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Abstract—We study in this paper a noncooperative approach
for sharing resources of a common pool among users, wherein
each user strives to maximize its own utility. The optimality
notion is then a Nash equilibrium. First, we present a general
framework of systems wherein a Nash equilibrium is Pareto
inefficient, which are similar to the ‘tragedy of the commons’
in economics. As examples that fit in the above framework, we
consider noncooperative flow-control problems in communication
networks where each user decides its throughput to optimize its
own utility. As such a utility, we first consider the power which
is defined as the throughput divided by the expected end-to-end
packet delay, and then consider another utility of additive costs.
For both utilities, we establish the non-efficiency of the Nash
equilibria.

Index Terms—Braess paradox, common-pool resource, com-
munication networks, flow control, Nash equilibrium, noncoop-
erative game, Pareto inefficiency, power criterion, tragedy of the
commons.

I. Introduction

There exist many systems where multiple independent users,
or players, may strive to optimize each own utility unilaterally,
which can be modeled as noncooperative games. As examples
of the noncooperative games, communication networks like
the Internet are joined by a number of independent users or
organizations, like Internet service providers, that make deci-
sions independently. Given users’ decisions, the utilities of all
users are determined. We call a situation where the decisions
of all users are determined an allocation. The allocation where
each user attains its own optimum coincidently is a Nash
equilibrium. It is natural that these independent users seek their
own benefits or utilities noncooperatively. Thus, such systems
are regarded as noncooperative games.

Nash equilibria may be Pareto inefficient (or, simply, inef-
ficient), that is, there may exist another allocation of a system
where no users have less benefits and some have more benefits
than in the Nash equilibrium of the system. In particular, we
call an allocation of a system strongly Pareto inefficient if all
users have more benefits in another allocation. Dubey [1] has
shown that Nash equilibria may generally be Pareto inefficient
based on the difference between the conditions to be satisfied
by Nash equilibria and those to be satisfied by Pareto optima.
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It appears, however, to be difficult to obtain concrete cases of
inefficient Nash equilibria from his result.

For communication and transportation networks, examples
of such strong Pareto inefficiency have been shown with
respect to noncooperative routing, first by Braess [2], and a
number of related studies followed [3]–[10]. As for the nonco-
operative load balancing in distributed computer systems, the
existence of paradoxes that are similar to that of Braess but that
appear only in the case of a finite number of (atomic) players
and not in the case of infinitesimal (nonatomic) players, in the
same environment, has been shown [11], [12].

It is natural to think of noncooperative flow control and of
the Nash equilibrium concept therein. It appears, however, that
few studies have addressed the issue of Pareto inefficiency of
Nash equilibria in noncooperative flow control. This article
examines mainly this issue as examples. In addition, we note
that the Nash equilibrium concept has been discussed with
respect to the power control in wireless communications [13]–
[15]. These kinds of problems are regarded as those in which
players compete for common-pool resources. The examples
of such problems as considered here have been studied in
social science under the name, ‘Tragedy of the Commons’
(see, Hardin [16], Roemer [17], Roemer and Silvester [18],
Funaki and Yamamoto [19], etc.).

This article first shows a fairly general framework of
strongly Pareto-inefficient Nash equilibria. The framework
may cover many examples of noncooperative games including
noncooperative flow-control problems, noncooperative power-
control problems in wireless networks, and a general problem
named, the ‘tragedy of commons’ in social science as men-
tioned above. Therefore, the framework characterizes a class of
noncooperative games that may be spread over various fields
but may have a mutually similar structure.

As an example of the general framework, this article con-
siders flow-control problems for communication networks with
multiple ports of entry and of exit, where each user decides
its throughput, that is, the rate of its packets to inject into
a network so as to optimize its own performance objective
unilaterally. As such an objective, we firstly consider the power
that is defined as the throughput divided by the expected
delay (the expected delay is the expected time for a packet
to pass through the network) [20]. This unilaterally optimized
allocation is a Nash equilibrium, the existence of which is
proved here. We show that the Nash equilibrium is always
strongly Pareto inefficient, and we identify an allocation that is
Pareto superior to it. (We note that Korilis and Lazar showed
the existence of Nash equilibria for networks consisting of
state-dependent servers with one pair of ports of entry and
exit where each user optimizes noncooperatively its throughput
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within its response time constraint; they did not mention inef-
ficiency [21]. We note, in passing, that Mazumdar et al. [22]
discussed cooperative flow control with the power criterion
for optimization; they considered the Nash arbitration scheme
in Jackson networks extensively, but mentioned briefly the
Pareto inefficiency of the Nash equilibrium without showing
its existence.)

Furthermore, for a subcategory of the noncooperative net-
works, we show that the degree of superiority [23] of a Pareto
optimum to the Nash equilibrium increases as the number
of users increases. Moreover, we present another flow-control
setting with additive costs (instead of the power criterion) as
another example of the general framework of strongly Pareto-
inefficient Nash equilibria.

Organization of this paper

The rest of this paper is organized as follows. Section II
discusses a general framework of strongly Pareto-inefficient
Nash equilibria. Section III discusses flow-control problems
as examples of the properties shown in the above section.
Subsections III-B, and also III-C, show that the Nash equilib-
rium of noncooperative flow-control on the network considered
is always strongly Pareto inefficient. In Subsection III-B, we
present inefficiency results on Nash equilibria for the flow
control with power criterion. Subsection III-B1 shows more
detailed estimates on the inefficient Nash equilibrium for
a subcategory of the networks. Subsection III-B2 presents
a simple example of the subcategory of the networks. In
Subsection III-C, we present inefficiency results for the flow
control with additive costs. Section IV concludes this article.
The Appendix A presents a proof of the existence of a Nash
equilibrium for each noncooperative flow control presented in
Subsections III-B and III-C.

II. A General Framework of Pareto-inefficient Nash
Equilibria

Consider a noncooperative game that has n players where
every player i (i = 1, 2, . . . , n) decides the value of λi ≥ 0,
that is, the strategy space of every player consists of nonnega-
tive real numbers. Denote the set {1, 2, . . . , n} by n. Thus, the
strategy profile is presented by a vector, λ = (λ1, λ2, . . . , λn).
Let Ui(λ) denote the utility that player i strives to maxi-
mize. Let L be the product of the strategy spaces, that is,
L = {λ | λi ≥ 0, i ∈ n}. Denote by C (⊂ L) the set of feasible
values of λ. The definition of feasibility may depend on the
system concerned. For example, for a stochastic system, such
λ for which the system is stable (for example, has a unique
stationary regime) is feasible. C may have boundaries.

[Nash equilibrium] A strategy profile λ̃ ∈ C is a Nash
equilibrium (NE) if no unilateral deviation in strategy by any
single player is profitable, that is, for all i ∈ n and for any λi s.t.
(λi, λ̃(−i)) ∈ C, Ui(λ̃i, λ̃(−i)) ≥ Ui(λi, λ̃(−i)), where λ(−i) denotes
the (n−1)-vector resulting from λ with the ith element λi being
removed. We assume that a Nash equilibrium exists in C. �

[Pareto inefficiency] In the case where ∀i,Ui(λ̄) ≥ Ui(λ̂) and
∃i,Ui(λ̄) > Ui(λ̂), λ̄ is Pareto superior to λ̂ and λ̂ is Pareto
inferior to λ̄. In the case where there exists λ ∈ C s.t. λ is

Pareto superior to λ̂, λ̂ is Pareto inefficient. In the case where
∀i,Ui(λ̄) > Ui(λ̂), we say that λ̄ is strongly Pareto superior to
λ̂ and that λ̂ is strongly Pareto inferior to λ̄. In the case where
there exists λ ∈ C s.t. λ is strongly Pareto superior to λ̂, we
say that λ̂ is strongly Pareto inefficient. �

Let λ̃ (∈ C) denote a strategy profile that presents a Nash
equilibrium. Denote the set {i | λ̃i is not a boundary value
of C} by ñ. Denote a neighborhood of λ by V(λ) (⊂ C). We
introduce the following assumptions on a Nash equilibrium λ̃:

Assumption Ψ1. For a Nash equilibrium λ̃, the partial deriva-
tives of Ui(λ) for all i ∈ n with respect to all λ j, j ∈ ñ, exist
and are continuous in λ ∈ V(λ̃), and either of the following
two cases holds:
1) For all i ∈ n, the utility, Ui, of player i is decreasing in λ j,
for all j ∈ ñ, j , i, that is,

∂Ui

∂λ j

∣∣∣∣∣
λ=λ̃
< 0, for all j ∈ ñ ( j , i).

2) For all i ∈ n, the utility, Ui, of player i is increasing in λ j,
for all j ∈ ñ, j , i, that is,

∂Ui

∂λ j

∣∣∣∣∣
λ=λ̃
> 0, for all j ∈ ñ ( j , i).

Assumption Ψ2. For a Nash equilibrium λ̃, more than one
element of λ̃ is not a boundary value, but is an interior value.
Then, ñ has more than one element, i.e., |ñ| ≥ 2. That is, the
strategies λ̃i of at least two users are of interior values.

From the definition of ñ,

∂Ui

∂λi

∣∣∣∣∣
λ=λ̃
= 0 for i ∈ ñ. (1)

Theorem 1: If Assumptions Ψ1 and Ψ2 hold for a Nash
equilibrium in C, it is strongly Pareto inefficient.

Proof: Consider reducing the values of all elements λi,
i ∈ ñ, of λ from λ̃i coincidently. Let δ > 0 be a small positive
value. Let δi = δ for i ∈ ñ and δi = 0 for i < ñ. Denote the
vector (λ̃1 − δ1, λ̃2 − δ2, . . . , λ̃n − δn) by λ̃ − δ.

Then, we have for i ∈ n,

Ui(λ̃ − δ) = Ui(λ̃) −
∂Ui

∂λi

∣∣∣∣∣
λ=λ̃
δ −

∑
q,i,q∈ñ

∂Ui

∂λq

∣∣∣∣∣
λ=λ̃
δ + o(δ), i ∈ ñ,

(2)

Ui(λ̃ − δ) = Ui(λ̃) −
∑
q∈ñ

∂Ui

∂λq

∣∣∣∣∣
λ=λ̃
δ + o(δ), i < ñ. (3)

by noting that δ j = 0, j < ñ (since λ̃ j, j < ñ, is on a boundary).
Note that o(δ)/δ→ 0 as δ→ 0.

Consider the case 1) of Assumption Ψ1. Note, in the case

of eq. (2), for all i ∈ ñ, that
∂Ui

∂λi

∣∣∣∣∣
λ=λ̃
= 0 (since λ̃ is a Nash

equilibrium) by Assumption Ψ2 (eq. (1)). Note, furthermore,

in the cases of eqs. (2) and (3), that the coefficient
∂Ui

∂λq

∣∣∣∣∣
λ=λ̃
< 0

for all q ∈ ñ (q , i) by Assumption Ψ1. Therefore, Ui(λ̃−δ) >
Ui(λ̃) for all i, since δi = δ > 0 for all i ∈ ñ. This implies that
there exists a value of λ (= λ̃− δ , λ̃) such that Ui(λ) > Ui(λ̃)
for all i ∈ n.
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Similarly for the case 2) of Assumption Ψ1. �

Remark 1: We note that even user i who has a boundary
value of λ̃i can increase its utility Ui due to the change of λi,
i ∈ ñ.

Note furthermore the case where ñ has only one element
i (that is, Assumption Ψ2 is violated). Then, from (2),
Ui(λ̃ − δ) = Ui(λ̃) + o(δ) for i ∈ ñ, and we cannot simply see
whether Ui increases or decreases as λ moves from λ̃ (only
by investigating the first-order derivatives). We thus see that
Assumption Ψ2 (|ñ| ≥ 2) supports Theorem 1 in a simple way.
�

Remark 2: Here we mention a few among vastly many
examples that fit in the general framework given in this section.
Alpcan et al. [24] showed the existence of a Nash equilibrium
for their system. Similar models of the power control in
wireless communications can be found [13], [15], [25], [26].
Then, we may apply Theorem 1 to these examples, and may
show that a Nash equilibrium of them is Pareto inefficient.

As some concrete examples that fit in the general framework
mentioned above, in the following section III, we present
some results on flow control in BCMP-type networks [27],
where the utility of each use is (1) power criterion (Subsection
III-B) in some details or (2) criterion based on additive costs
(Subsection III-C) briefly. �

III. Flow Control in Networks

We examine some flow control problems in networks that
fit in the above mentioned general framework given in Section
II.

A. Assumptions on Networks

Consider a communication network modeled by an open
product-form network of m state-independent queues, k =
1, 2, . . . ,m (that model communication links, or, simply, links)
[27]. Denote the set {1, 2, . . . ,m} by m. The vertices or nodes
connected by links model the routers of the communication
network. There are n independent users, 1, 2, . . . , n as before.
User i decides the rate λi of packets to pass through a
communication network so that the utility, Ui, of the user i
may be maximal. Denote the vector (λ1, λ2, . . . , λn) by λ. Ti is
the expected end-to-end delay of the packets in control of user
i. Note, in the following, that the domain of index variables
i, j, and r is n and that of l and k is m.
µik is the state-independent service rate of user-i packets at

link k. In this article, it is assumed that each router (or, node)
has a sufficient capacity of storing packets, and, thus, losses of
packets may not occur. qik is the resulting visit rate of user-i
packets to link k. That is, qik, for all i, k, is the solution of the
following system of equations:

qik = pi
0k +
∑

l

qil pi
lk for all i, k, (4)

where pi
lk and pi

0k, respectively, are the probabilities that a
user-i packet goes to link k after leaving link l and when it
enters the network, and are fixed and not subject to optimal
control (we are concerned only with optimal flow control and

not with optimal routing in this paper). Then, if user i injects
the rate λi of packets into the network, user-i packets visit link
k at the rate of qikλi. User i injects the rate, pi

0kλi, of packets
into link k from the outside of the network. User-i packets
departing from link k leave the network at the frequency (or,
probability) qi

k0. That is, the network has multiple ports of
entry and of exit. Consider the case where the mean response
time, T (k)

i , for a user-i packet to pass through link k, is

T (k)
i = µ

−1
ik T (k) and T (k) =

1
1 − sl

∑
r qrkλr/µrk

, (5)

if 1 − sl

∑
r

qrkλr/µrk > 0, otherwise infinite,

where sl is 1 for a link modeled by a single-server, 1/h for a
link consisting of h parallel channels each of which is chosen
with probability 1/h and is modeled by a single server, and 0
for a link modeled by an infinite server, for 1−sl

∑
r qrkλr/µrk >

0 [27]. Denote k = {l|sl , 0}. Then, using the Little’s result,

Ti(λ) =
∑
l∈k

Qil

1 − sl
∑

r Qrlλr
+
∑

l∈m−k

Qil, (6)

if 1 − sl

∑
r

Qrlλr > 0 for all l, otherwise infinite,

where Qil =
qil

µil
.

Clearly, Ti(λ) is increasing in λ. We note that
∑

l∈m−k Qil is
constant and independent of the strategy. In order that the
statistical equilibrium of this network be attained, it must hold
that λ ∈ C, where the feasible region C is

C = (λ | λi ≥ 0, i ∈ n, and 1 − sl

∑
r

Qrlλr > 0, l ∈ k). (7)

Furthermore, define regions C̄ and Ĉ such that

C̄ = (λ | λi > 0, i ∈ n, and 1 − sl

∑
r

Qplλr > 0, l ∈ k), (8)

Ĉ = (λ | λi ≥ 0, i ∈ n, and 1 − sl

∑
r

Qrlλr ≥ 0, l ∈ k). (9)

Note that Ĉ is a closed and bounded subset of λ. Ĉ − C̄
comprises the boundary consisting of n + k hyperplanes each
with (n − 1)-dimensions, n from λi = 0, i ∈ n, and k from
1 − sl

∑
r Qrlλr = 0, l ∈ k. We call the part of the boundary

consisting of λi = 0, the (i − 0) policy boundary, and the part
of boundary which is not any of (i−0) policy boundary, i ∈ n,
the capacity boundary. We also define for convenience,

Ail = 1 − sl

∑
r,i

Qrlλr. (10)

a) Utility of each user: Each of network users (user-i)
has two important major concerns in choosing the protocol to
use: one is the amount of packets user-i can send per unit time
(throughput), denoted by λi, and the other is the expected time
of each packet taken from its origin to its destination (mean
response time), denoted by Ti. As the utility of each user-i,
we need to consider one scalar value taking account of the
above both λi and Ti. That is, in general we are interested
in criteria that will allow us to represent preference to high
throughput and to low delay. Both the additive criterion as well
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as the power criterion fall into this category. More generally,
since the Nash equilibrium is unchanged if we replace the
utility by the logarithm of the utility, the power criterion can
be transformed (using the logarithm) into an additive criterion:
the logarithm utility is the sum of the difference between the
log of the throughput and the log of the delay.

In this paper, as such utilities as above, we examine, in
particular, the power criterion as in Subsection III-B and the
criterion based on some additive costs as in Subsection III-C.
We cannot afford to go into the detailed discussion of protocols
(see, for example, [28]).

B. Noncooperative Flow Control with Power Criterion

The simplest reasonable utility of user-i that consists of λi

and Ti looks to be the power criterion as defined as follows:
The power is defined as Pi = λi/Ti for user-i. The power
criterion has been widely used [20]–[22], [29]–[35]. Although
we found some criticism of this criterion in [36], we also found
many arguments for using it [32], [35]. We shall add to it
another interpretation of this criterion as follows. Assume that
each flow that is controlled by one user is the aggregation of
several mini flows, some belonging to applications that wish
to minimize the delay (that is, maximize the inverse of the
delay) as their utilities and others that wish to maximize the
throughput as their utilities. Suppose that we wish to have
one utility of the user that would represent some fair tradeoff
between the two distinct utilities. Then, if we adopt a concept
that embodies the spirit of the proportional fairness concept
(or equivalently, the Nash bargaining solution concept (see,
for example, [37])) for the fair tradeoff among the utilities
with respect to the user, then the utility of the user we obtain
is precisely the power.

In this subsection, we consider the case where the utility,
Ui, of user i is its power, Pi, i.e., Ui = Pi for all i. Denote the
vector (P1, P2, . . . , Pn) by P. From (6), Pi(λ) is defined for all
λ ∈ L, and Pi(λ) = 0 for λ ∈ L − C̄ and i ∈ n. From (6) and
the definition Pi = λi/Ti, we see that P(λ) is continuous in
λ. By noting that, for λ ∈ L − Ĉ, Pi(λ) = 0 for all i, the set
π of all possible values of P(λ) is given by λ ∈ Ĉ. Since Ĉ
is closed and bounded and P(λ) is continuous in λ, π is also
closed and bounded. The existence of a Nash equilibrium flow
control will be shown later by Theorem 2.

b) Power maximization by each user:
Lemma 1: Given λ j, for all j , i, the value λ̌i of λi that

maximizes Pi(λ) is uniquely given for all i such that

0 < λ̌i < min
l
{Ail/(slQil)}}. (11)

Proof: From (6), for λi > 0 and 1 − sl
∑

r Qrlλr =

1 − Ail − slQilλi > 0 for all l, we have the following, for i ∈ n:

P−1
i (λ) =

Ti(λ)
λi
=
∑
l∈k

Qil

λi(1 − sl
∑

r Qrlλr)
+

1
λi

∑
l∈m−k

Qil (12)

=
∑
l∈k

( 1
λi
+

slQil

1 − sl
∑

r Qrlλr

) Qil

1 − sl
∑

r,i Qrlλr
+

1
λi

∑
l∈m−k

Qil.

(13)

λ10 User-1 strategy

strategy

User-2

λ2

Fig. 1. A Nash equilibrium allocation

The partial differential coefficients of P−1
i are the following,

for i ∈ n:
∂

∂λi
P−1

i = −
1
λ2

i

(∑
l∈k

Qil

1 − sl
∑

r,i Qrlλr
+
∑

l∈m−k

Qil

)
+
∑
l∈k

s2
l Q3

il

(1 − sl
∑

r,i Qrlλr)(1 − sl
∑

r Qrlλr)2

= − 1
λ2

i

(∑
l∈k

Qil

Ail
+
∑

l∈m−k

Qil

)
+
∑
l∈k

s2
l Q3

il

Ail(Ail − slQilλi)2 . (14)

(14) is derived from (13). Note that Ail and Qil are independent
of λi, as seen from rel. (6) and def. (10). Also note that, for
sufficiently small λi > 0, the extreme right-hand side of (14) is
negative whereas for sufficiently large λi s.t. Ail − slQilλi > 0,
l ∈ k, it is positive. Furthermore, note that the λi’s in the
extreme right-hand side of eq. (14) are in the denominators and
have negative signs in front of them. Then, it can be easily seen
that, since both the first and second terms of the extreme right-
hand side of (14) are increasing in λi for 0 < λi < Ail/slQil,
l ∈ k, given λ j, for all j , i, there is a unique value, λ̌i, of
λi that makes (14) to be zero and, thus, maximizes the power
Pi, given λ j for all j , i. That is, from (14), for λ̌i such that
(11) holds,∑

l∈k

Qil

Ail
+
∑

l∈m−k

Qil =
∑
l∈k

Qil

Ail

( Ail

slQilλ̌i
− 1
)−2
, (15)

It is evident that such a value of λ̌i is unique and satisfies
the conditions that λ̌i > 0 and Ail− slQilλ̌i = 1− sl

∑
r,i Qrlλr −

slQilλ̌i > 0 for all l. Since, for such λi as does not satisfy the
conditions, from (6) and from the definition of the power of
user-i (Pi = λi/Ti)), Pi = 0, then such λi as does not satisfy
the conditions will not be chosen by any user-i.

c) Nash equlibrium of the power flow control: Denote
by λ(−i) an (n − 1)-dimensional vector that has elements,
λr, r ∈ n − {i}, of λ. Denote by λ̌i(λ(−i)) the value of λi

that maximizes Pi given the values of the other λ j for all
j , i. Clearly, the value of λ̃ = (λ̃1, λ̃2, . . . , λ̃n) that satisfies
λ̃i = λ̌i(λ̃(−i)) for all i is a Nash equilibrium. From (15), we
see that λ̃ is not on any boundary of C. That is, ñ = n where
ñ is defined before Assumption Ψ1. Denote by 0 a vector for
which all the elements have the value, zero. We can see that
{(λ̌i(λ(−i)), λ(−i)) | λ ∈ C}, comprises an (n − 1)-dimensional
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hypersurface that connects the allocation (λ̌(0(−i)), 0(−i)) and
(n−2)-dimensional hypersurface that is the intersection of the
(i − 0) policy boundary and the capacity boundary. In total,
there exist n of these (n − 1)-dimensional hypersurfaces, one
for each i (∈ n), and the intersection of all these hypersurfaces
will be one (and possibly only one) allocation, which is a
Nash equilibrium. Fig. 1 illustrates a case where n = 2 and
k = 3. The solid lines show the boundary. The dashed curve
consists of the allocations (λ̌1, λ2) where each λ̌1 is the strategy
optimal to user 1, given the strategy of user 2, λ2. The dotted
curve consists of the allocations (λ1, λ̌2) where each λ̌2 is the
strategy optimal to user 2, given the strategy of user 1, λ1.
The intersection of the dashed and dotted curves shows a Nash
equilibrium allocation.

A proof of the existence of a Nash equilibrium, λ̃ ∈ C, can
be shown based on the Kakutani fixed-point theorem [38].

Theorem 2: There exists a Nash equilibrium flow control
solution, λ̃ ∈ C, for this network.

Proof: See Appendix A. �

Corollary 1: Nash equilibria for flow control where each
user optimizes its power are always strongly Pareto inefficient.

Proof: Note that, from (12), by noting Ui = 1/P−1
i , we

have

∂Ui

∂λ j
= −(Pi)2 ∂P

−1
i

∂λ j
= −(Pi)2

∑
l∈k

{ slQilQql

λi(1 − sl
∑

r Qrlλr)2

}
< 0,

(16)
i, j ∈ n ( j , i).

Then,
∂Ui

∂λ j

∣∣∣∣∣
λ=λ̃
< 0 for all i, j ∈ n ( j , i). Note, furthermore,

that
∂Ui

∂λi

∣∣∣∣∣
λ=λ̃
= 0 for all i ∈ n (since λ̃ is a Nash equilibrium).

Thus, we see that Assumptions Ψ1 [Case 1)] and Ψ2 hold since
ñ = n. Therefore, from Theorem 1 follows this property. �

Remark 3: It is to be noted that the powers of all users
improve by reducing the throughputs, λ, of all users from the
Nash equilibrium coincidently (similarly as in the proof of
Theorem 1). �

1) More Concrete Results on the Flow Control in a Sub-
category of the Networks: We consider a subcategory of the
networks that satisfy the following assumption.

Assumption Π1 Given λ, Ti, i ∈ n, is given by a function D(ρ)
with a parameter µi(> 0), i ∈ n, as follows:

Ti(λ) =
1
µi

D(ρ), where ρ =
∑

r

ρr, and ρi =
λi

µi
. (17)

D(ρ), defined for ρ ≥ 0, satisfies the following: D(0) = ∆
(where ∆ is a positive constant), D(ρ) is increasing, and
log D(ρ) is convex.

Assumption Π1 is satisfied, for example, by the following
network. Consider, in particular, the case where qik/µik (=
Qik) = γk/µi for some γk, for all i, k. This can be satisfied,
for example, when there exists δik such that µik = δikµi and
qik = δikγk, for all i, k. In this case, the ratio of the mean
response time of a user-i packet to pass through link k to that

of a user- j packet is µ j/µi (the same for all k) for all i, j, k.
For example, the service rate µi of each node may be distinct
among users i ∈ n but is the same for all nodes k ∈ m with
respect to each user i, whereas the visit rate γk at each node
may be distinct among nodes k ∈ m but is the same for all
users i ∈ n with respect to each node.

Define ρi = λi/µi and ρ =
∑

r ρr. Then, from the relations
(4), (5), and (6) on the networks given in Subsection III-A,
we have

Ti =
1
µi

D(ρ), D(ρ) =
∑
l∈k

γl

1 − slγlρ
+
∑

l∈m−k

γl. (18)

From the above, we have

Proposition 1: For D(ρ) given by (18) and 0 ≤ ρ <
minl∈k{1/(slγl)}, log D(ρ) is increasing and convex in ρ.

Proof: From (18) and the following Lemma 2, follows
this proposition. �

Lemma 2: For D(ρ) given by (18) and 0 ≤ ρ <
mink{1/(skγk)}, D(ρ)/D′(ρ) is decreasing in ρ.

Proof: Note that

D′(ρ) =
∑
l∈k

sl

(
γl

1 − slγlρ

)2
. (19)

Without losing generality, l = 1, 2, . . . ,m, can be renumbered
such that s1γ1 = minl∈k{slγl}. Then,

D(ρ) =
∑
l∈k

(
γl

1 − slγlρ

)2 1 − slγlρ

γl
+
∑

l∈m−k

γl

=
1 − s1γ1ρ

s1γ1

∑
l∈k

sl

(
γl

1 − slγlρ

)2
+
∑

l∈k,l,1

sl

(
γl

1 − slγlρ

)2( 1
slγl
− 1

s1γ1

)
+
∑

l∈m−k

γl.

Therefore,

D(ρ)
D′(ρ)

=

∑
l∈k

(
γl

1 − slγlρ

)2 1 − slγlρ

γl
+
∑

l∈m−k

γl

∑
l∈k

sl

(
γl

1 − slγlρ

)2

=
1 − s1γ1ρ

s1γ1
+

∑
l∈k,l,1

sl

(
γl

1 − slγlρ

)2( 1
slγl
− 1

s1γ1

)
+
∑

l∈m−k

γl

∑
l

sl

(
γl

1 − slγlρ

)2 .

Thus, by noting that s1γ1 ≤ skγk for all k, we see that
D(ρ)/D′(ρ) is decreasing in ρ. �

From Assumption Π1,

Pi =
λi

Ti
=
λiµi

D(ρ)
=
µ2

i ρi

D(ρ)
. (20)
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a) Noncooperative flow control: From (20)

∂

∂ρi
(log Pi) =

1
ρi
− D′(ρ)

D(ρ)
, for ρi > 0. (21)

Thus, the set of the values ρ̃i of ρi s.t. ρ̃i = D(ρ̃)/D′(ρ̃), for
all i, presents a Nash equilibrium, where

ρ̃ =
nD(ρ̃)
D′(ρ̃)

. (22)

Then, the noncooperative optimum flow for user i is λ̃i = µiρ̃i.

b) Cooperative flow control: Consider an overall mea-
sure, O =

∑
i µ
−2
i Pi. We note that the solution that optimizes

the measure is Pareto optimal. It may not be so called social
optimal. From (20),

O =
∑

i

µ−2
i Pi =

ρ

D(ρ)
, (23)

∂

∂ρ
(log O) =

1
ρ
− D′(ρ)

D(ρ)
, for ρ > 0. (24)

Then, an overall optimum for this overall measure O is given
by such a value ρ̂ of ρ that

ρ̂ =
D(ρ̂)
D′(ρ̂)

. (25)

There are distinct sets of flows for users that results in ρ̂ and
achieves this overall optimum. One set of flows for users that
gives the above overall optimum is given by λi = µiρ̂/n and
ρ̂i = ρ̂/n, i ∈ n. Thus, the set of flows for users λi = µiρ̂/n is
a Pareto-optimal flow control.

c) Comparison of noncooperative vs. cooperative flow
controls: Denote by P̃i and P̂i the powers of user i in the
noncooperative and the above-mentioned overall optimal flow-
control solutions, respectively. The following property holds in
the setting of the model.

Theorem 3: There exists a unique Nash equilibrium of
noncooperative flow control, and it is always strongly Pareto
inferior to the overall optimum defined above, that is, for all
i, P̃i < P̂i. The power of each user in an overall optimum is
proportionate to that in the Nash equilibrium, that is, P̂i = KP̃i,
for some constant K > 1, for all i.

Proof: Since log D(ρ) is convex and increasing by As-
sumption Π1, D′(ρ)/D(ρ) is nondecreasing in ρ. Note also
that D′(ρ)/D(ρ) > 0 for ρ ≥ 0, from the assumption Π1. Thus,
D(ρ)/D′(ρ) > 0 is nonincreasing in ρ ≥ 0. From (22) and (25),
respectively, follows that there exist unique ρ̃ and ρ̂. Clearly,
from (22) and (25), ρ̃ > ρ̂, and ρ̃, and thus ρ̃/ρ̂, increases as
n increases. P̃i = µ

2
i /D

′(ρ̃) and P̂i = µ
2
i /D

′(ρ̂). Then, for all i,

P̂i = KP̃i, K =
D′(ρ̃)
D′(ρ̂)

> 1. � (26)

d) Nash proportionate Pareto optimum flow control:
We call the above-mentioned overall optimum the ‘Nash
proportionate’ Pareto optimum to the Nash equilibrium.

Consider the following measure of Pareto superiority [23].
Denote by Ua

i (> 0) the utility of user i of an allocation a of a
system. Assume that the utilities of all users in question have a
positive value. Consider that there are two allocations a and b

corresponding to two different values of λ. Denote κi = Ua
i /U

b
i .

If mini κi > 1, we can say that a is strongly Pareto superior
to b. If mini κi = 1, a is Pareto indifferent or Pareto superior
to b. If mini κi < 1, a is Pareto indifferent or Pareto inferior
to b. Then, we use κ = mini κi as a measure of strong Pareto
superiority. Thus, K defined above by (26) is regarded as the
degree of Pareto superiority of the Pareto-optimal flow control
over the Nash equilibrium.

From (22) and Lemma 2, as n increases, ρ̃, and, thus, D′(ρ̃)
increases, while ρ̂ and, thus, D′(ρ̂) remains the same, as seen
from (25). Thus, K increases as n increases, which means the
following.

Proposition 2: The degree of Pareto superiority of the Nash
proportionate Pareto-optimal flow control over the Nash equi-
librium of noncooperative flow control increases as the number
of independent users increases.

2) A Special Case: Series-Parallel Channels: Consider the
case where the network consists of σ parallel paths each of
which is composed of a series of χ identical links, that is, the
network composes series-parallel queues. A random choice
of a path is made by each user for each packet with an equal
probability 1/σ where choices are made independently of past
choices.

D(ρ) =
χ

1 − ρ/σ. (27)

Clearly, the D(ρ) given by (27) satisfies the assumption Π1.
Then, from (27), D/D′ = σ − ρ. Then, for the noncooperative
optimal flow control,

ρ̃ = σn/(n + 1), ρ̃i = σ/(n + 1).

Therefore, P̃i = µ
2
i σ/{(n + 1)2χ}.

For the Nash-proportionately-fair Pareto-optimal flow control,

ρ̂ = σ/2. Then, the optimum can be

achieved by ρ̂i = σ/(2n). Then P̂i = µ
2
i σ/(4nχ).

Thus, K = P̂i/P̃i = (n+1)2/(4n), and K > 1 for n ≥ 2, K → ∞
(n→ ∞). Note, in passing, that

ρ̃i =
σ

n + 1
, ρ̂i =

σ

2n
, and, therefore,

λ̂i

λ̃i
=

n + 1
2n
< 1,

D(ρ̃) = χ(n + 1),D(ρ̂) = 2χ, and, therefore,
T̂i

T̃i
=

2
n + 1

< 1.

Thus, in the Nash-proportionately-fair Pareto-optimal flow
control, each user injects less flow and has better responsive-
ness than in the Nash equilibrium. Some numerical examples
are as in the following. Recall that n is the number of users.

For 9 users, in the Nash equilibrium, each user injects the
rate of packets of 1.8 times, and receives the expected end-to-
end packet delay of 5 times and the power of 0.36 times as
large as those in the Nash-proportionately-fair Pareto-optimal
flow control.

For 99 users, in the Nash equilibrium, each user injects the
rate of packets of 1.98 times, and receives the expected end-to-
end packet delay of 50 times and the power of 0.0396 times as
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large as those in the Nash-proportionately-fair Pareto-optimal
flow control.

For 999 users, in the Nash equilibrium, each user injects the
rate of packets of 1.998 times, and receives the expected end-
to-end packet delay of 500 times and the power of 0.003996
times as large as those in the Nash-proportionately-fair Pareto-
optimal flow control.

Remark 4: Thus, one of the contributions of the paper is
showing the case where Nash equilibria become less efficient
as the number of users increases. This is in contrast with
previous results [11], [12] that we have obtained for routing
games where we presented an example where the equilibrium
is efficient for a large number of players and becomes ineffi-
cient as the number of players decrease. In that example, as the
number of players tends to infinity, the equilibrium coincides
with an overall optimal solution.

It should be noticed that the inefficiency results that we
obatined for the flow control model hold for general topologies
where as those that appear in routing games depend on the
topology. For example, the original Braess paradox is known to
occur for a specific 4-node topology, in contrast to the specific
topologies of [11], [12].

Interestingly, our results on flow control apply directly to
some routing games as well. Indeed, it is well known that
flow control problems with additive costs, or even combined
flow and routing control, can be transformed into equivalent
routing control with no flow control [39] in which an ex-
tra link is added between each source-destination pair. This
transformation can also be used for the Power criterion since
maximizing the power is equivalent to maximize the log of
the power which is additive. �

C. Noncooperative Flow Control with Additive Costs

In this subsection, we briefly touch on another case of each
user’s objective. Consider the network described in Section
III-A, and assume that the cost per packet over link k is given
by the function (1/µik)T (k)(ρk) (given by (5)) where

ρk =
∑

r

ρrk, ρik = Qikλi.

The total cost paid by player i is thus

Ji(λ) = λiTi =
∑
l∈m

ρilT (l)(ρl).

The utility for player i is then given by

Ui(λ) = Ri(λi) − aiJi(λ), (28)

where Ri is positive and is increasing and concave in its
argument and ai is a positive constant. Utilities with the above
structure are common in telecommunication networks (see,
for example, Alpcan and Başar [40], [41] that study special
cases of such utilities).

Clearly, given the strategies, λ(−i), of other users, user i
optimizes Ui by choosing its strategy λ̌i, which is unique given
λ(−i), and

0 ≤ λ̌i < min
l
{Ail/(slQil)}. (29)

If we have λ̃ such that, given λ̃(−i) as λ(−i), λ̌i = λ̃i holds for
all i, λ̃ is a Nash equilibrium. A proof of the existence of a
Nash equilibrium, λ̃ ∈ C, can be shown based on the Kakutani
fixed-point theorem [38].

Theorem 4: There exists a Nash equilibrium flow control
solution, λ̃ ∈ C, for this network.

Proof: See Appendix A. �

Since T (k) is strictly increasing in its argument for all k,
then Ψ1 holds. Therefore, from Theorem 1, it is seen that, if
more than one user has the positive λ̃i in a Nash equilibrium,
Ψ2 holds as well, and it is strongly Pareto inefficient.

Corollary 2: A Nash equilibrium for flow control where
each user optimizes its utility Ui(λ) (28) is always strongly
Pareto inefficient if Assumption Ψ2 holds.

We note from (28) that
dUi

dλi

∣∣∣∣∣
λi=0
=

dRi

dλi

∣∣∣∣∣
λi=0
− aiTi(λ)|λi=0.

Then, if
dRi

dλi

∣∣∣∣∣
λi=0
≤ aiTi(0), clearly, λ̃i = 0. by noting the

definition of Ti and Ri. Therefore, the necessary condition that

Ψ2 holds is that
dRi

dλi

∣∣∣∣∣
λi=0
> aiTi(0) holds for at least two i’s.

IV. Concluding Remarks
In this article, a general framework of strongly Pareto-

inefficient Nash equilibria in noncooperative games competing
for common-pool resources has been presented. In particular,
we have considered noncooperative flow control. We have
firstly shown that the situation where each user optimizes
its power unilaterally has a strongly Pareto-inefficient Nash
equilibrium. For a subcategory of the networks of the situa-
tion, furthermore, we have obtained the explicit flow control
solutions of the inefficient Nash equilibrium. We have also
shown that, in some flow-control games, the degree of Pareto
superiority of the Nash proportionate Pareto optimum to the
Nash equilibrium in noncooperative flow control can increase
as the number of users increases. We have then considered
another utility of additive costs and have shown that an
inefficient Nash equilibrium exists with respect to it.

In contrast, the general framework covers neither noncoop-
erative network routing nor noncooperative load balancing in
distributed systems. It may not be easy to extend the general
framework to cover them with keeping its simplicity.

Appendix A. A Proof of the Existence of a Nash Equilibrium
in Noncooperative Flow Control (Theorems 2 and 4)

In this appendix, we give a proof of the existence of a
Nash equilibrium in noncooperative flow control as given in
Subsections III-B and III-C. We consider the utility function
ûi(λ) = exp{Ui} = exp{Ri(λi) − aiJi(λ)} for Subsection III-C.
Then, both utility functions, Pi(λ) for Subsection III-B and
ûi(λ) for Subsection III-C, have non-negative finite values for
λ ∈ C and the value zero for λ ∈ Ĉ − C. In the following part
1), we first show that there exists a Nash equilibrium in region
Ĉ with the above utility functions. Then, in part 2), we show
that such a Nash equilibrium is in region C, which is a really
feasible region considering the achievability of the statistical
equilibrium of the networks considered.
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1) Consider the following function, ϕi, for arbitrary i, whose
domain is Ĉ, defined as follows. ϕi : λ ∈ Ĉ → (λ̌i, λ

(−i)) ∈ Ĉ.
That is, given λ ∈ Ĉ, the function ϕi gives the λ̌i as follows
with other λ(−i) being unchanged: λ̌i is uniquely given, if Ail >
0 for all l, by (15) for Subsection III-B and by the statement
above (29) for Subsection III-C and λ̌i = 0, if Ail = 0 for some
l. Note that, for Subsection III-C, in the case where Ail > 0
for all l, λ̌i is determined to be the same value, regardless of
whether ûi or Ui is used for the utility of user i. In the case
where Ail = 0 for some l, λ̌i is determined independently of
the shape of the utility function of user i.

From (15) for Subsection III-B and from the statement
above (29) for Subsection III-C, it is clearly seen that, for
λ ∈ Ĉ, such that Ail > 0, l ∈ k, ϕi is a continuous function of
λ ∈ Ĉ to (λ̌i, λ

(−i)) ∈ Ĉ. Furthermore, from (11) for Subsection
III-B and (29) for Subsection III-C, as Ail → 0 for an arbitrary
l with λ remaining in Ĉ, λ̌i → 0. For such λ that Ail = 0 for
some l, λ̌i keeps to be 0 while λ remains in Ĉ. Therefore, ϕi

is a continuous function of λ, for λ ∈ Ĉ and i ∈ n. Thus, ϕi is
a continuous function of λ ∈ Ĉ into Ĉ.

Consider a function ϕ = ϕ1 ◦ ϕ2 ◦ · · · ◦ ϕn. From the above,
we see that ϕ is a continuous function and maps λ ∈ Ĉ to
λ̌ ∈ Ĉ. By noting that Ĉ is a compact set, from the Kakutani
fixed point theorem [38], the function ϕ has a fixed point λ̃
such that ϕ(λ̃) = λ̃, λ̃ ∈ Ĉ. We can easily see that, if ϕ(λ̃) = λ̃,
then ϕ1(λ̃) = ϕ2(λ̃) = · · · = ϕn(λ̃) = λ̃. Thus, if ϕ(λ̃) = λ̃, λ̃ is
a Nash equilibrium.

2) Clearly, λ, such that 1−sl
∑

r Qrlλr = 0 for some l, cannot
be such a fixed point. Indeed, such λ gives zero utilities (Pi = 0
and ûi = 0 for all i), and user i such that λi > 0 could increase
its utility by decreasing its λi (that is, if λi > 0, then it must
hold that Ail > 0 for all l. Then, from (11) for Subsection
III-B and (29) for Subsection III-C, λ̌i mapped from λ must
be such that 1− sl

∑
r,i Qrlλr − slQilλ̌i = Ail − slQilλ̌i > 0, and,

thus, is less than λi). Therefore, a fixed point of ϕ, λ̃, exists
and λ̃ ∈ C, which is a Nash equilibrium of the noncooperative
flow control.
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