θ is negative definite near θ0. Hence Ui = θ0
i when S = I.

From (15) none of the mobiles, no matter what strategy they use or no matter what strategy

the other mobiles use, can gain more than θ0
i . This along with para above implies that the

’corrective’ policy (with appropriately large ∆) of BS together with the truth-revealing signals

at all the mobiles forms an ε-Nash equilibrium.

Some further Remarks : Note for large values of ∆,

(θ∗m − θ0
m)∆ =

∆(Eh

[
f(sm(hm))ISm(h, θ∗)

]
− θ0

m)

1 + ∆E [ISm(h, θ∗)]

≈
Eh

[
f(sm(hm))ISm(h, θ∗)

]
− θ0

m

E [ISm(h, θ∗)]

which can be significant but is bounded (independently of ∆) because of the boundedness of

h. Now, if any mobile reports much more than its true value, i.e., if f(hm) � f(sm(hm)) for

significant values of hm, and if in fact it is large enough such that f(hm)� f(sm(hm))− (θ∗m−

θ0
m)∆ then,

Um � Eh[(f(sm(hm))− (θ∗m − θ0
m)∆)ISm(h, θ∗)] = θ∗m.

Hence Um � θ0
m, i.e., that particular mobile’s output is much lesser than θ0

m, its own cooperative

share. Hence the mobile which deviates the most from true values gets the least share.

We present an example to illustrate the above with 3 mobiles. The mobiles are truncated

Gaussian distributed, i.e., hm ∼ min{0,max{N (3, σ2
m), 6}}. We set ∆ = 100. Our sm(hm) :=

max{hm + δm, 6}. We see from the table that all the (asymptotic) reported rates, θ∗ are close

σ2
1 , σ

2
2 , σ

2
3 δ1, δ2, δ3 θ01, θ

0
2, θ

0
3 θ∗1 , θ

∗
1 , θ
∗
3 U1, U2, U3

1.5, .9, 1.5 4, 4, .5 .58, .44, .58 .587, .442, .584 .543, .38, .574

1.5, 1.5, 1.5 0, 4, 0 .54, .54, .54 .545, .548, .543 .542, .48, .535

1.5, 1.5, 1.5 0, 0, 0 .54, .54, .54 .546, .543, .543 .542, .543, .543

to the cooperative shares θ0 in all cases. But the actual rates gained by the mobiles, Um, are
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close to θ0
m only when the particular mobile is cooperative. Further, the more the value of δ (i.e.,

more a mobile deviates from its true type), the more it loses.

We consider another numerical example to illustrate the accuracy of ODE approximation

as well as the robustification of the proposed stochastic approximation algorithm against non-

cooperation. We consider 2 mobiles in a Ricean fading environment. The rates of mobile m

are given by f(hm) = log
(

1 + P
√
hm(i)2 + hm(r)2

)
with hm(i), hm(r) ∼ N (3, 1/2). The

signaled rates are : f(sm(hm)) = max{f(hm) + δ, 2.2}. We plot the trajectories of the first

mobile, (θ1,k, θ̄1,k) against iteration number k for two values of δ equal to 0 and 4. We set

∆ = 5000, εk = 0.0001k−.1. We also plot the first mobile’s cooperation share, θ0
1 in the same

figure. The trajectories converge close to the attractors of the ODE as is shown in the theory.

From figure 1 we can see that the signaled rates θ1,k for both values of δ (actually both the

lines almost merge with each other in the figure) converge close to θ0
1 while the actual rates θ̄1,k

converges close to θ0
1 only for δ = 0 i.e. when mobile 1 is cooperative. With δ = 4 even though

the signaled rate converges close to θ0
1 the true rate experienced by the mobile is much below θ0

1

which illustrates the robustification of the ’corrective’ SA policy against noncooperation. Thus

the SA policy has properties as suggested by the theory.
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Fig. 1. Robust SA algorithm in the presence of noncooperation

VII. EXISTENCE OF OTHER NASH EQUILIBRIA

We obtained two types of NE till now. Under the first equilibrium (babbling equilibrium of

Theorem 1) BS schedules only using the signals from the cooperative mobiles and the channel

statistics of the noncooperative mobiles. The BS utility is the minimum among all the possible

equilibrium utilities and equals U∗cop given in (5).

The other type of NE (equilibria of Sections V, VI), are the truth revealing equilibria (TRE).

BS achieved these equilibria by using ITR (incentives for truth revealing) policies. When in a
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TRE, the BS schedules using the true channel information of all the mobiles. BS now achieves

the maximum possible equilibrium utility U∗max given in (7).

Clearly U∗cop ≤ U∗max. This raises a natural question about the existence of other NE with BS’s

equilibrium utility taking any value in the interval [U∗cop, U
∗
max]. In this section we continue with

the ’predictive’ policies, β(.|s,Ps), of Section V-B and investigate the existence of other NE in

Theorem 4.

We will first return to the motivating example of the Section II to describe the main ideas of

this section.

A. Motivating Example continued

optimal policy for mobile 2 Here we assume that the mobile uses the following policy µ̄2:

• It declares that it is in state 10 when it is in that state, i.e., µ̄2(h1
2 | h1

2) = 1 and in addition

• it declares with probability ρ that it is in 10 whenever it is in state 2, i.e., µ̄2(h1
2|h2

2) = ρ =

1− µ̄2(h2
2|h2

2).

• Finally let µ̄2(h3
2|h3

2) = 1.

Let’s choose ρ such that the best response of the BS to this policy is to allocate to mobile 2

whenever state 10 is declared. For this to hold, ρ should be such that the utility of the BS is

at least 8, since the BS can always secure the U∗cop = 8 by always allocating to the cooperative

mobile 1. For such ρ, the utility of BS and mobile 2 are given by

UBS =
1

4
· 10 + ρ · 1

2
· 2 + (1− ρ) · 1

2
· 8 +

1

4
8 = 8.5− 3ρ

U2 = 2
1

2
ρ+ 10

1

4
. (16)

Since ρ should satisfy the constraint 8.5 − 3ρ ≥ 8, ρ that maximizes the utility of mobile 2 is

ρ = 1/6. The probability that mobile 2 declares that its channel to be in state 10 is

pS2(h
1
2) =

1

4
+

1

2

1

6
=

7

24
.

Thus with the above policy µ̄2 of the mobile, the best response policy of the BS among the

simple policies is to select mobile 2 whenever it declares a 10. Denote it by β̄.

The couple (µ̄2, β̄) is not an equilibrium since the best response of mobile 2 against β̄ is

simply to declare always that the channel is 10. Hence the BS should allocate channel to mobile

2 whenever it declares 10, only if it is guaranteed a utility that is at least equal to 8. This can be
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done in a way similar to that in Section V-B by allocating the channel to mobile 2 after further

verifying that the mobile 2 declares to be in 10 for not more than 7
24

of time.

More precisely, the BS choses the following signal ’predictive’ policy (this policy knows

apriori the signal probabilities of the mobile 2 and uses it for decision making) policy β̂ :

whenever mobile 2 declares 10 allocate channel to mobile 2 with probability q(pS2) where

q(pS2) := min

{
1,
pS2(h

1
2)

7/24

}
Hence (µ̄2, β̂) is an equilibrium that guarantees a rate of 8/3 to mobile 2, a rate of 16/3 to

mobile 1 and a total rate of 8 to the BS.

Infinitely many equilibria in feedback policies. In the sequel, we show that there is an

infinity of Nash equilibria in which the BS gets a utility greeter than U∗cop = 8. We use the same

type of policy µ̄2 for mobile 2, but we choose ρ < 1/6. Then the probability that mobile 2

declares that it is in state 10 is p̄S2(h
1
2) = 1/4 + ρ/2. Consider now that the BS uses policy β̃ :

BS selects mobile 2 with probability q whenever the mobile declares that it in state 10 where

q = min
(

1,
pS2(h

1
2)

1/4 + ρ/2

)
Thus the utility of BS and mobile 2 are 8 + 1/2q(1 − 6ρ) and 10/4.q + qρ, respectively. It is

easy to show that the couple (µ̄2, β̃) is a Nash equilibrium for each ρ ∈ [0, 1/6]. In the figure

2, we plot the utility of BS, mobile 1 and mobile 2 at equilibrium as function of ρ.

B. Main result : Generalization of the above example

In this section we generalize the example of the previous section to arbitrary number of players

and states.

In this section, we assume that signal statistics of all the mobiles Ps is known to the BS.

Hence the BS’s policy is given by β(.|s,Ps) as in Section V-B

Let Eµm [f(hm)|sm] represent the conditional expectation of the mobile’s utility conditioned

on the signal sm when mobile m uses strategy µm, i.e., for every sm ∈ Hm define

Eµm [f(hm) | sm] :=
∑

hm∈Hm

pHm(hm)µm(sm | hm)∑
h̃m∈Hm pHm(h̃m)µm(sm|h̃m)

f(hm).

With this, the payoff for mobile m is,

Um(µm, β) = Es,h [β(m|s,Ps)f(hm)] = Es [β(m|s,Ps)Eµm [f(hm)|sm]] . (17)
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Fig. 2. The utility of Base station, mobile 1 and mobile 2 at equilibrium as function of ρ

In the above, Es represents the expectation w.r.t. the probability measure Ps.

Given a signal probability K-tuple Ps, let µ∗ (or more appropriately µ∗(Ps)) represent ’best’

mobile strategy that gives for every hi, hj ∈ Hm and for all m ≤ K

f(hi) ≥ f(hj) =⇒ Eµ∗m [f(hm)|sm = hi] ≥ Eµ∗m [f(hm)|sm = hj].

Construction of µ∗ : Consider mobile 1 without loss of generality. Let H1 = {h1, h2, · · · , hN1}

and assume f(h1) ≥ f(h2) ≥ · · · ≥ f(hN1). In the following few lines we leave subscript 1 to

improve readability i.e., the random variables h1, s1 etc. are represented by h, s etc. Strategy

µ∗1 is defined in a iterative way.

We will first define {µ∗1(s = h1|h);h ∈ H1}, i.e., the conditional probabilities of declaring to

be in its best state h1 by mobile 1 when it is actually in any arbitrary state h ∈ H1. Find the

minimum index j∗1 such that probability of the channel to be in one of the top j∗1 states is greater

than or equal to pS1(h
1), i.e., let, j∗1 := arg minj

{∑j
i=1 pH1(h

i) ≥ pS1(h
1)
}
. Declare state h1

whenever the true channel is one among the top j∗1 − 1 states, i.e., for all h with f(h) > f(hj
∗
1 ),

set µ∗1(s = h1|h) := 1. When h = hj
∗
1 signal to be in best state h1, for a fraction of time, where

the fraction is chosen such that the overall probability of signal s = h1 will be equal to pS1(h
1),

i.e., µ∗1(s = h1|h = hj
∗
1 ) =

pS1
(h1)−

∑
l<j∗1

pH1
(hl)

pH1
(hj
∗
1 )

. Set µ∗1(s = h1|hi) = 0 whenever i > j∗1 .
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Now we define {µ∗1(s = h2|h);h ∈ H1}, i.e., the conditional probabilities of declaring to

be in the second best state h2 by mobile 1, when in any arbitrary state h ∈ H1. Let j∗2 :=

arg minj

{∑j
l=1 pH1(h

l)− pS1(h
1) ≥ pS1(h

2)
}
. Now define (the below definitions are for j∗2 >

j∗1 . If not one can appropriately modify the definitions.),

µ∗1(s = h2 | hj∗1 ) = 1− µ∗1(s = h1|hj∗1 ),

µ∗1(s = h2 | hi) = 1 whenever j∗1 < i < j∗2 ,

µ∗1(s = h2 | hj∗2 ) =
pS1(h

1) + pS1(h
2)−

∑
l<j∗2

pH1(h
l)

pH1(h
j∗2 )

µ∗1(s = h2 | h) = 0 for the remaining h.

Note that with the above definitions

Eµ∗1 [f(h1)|s = h1] ≥ f(hj
∗
1 ) ≥ Eµ∗1 [f(h1)|s = h2].

Continue in the same way to obtain

Eµ∗1 [f(h1)|s = h1] ≥ Eµ∗1 [f(h1)|s = h2] ≥ · · · ≥ Eµ∗1 [f(h1)|s = hN1 ]. (18)

By Result 1 given below, if mobile 1 uses any other strategy µ1 resulting again in the same

signal probability pS1 of PS while all other mobiles use their ’best’ strategy and the BS uses

policy β(m|s,Ps) := 1{m=argmaxmE[f(hm)|sm]}, then U1(µ∗1, β) ≥ U1(µ1, β). These strategies are

called ’best’ because with these, the mobile m gets the best payoff for masquerading a signal

probability pSm .

For m > K1, we set µ∗(hm | sm) = 1{hm=sm}. With the help of ’best’ strategies we obtain

the existence of other NE:

Theorem 4: For every signal probability tuple P̄s with the ’best’ strategies µ̄∗ such that,

U∗cop ≤ Eh,s [f (hm∗)] with m∗ := arg max
1≤m≤K

Eµ̄∗m [f(hm)|sm],

the ordered pair
(
µ̄∗, β̄∗

)
is a Nash equilibrium where the feedback policy β̄∗ of the BS is given

by following:

Let µ = (µ1, µ2, · · ·µK1) be any arbitrary signaling policy of the mobiles and let Ps =

{pSm ;m ≤ K1} be the signaling probabilities resulting from these actions of the noncooperative

mobiles. Define,
qm(Ps, sm) := min

{
1,
p̄Sm(sm)

pSm(sm)

}
for all sm ∈ Hm,
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and for all m ≤ K1. For m > K1 define qm(·, ·) = 1. For any given signal vector s de-

fine, m∗1(s) := arg maxm≤K Eµ̄∗m [f(hm)|sm] (the best among all the mobiles) and m∗2(s) :=

arg maxm>K1 f(sm) (best among cooperative mobiles). Then define,

β̄∗(m|s,Ps) = 0 for all m 6= m∗1,m
∗
2,

β̄∗(m∗1|s,Ps) = qm∗1
(
Ps, sm∗1

)
,

β̄∗(m∗2|s,Ps) =
(
1− qm∗1

(
Ps, sm∗1

))
. (19)

Proof : If all the noncooperative mobiles are fixed with signaling policy µ̄∗ then the signaling

probabilities will be given by P̄s and we have, qm(P̄s, sm) = 1 for all sm ∈ Hm and for all

m ≤ K. Hence β̄∗(m|s, P̄s) = 1{m=m∗1(s)}.

From (17), the total payoff of the BS with signal probabilities fixed at P̄s, when it uses some

arbitrary channel allocation say β(.|s), is given by,

UBS = Es

[
K∑
m=1

β(m|s)Eµ̄∗m [f(hm)|sm]

]
.

Clearly, the BS achieves the maximum with β̄∗.

Say BS uses the policy β̄∗. Without loss of generality assume mobile 1 unilaterally deviates

from strategy µ̄∗1 and signals instead using µ1 such that the signal probabilities remain the same.

Then by the Result 1 mobile 1 gets lesser than before. If now µ1 is such that even the signal

probabilities are different from p̄S1 then the payoff of the mobile 1 is further reduced as is seen

from (19), as now it is possible that q1(µ1, s1) < 1 for some values (note that (1 − q1(µ1, s1))

fraction of the time channel is allocated to a cooperative mobile) and the rest steps are as in the

proof of Result 1 stated next. �

We would like to emphasize here that the BS calculates m∗1,m
∗
2 of the above theorem using

µ̄∗ irrespective of the strategies actually used at the mobiles.

Result 1: Say all mobiles other than 1 use their ’best’ strategies, i.e., mobiles m with m > 1

use strategy µ̄∗m. Also assume that BS uses the policy in(19). The payoff of mobile 1 is maximized

with its ’best’ strategy µ̄∗1, when its signal probabilities are restricted to p̄S1 .Proof : Under the given hypothesis, the BS’s policy from (19) would be 1{m=m∗1(s)}. Hence the

payoff of the mobile if it uses some arbitrary policy µ1 from (17) will be :

U1(µ1, β̄
∗) = Es

[
1{m=m∗1(s)}E

µ1 [f(h1) | s1]
]

Define the probability measure:
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p̃(u) := Pr

(
s−1 : u = max

1<m≤K
Eµ̄∗m [f(hm) | sm]

)
for all possible u resulting from P̄s and {µ̄∗m;m > 1}.

By independence, we are interested in the following constrained optimization problem :

max
{µ1}

∑
ũ

∑
s∈H1

p̃(ũ)1{Ē(s)>ũ}

∑
h∈H1

pH1(h)µ1(s|h)f(h)

where Ē(s) := Eµ̄∗1 [f(h1)|s1 = s] =
∑
h̃∈H1

µ̄∗1(s|h̃)pH1(h̃)

p̄S1(s)
f(h̃) subject to

∑
s∈H1

µ1(s|h) = 1 for all h ∈ H1 and
∑
h∈H1

pH1(h)µ1(s|h) = p̄S1(s) for all s ∈ H1.

If say as before, H1 = {h1, h2, · · · , hN1} is arranged in the decreasing order of their utilities

(i.e. such that f(h1) ≥ f(h2) · · · ≥ f(hN1) ), then clearly by definition of ’best’ strategies µ̄∗,

Ē(h1) ≥ Ē(h2) ≥ · · · ≥ Ē(hN1). (20)

One can rewrite the above objective function after defining r(h, s) := pH1(h)µ1(s|h), as,∑
s

∑
h

r(h, s)f(h)

(∑
ũ

1{Ē(s)>ũ}p̃(ũ)

)
(21)

From (20) it is easy to see that,(∑
ũ

1{Ē(h1)>ũ}p̃(ũ)

)
≥

(∑
ũ

1{Ē(h2)>ũ}p̃(ũ)

)
≥ · · ·

(∑
ũ

1{Ē(hN1 )>ũ}p̃(ũ)

)
.

Hence, the maximum in (21) is achieved under the above mentioned constraints, by first maxi-

mizing the term (the constraints on this alone will be less strict)∑
h

r(h, h1)f(h) subject to∑
h

r(h, h1) = p̄S1(h
1), and r(h, h1) ≤ pH1(h) for all h.

to obtain {r∗(h, h1), µ∗1} and then maximizing the term (while ensuring that these variables and

the optimal variables from the previous step jointly satisfy the required constraints)∑
h

r(h, h2)f(h) subject to∑
h

r(h, h2) = p̄S1(h
2) and r(h, h2) ≤ (1− µ∗1(h, h1))pH1(h) for all h.
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and so on. Easy to see that (assuming the obvious p̄S1(h
1) > pH1(h

1),

r∗(h1, h1) = pH1(h
1)

r∗(h2, h1) = min{(pS(h1)− pH1(h
1)), pH1(h

2)}
...

r∗(hk, h1) = max

{
0,min

{(
pS(h1)−

∑
l<k

pH1(h
l)

)
, pH1(h

k)

}}
...

Further, r∗(h1, h2) = 0

r∗(h2, h2) = min{pS(h2), (1− p∗h,s(h2, h1))pH1(h
2)}

r∗(h3, h2) = min
{
pS(h2)− r∗(h2, h2), (1− p∗h,s(h3, h1))pH1(h

3)
}

...

r∗(hk, h2) = min

{
pS(h2)−

∑
l<k

r∗(hl, h2), (1− p∗h,s(hk, h1))pH1(h
k)

}
.

It is easy to see that r∗(h, s) = µ̄∗1(s | h)pH1(h). �

VIII. PROPORTIONAL FAIRNESS

All the policies mentioned till this point were aiming at achieving maximum throughput at

the BS, i.e. they maximize
∑K

i=1 Um, where Um is the utility of the mobile m. But it is well

known that these policies are only efficient and are not fair (mobiles at a far away point are

starved of the signal).

In [15], Kushner and Whiting studied a stochastic approximation based algorithm that achieves

proportional fairness, i.e., the algorithm asymptotically maximizes,
∑K

m=1 log(Um + dm), where

dm are small positive constants. The PFA algorithm is given by

θFm,k+1 = θFm,k + εk
[
IFm,k+1f(hm,k+1)− θFm,k

]
IFm,k+1 = 1{

m=arg maxj
f(hj,k+1)

dj+θ
F
j,k

}

The SA algorithm proposed in the previous section is robust against noncooperation and

achieves the efficient solution (maximizes the sum utility) for BS. We now illustrate via an
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example that the PFA may be robust to noncooperative behavior, i.e., it may be an ITR policy.

The PFA algorithm in the presence of noncooperative mobiles will be:

θFm,k+1 = θFm,k + εk
[
IFm,k+1f (sm (hm,k+1))− θFm,k

]
with IFm,k+1 = 1{

m=arg maxj
f(sj(hj,k+1))

dj+θ
F
j,k

}. By this, true rates that mobile m actually achieves, is

(in a way similar to our SA algorithm) updated by,

θ̄Fm,k+1 = θ̄Fm,k + εk
[
IFm,k+1f (hm,k+1)− θ̄Fm,k

]
.

In the examples given below we consider two mobiles one of which experiences Ricean

fading while the second experiences Rayleigh fading. The rates of mobile m are given by

f(hm) = log
(

1 + P
√
hm(i)2 + hm(r)2

)
where the real and complex channel gains are Gaussian

distributed, hm(i), hm(r) ∼ N (µm, 1/2) with µ1 = 3/
√

2, µ2 = 0. The mobile m when

noncooperative increases its rate directly using the rule f(sm(hm)) = max{f(hm)+10, rmax,m},

where the maximum rates rmax,1, rmax,2 are set equal to 2.1, 1.6 respectively. The maximum rates

are chosen such that f(hm) ≤ rmax,m with probability very close to 1.

Signaled rates True Rates UBS =

Algo limk→∞ θi,k Ui U1 + U2

Eff :All Coop 1.387, 0.0058 1.378, 0.0059 1.384

PFA:All Coop 0.79, .364 0.79, 0.364 1.154

Eff:Mob 1 Non 1.387, 0.0057 1.316, 0.0052 1.321

PFA:Mob 1 Non 1.168, .363 0.782, 0.363 1.144

Eff:Mob 2 Non 1.387, 0.0061 1.380, 0.0042 1.384

PFA:Mob 2 Non 0.737, 0.837 0.737, 0.315 1.052

TABLE I

COMPARISON OF PFA VERSUS SA ALGORITHM

Remarks : The asymptotic true rate of any mobile is lesser when it is noncooperative and when

the other mobile remains cooperative. This is true in both PFA and our SA algorithm.

It was shown in the previous section that the truth revealing strategy at all the mobiles and

SA algorithm is an (ε) Nash equilibrium for the game when the BS tries to optimize sum utility.

In a similar way simulations indicate that the truth revealing strategy at all mobiles and PFA at

BS is a Nash equilibrium, for similar game as in Section VI with only the BS’s utility changed

to sum of log utilities.
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But this is just a preliminary simulation result. The PFA may be robust against the kind of

noncooperation we considered in this example but may fail in general. In fact, in the example

given below, we will see that PFA fails.

However, the following modification of ’corrective’ SA algorithm can be proved to be robust

against noncooperation while providing a fair solution. This can be proved using ODE theory,

exactly following the steps as in Section VI, with θF0
i being cooperative fair share

θFm,k+1 = θFm,k + εk

(
f̃Fm,k+1I

F
m,k+1 − θFm,k

)
,

f̃Fm,k+1 = fF (sm(hm,k+1))−
(
θFm,k − θF0

m

)
∆, (22)

IFm,k+1 = 1{
m=arg maxj

f(sj(hj,k+1))

dj+θ
F
j,k

}. (23)

We will conclude this section with an example where Kushner et al’s PFA fails against

non-cooperation but our proposed Robust PFA algorithm (23) is indeed robust against non-

cooperation. In this example one of the users has a fixed channel set at 4, while the other users

utility is directly given by 4 + max{z2, 400} where z ∼ N (0, 4) is Gaussian distributed. One

Signaled rates True Rates UBS =

Algo limk→∞ θi,k Ui U1 + U2

Robust PFA :All Coop 2.75, 13.98 2.72, 13.77 16.5

PFA:All Coop 2.75, 13.95 2.75, 13.95 16.7

Efficient :All Coop 0.0023, 19.98 0.006, 19.6 19.56

Robust PFA :Mob 2 Non 2.75, 14.1 2.72, 13.80 16.54

PFA:Mob 2 Non 2.18, 61.64, 2.18,16.28 18.47

TABLE II

COMPARISON OF PFA VERSUS SA ALGORITHM

can see from the last two rows of the table that Mobile 2 was successful in fooling the BS,

when the later uses Kushner et al’s PFA algorithm but not when it uses Robust PFA. In fact,

the non-cooperative mobile 2 increases it’s utility by more than 10%. We can see that because

of this non-cooperation the fairness is lost to a good extent (the total utility is in fact closer to

the efficient sum utility).
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CONCLUDING REMARKS

We studied centralized downlink transmissions in a cellular network in the presence of nonco-

operative mobiles. We modeled this as a signaling game with several players controlling signals

and where the BS serves as follower. In absence of extra intelligence, only babbling equilibrium

is obtained, at which both the BS and the noncooperative players make no use of the signaling

opportunities. We then proposed three approaches to obtain an efficient equilibrium (TRE), both

of which required extra intelligence from the BS but resulted in the mobiles signaling truthfully.

We further showed the existence of other non efficient equilibria at which a noncooperative

mobile achieves a better utility while the BS achieves better utility than that at a babbling

equilibrium but a lower one than that at a TRE.

We see several avenues open for further research on scheduling under noncooperation. We

recall that we assumed that a player is either cooperative or not. What if the player can choose?

Preliminary research show that there is no clear answer: it depends on the channel statistics of

the player as well as that of others. Another related question: what if the BS does not know

whether a mobile cooperates or not?

Finally, it should be clear that our approach is applicable not just to wireless networks, but is

equally applicable to other resource allocation situations as for example in wireline networks.
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APPENDIX

Proof of Theorem 1 : By definition at any PBE, for any i ≤ K1 and for any hi ∈ Hi,

µ∗i (· | hi) ∈ arg max
α∈P(Hi)

∑
si∈Hi

α(si)

∑
s−i

β∗(i | s)
∑
h−i

pH−i(h−i)µ
∗
−i(s−i|h−i)f(hi)

 .
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Since f(hi) is independent of si,h−i, s−i (true for every i),

µ∗i (· | hi) ∈ arg max
α∈P(Hi)

∑
si∈Hi

α(si)

∑
s−i

β∗(i | s)
∑
h−i

pH−i(h−i)µ
∗
−i(s−i|h−i)

 . (24)

This shows that µ∗i (· | hi) = µ∗i (.) for some probability distribution µ∗i on Hi, for all hi and for

all i ≤ K1, i.e., the optimal signaling policy does not depend upon the channel value hi. Note

that µi(·) can depend on i since pHi need not be identical.

With the above for any 1 ≤ i ≤ K1 and for any si ∈ Hi with µ∗i (si) 6= 0 from definition 4.2,

π∗i (hi | si) =
pHi(hi)µ

∗
i (si)∑

h′ pHi(h
′)µ∗i (si)

= pHi(hi).

When µ∗i (si) = 0, the denominator is zero, but we may set π∗i (hi | si) = pHi(hi). This implies

that in equilibrium the posterior beliefs can not be improved.
For any s = (s1, · · · , sK), the first optimization in the definition of PBE can be written as

(with γ any arbitrary probability distribution on {1, · · · , K}),

β∗(· | s) ∈ arg max
γ

K1∑
j=1

∑
hj

pHj (hj)f(hj)γ(j) +
∑
j>K1

f(sj)γ(j)

 .
The above optimization is independent of {si; i ≤ K1} and hence the optimization reduces to

maximizing,
K1∑
j=1

γ(j)E [f(hj)] +
∑
j>K1

γ(j)f(sj).

This justifies the definition of β∗(. | .) in the statement of the theorem.

Since β∗(. | s) = β∗(.|sK1+1, · · · , sK) for all s, the optimization in (24) can be rewritten as,

µ∗i (· | hi) ∈ arg max
α∈P(Hi)

∑
si∈Hi

α(si)

 ∑
sK1+1,··· ,sK

β∗(i | sK1+1, · · · , sK)Πl>K1pHl(sl)

 .
Thus the Theorem follows. �

Proof of Theorem 2: Assume π∗i , for every i, is as in hypothesis. Then,

β∗(.|s) ∈ arg max
γ

[
K∑
k=1

f(sk)γ(k)

]
for all s.

Hence, β∗(i|s) = 1{i=A∗(s)}, i.e. the unit mass at A∗(s) defined in (7 ).

Fix i, hi. With β∗, µ∗−i as in theorem hypothesis,

µ∗i (· | hi) ∈ arg max
α∈P(Hi)

∑
si∈Hi

α(si)

∑
s−i

pH−i(s−i)Ui(hi, si, A
∗(s))

 (25)

March 16, 2009 DRAFT



30

By the choice of {ci} and ψ as in (6), for any α,

∑
si

α(si)

∑
s−i

pH−i(s−i)Ui(hi, si, A
∗(s))

=
∑

{si:(si−hi)2>ci}

α(si)

∑
s−i

pH−i(s−i)Ui(hi, si, A
∗(s))


+
∑

(si−hi)2≤ci

α(si)

∑
s−i

pH−i(s−i)Ui(hi, si, A
∗(s))


≤ α(hi)

∑
s−i

pH−i(s−i)Ui(hi, hi, A
∗(hi, s−i))


≤

∑
s−i

pH−i(s−i)Ui(hi, hi, A
∗(hi, s−i))

 .
Hence maximum in (25) is achieved by the choice of µ∗i given in theorem hypothesis. �

Proof of Theorem 3 : We will be using the stochastic approximation results of Benvensite et al

([7]) to obtain this proof. These results are reproduced in at the end of this Appendix for easier

readability.

Let Gk := hk = (h1,k, h2,k, · · · , hK,k). The equations (8), (11) can be rewritten in the format

of Benveniste et al as,

θk+1 = θk + εkW (Gk, θk),

θ̄k+1 = θ̄k + ε̄kW̄ (Gk, θk, θ̄k)

Wi(Gk, θk) =
(
f̃i,k+1Ii,k+1 − θi,k

)
,

W̄i(Gk, θk, θ̄k) =
(
f̄i,k+1Ii,k+1 − θ̄i,k

)
.

Define
w(θ) := Eh[W (G, θ)] = HS(θ)− θ,

w̄(θ, θ̄) := Eh[W̄ (G, θ, θ̄)] = H̄S(θ)− θ̄.

One can easily show that the above algorithm satisfies the assumptions B.1-4 with Θ = (θ, θ̄),

h = (w, w̄) and

νθ(G) = W (G, θ)− w(θ),

ν̄θ,θ̄(G) = W̄ (G, θ, θ̄)− w̄(θ, θ̄) because of the following,

• The ODE (13) is independent of ODE (14). We use this fact in the proofs.

March 16, 2009 DRAFT



31

• By assumption A.3, Pθ(g, .) = P (g, .) for all θ.

• By Lemma 1 w, w̄ are locally Lipschitz.

• The boundedness of the ODE solution (for any finite time) satisfies assumption (28) of

Appendix B.

Thus the theorem follows by Theorem 5 �

Lemma 1: The function HS(θ) is continuously differentiable and the function H̄S(θ) is

locally Lipschitz, both w.r.t. θ.

Proof : By independence of hi across the mobiles,

HS
i (θ) = Eh

[
f̃Si (hi, θi)I

S
i (h, θ)

]
= Ehi

[
f̃Si (hi, θi)Πj 6=i Pr(Aj(hi, θ))

]
where Aj(hi, θ) :=

{
hj : f(si(hi))− f(sj(hj)) ≥ ∆(θi − θj − θ0

i + θ0
j )
}
.

The first part of the lemma is proved by BCT if we show that the functions {Pr(Aj(hi, θ))}j 6=i
and f̃Si (hi, θi) are continuously differentiable (w.r.t. θ) with uniformly bounded derivatives for

almost all hi. This is immediately evident for f̃Si . The same holds for {Pr(Aj(hi, θ))}j 6=i by

assumptions A.1, A.2 as,

∂ Pr(Aj(hi, θ))

∂θl
= (−1)δ(l=i)gsj

(
f−1

(
f(si(hi))−∆(θi − θj − θ0

i + θ0
j

))
f−1′ (f(si(hi))−∆

(
θi − θj − θ0

i + θ0
j

))
∆ (26)

for l = i, j, where gsj is the (bounded) density of signal sj(hj). Note in the above that the

continuous derivative f−1′ will also be uniformly bounded for all θ coming from a compact set,

because of boundedness of f .

Easy to see that f̄Si (hi, θi) − f̄Si (hi, θ
′
i) ≤ ∆ |θ − θ′|. Hence, with Cf representing the upper

bound on function f ,

H̄S(θ)− H̄S(θ′) = Eh

[(
f̄Si (hi, θi)− f̄Si (hi, θ

′
i)
)
ISi (h, θ)

]
+Eh

[
f̄Si (hi, θ

′
i)
(
ISi (h, θ)− ISi (h, θ′)

)]
≤ ∆|θi − θ′i|Eh

[
ISi (h, θ)

]
+ CfEh

∣∣ISi (h, θ)− ISi (h, θ′)
∣∣ .

Let D be any compact set. Let CgS represent the common upper bound on density gsi for all i,

Cf−1(D) represent the upper bound (which is independent of h) on f−1′ for all θ ∈ D. Then,
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from (26), for appropriate constant C(K),

Eh

∣∣ISi (h, θ)− ISi (h, θ′)
∣∣ ≤ C(K)CgSCf−1(D)∆ |θ − θ′|

and hence H̄S(θ) is locally Lipschitz. �

Benveniste et al’s ODE approximation result

In [7] (Theorem 9, p.232), Benveniste et al obtained the ODE approximation for the system,

Θk+1 = Θk + µkH(Θk, Gk+1). (27)

We reproduce the result here in a form which is suitable for this paper.

Let Θ take values in an open subset D of Rm. We make the following assumptions:

B.0 {µk} is a decreasing sequence with
∑

k µk =∞ and
∑

k µ
1+δ
k <∞ for some δ > 0.

B.1 There exists a family {Pθ} of transition probabilities Pθ(g,A) such that, for any Borel set

A,

P [Gn+1 ∈ A|Fn] = PΘn(Gn,A) where Fk
4
=σ(Θ0, G0, G1, · · · , Gk).

Thus {(Gk,Θk} forms a Markov chain.

B.2 For any compact Q ⊂ D, there exist C1, q1 such that |H(θ, g)| ≤ C1(1+ |g|q1) for all θ ∈ D.

B.3 There exists a function h on D, and for each θ ∈ D a function νθ(.) such that

a) h is locally Lipschitz on D.

b) (I − Pθ)νθ(g) = H(θ, g)− h(θ) where Pθνθ(g) = E[νθ(G1)|G0 = g,Θ0 = θ0].

c) For all compact subsets Q of D, there exist constants C3, C4, q3, q4 and λ ∈ [0.5, 1], such

that for all θ, θ′ ∈ Q

i) |νθ(g)| ≤ C3(1 + |g|q3),

ii) |Pθνθ(g)− Pθ′νθ′ (g)| ≤ C4 (1 + |g|q4)
∣∣(θ)− (θ

′
)
∣∣λ.

B.4 For any compact set Q in D and for any q > 0, there exists a µq(Q) < ∞, such that for

all n, g, (θ) ∈ Rd (with Eg,θ representing the expectation taken with G0,Θ0 = g, θ),

Eg,θ {I((Θk) ∈ Q, k ≤ n) (1 + |Gn+1|q)} ≤ µq(Q) (1 + |g|q) .

Define t(r) :=
∑r

k=0 µk, m(n, T ) := maxr≥n{t(r) − t(n) ≤ T}. Let Θ(t, t0, θ) represent a

solution of
�

Θ (t) = h(Θ(t)),
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with initial condition Θ(t0) = θ. Let Q1 and Q2 be any two compact subsets, such that Q1 ⊂ Q2

and we can choose a T > 0 such that there exists an δ0 > 0 satisfying

d (Θ(t, 0, θ), Qc
2) ≥ δ0, (28)

for all θ ∈ Q1 and all t, 0 ≤ t ≤ T.

Theorem 5: Assume B.0–B.4. Furthermore, pick Q1, Q2, T and δ0 satisfying (28). Then for

all δ ≤ δ0, for any (θ, g) and when (Gn,Θn) is initialized with (g, θ),

Pn:g,θ

{
sup

{n≤r≤m(n,T )}
|Θr −Θ (t(r), t(n), θ)| ≥ δ

}
→ 0

as n→∞ uniformly for all θ ∈ Q1. In the above, Pn:g,θ denotes distribution of (Gn + k,Θn+k)

with Gn = g,Θn = θ.
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