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Abstract—We consider a resource allocation problem in a
multichannel wireless access system being shared by several users
for uplink transfer of elastic traffic. Each user can allocate its
resources (e.g., radios, antennas or power) to one or more of
the carriers. In this network scenario we consider a problemof
noncooperative allocation of resources by the users, with each
user’s objective being to maximize its own utility. We applythe
theory of potential games to solve this problem by transforming it
into an equivalent global optimization one. We obtain structural
properties of the equilibrium policies using tools from Schur con-
cave stochastic orders. Finally, we propose a totally distributed
algorithm that converges to a Nash Equilibrium of the system.

I. I NTRODUCTION

Noncooperative control in wireless communication has been
an active academic research field due to its decentralized na-
ture which enables to reduce the burden of resource allocation
from a central network manager. Several directions have been
studied of which we cite only a few: power control [1], [9],
[13], [23], access to a common channel [11], incentive to
relay or forward packets [4], [21], and flow or rate control
[30]. Today, the noncooperative aspects of decision makingin
wireless networks is not just an academic issue. It is common
practice to delegate decisions to terminals. For example, when
one wishes to connect a mobile computer to a wireless LAN,
the association decisions (which access point to join) are taken
in a decentralized noncooperative way by the users (based
on the information they receive concerning the number of
available access points and the channel quality to each of
them).

Putting intelligence at the terminals rather than in the core
network is in line with a whole trend that saw the ATM
networks disappearing first from wireline networks and later
from wireless (e.g., from the UMTS standard which moved to
all IP network). It is also in line with the emerging technology
of cognitive radios [6] in which the radios have sufficient
intelligence to be able to alter their actions in reaction to
changes in their environment. With more intelligent mobiles, it
is possible to delegate to each mobile the decisions concerning
its performance. The decision making can then be viewed as
a noncooperative game. This formalism has been used in [3],
[16] in the context of cognitive radios.

In this paper we study an uplink resource allocation problem
in a noncooperative setting. The basic model we adopt is based

on the one in [5]. Several nonoverlapping channels are avail-
able to be shared by some users who wish to transfer elastic
traffic over this system. Each user has several radios, and its
strategy lies in deploying one or more of its radios on each of
the channels. For each such joint strategy, the users each derive
some throughput, and suffer the energy cost of operating their
radios. The throughputs obtained by each of the users depends
on the network resource allocation strategy. We consider two
possibilities.FSU: Fair Share between Users, in which each
channel is equally shared among the users that transmit on
that frequency (irrespective of the number of radios each user
assigns to each channel), andFSR: Fair Share between Radios,
introduced in [5], where the capacity of each channel is equally
shared among the radios that use it. We recover many of the
results of [5] on the structure of the equilibrium and obtainnew
ones by applying the theory of potential games which allows
us to solve the noncooperative frequency selection problem
by transforming it into an equivalent global optimization one.
We then obtain structural properties of the equilibrium policies
using tools from Schur concave stochastic orders.

II. M OTIVATIONS

Next generation fixed wireless broadband networks are be-
ing increasingly deployed as mesh networks in order to provide
and extend access to the internet. These networks are charac-
terized by the use of multiple orthogonal channels and nodes
with the ability to simultaneously communicate with many
neighbors using multiple radios (interfaces) over orthogonal
channels [29]. Networks based on the IEEE 802.11a/b/g and
802.16 standards are examples of these systems. Moreover, as
the cost of radios plummeted, single radio products evolvedto
support more radios per mesh node with the additional radios
providing specific functions- such as client access, backhaul
service or scanning radios for high speed handover in mobility
applications. The mesh node design also became more modular
- one box could support multiple radio cards - each operating
at a different frequency.

There is an important growing area of research on wireless
mesh networks with devices equipped with multiple radios.
Indeed, the lower and lower cost of RF transceivers allows
us to consider two or more radios in the same device which
can be also heterogeneous [27]. The use of multiple radios



is interesting in a mesh architecture in which this technique
permits to increase capacity of the network [29]. It has also
been proved in [2] that the capacity of relays with multiple
radios is not halved. Using multiple radios offers tradeoffs
that can improve robustness, connectivity and performanceof
the system. In [2], authors study the problem of routing in a
context of multiple radios mesh network. Their experimental
results on a testbed where each node has two 802.11 multiband
radios using different channels, shows good improvements of
the throughput for each mobile.

III. SYSTEM MODEL AND THEORETICAL BACKGROUND

We consider the following model. The set of users is
denoted byN , with N := |N |. There is a a setC containingC
channels. Each user has a device equipped withK ≤ |C| radio
transmitters, each with the same communication capacity.
A device can use at the same time any number of itsK
transmitters. The problem is for each user to distribute some
or all of its transmitters over theC channels, so as to optimise
certain objectives. There is no limit on the number of radios
per channel.

A. System description and notation

User strategies:
The users’ strategies comprise the allocation of their radio

transmitters to the channels.

kc
i := the number of radio transmitters that useri allocates

to channelc, with kc
i ≤ K

si = the vector(k1
i , ..., k

C
i ) of radio allocations of useri,

with
∑C

c=1 k
c
i ≤ K; this is thestrategyof useri

Si:= the set of strategy vectors of useri
S:= a strategy vector of all users; i.e.,S = (s1, · · · , sN ),

with si being a strategy of user i
S−i:= the strategy vectors of all players except playeri in

the strategyS
S:= the set of all strategy vectors

Given a strategyS, we define the following.

ki := the total number of radio transmitters (≤ K) used by
useri; thus,ki =

∑C
c=1 k

c
i

Ci:= the set of channels used by useri
Ci := |Ci|
Kc := the set of radio transmitters using channelc
kc := |Kc|
N c:= the set of users each having at least one radio that

uses channelc
nc := |N c|

[vi, S−i]:= the strategy obtained when all users follow
the strategyS except useri, which uses strategyvi ∈
Si

Since the previous notation depends on the strategyS under
consideration, we sometimes include explicitly the dependence
on the strategy in the notation. For example,kc(S) stands for
the number of radio transmitters using channelc under strategy
S.
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Fig. 1. Total throughput (in Mbps) vs. number of users for radios using
CSMA/CA random access, as standardised in IEEE 802.11, whenall radios
use the same physical transmission rate: 11 Mbps (top), 5.5 Mbps (middle),
or 2 Mbps. The queues of the transmitters are saturated. Thisis an example
of the functionR

c
(k) for a network strategy that yields FSR.

User payoffs (or utilities):
When the users employ a joint strategyS, each obtains

a payoff that depends on the transmission rate it gets, and
the cost (e.g., energy cost) it has to pay in order to use its
radios. We model this as follows. When the joint strategyS is
employed, then useri obtains the throughputrc

i (S) on channel
c; useri’s total throughput isri(S) =

∑C

c=1 r
c
i (S). Then for

the strategyS, Ui(S) = ri(S) − λiki(S) is the utility (net
payoff) of useri, whereλi represents the cost that useri incurs
for using each of its radios; this could model energy cost and
λi may vary from user to user. By changing the valuesλi, one
can model various tradeoffs between throughput and energy.

Network policies for allocating bit rates:
The transmission rates that users get on each channel

depend on the network’s resource allocation policy and the
joint strategy of the users. We consider two models for the
network’s resource allocation strategy.

• FSR: Fair Share between Radios [5]: The total bit rate
of channelc when kc radios use channelc is given by
R

c
(kc) ≥ 0. Figure 1 (see [8]) shows an example of such

a network scenario, where the users employ CSMA/CA in
order to access each of theC channels. The rateR

c
(kc)

is shared equally between the radios allocated to that
channel, i.e., for strategyS, each radio using channel
c receives a bit rate of (suppressing(S) in the notation)

d
c
(kc) :=

R
c
(kc)

kc

Thus, the total transmission throughput for a useri is

ri =
∑

c∈Ci

d
c
(kc)kc

i =
∑

c∈Ci

R
c
(kc)

kc
kc

i .

• FSU: Fair Share between Users: The total bit rate of
channel c when nc users use channelc is given by
Rc(nc) ≥ 0. A TDM mechanism is used to access the
channelc in a way thatRc(nc) is shared equally between
the users. Hence, for a strategyS, at channelc, each radio
of user i receives a bit rate of (suppressing(S) in the
notation)

Rc(nc)/(nc × kc
i ),



and the total rate that useri receives at channelc is
Rc(nc)

nc , that does not depend onkc. Define

dc(nc) =
Rc(nc)

nc

Then the total transmission rate for useri is

ri =
∑

c∈Ci

dc(nc).

B. Potentials, majorization and Shur concavity

The following background will be essential to the later
discussions. We provide it here for ready reference.

Definition 3.1: [15] A function G : S → IR is called a
potential if for every useri and every strategyS, and for
every strategyvi for useri

G([si, S−i]) −G([vi, S−i]) = Ui([si, S−i]) − Ui([vi, S−i]).
(1)

Remark 3.1:The potential is useful for the following rea-
son. If a game has a potentialG, then any policyS that
maximises the potential is an equilibrium for the game [15].
Here we have a discrete strategy set, hence, if the potential
function satisfies certain types of concavity (e.g., the larger
midpoint property (LMP) defined by Ui [26]) the converse is
also true: ifS is an equilibrium, then it maximizesG. Thus
a potential allows us to transform a game into an equivalent
optimization problem.

Consider twon-dimensional vectorsδ(1), δ(2).
Definition 3.2: [12] We say thatδ(2) majorizes δ(1),

denoted byδ(1) ≺ δ(2), if δ(2) is more “unregular” (less
“balanced”) in the following sense:































k
∑

i=1

δ[i](1) ≤
k

∑

i=1

δ[i](2), k = 1, ..., n− 1,

n
∑

i=1

δ[i](1) =
n

∑

i=1

δ[i](2)

(2)

where δ[i](j) is a permutation ofδi(j) satisfying δ[1](j) ≥
δ[2](j) ≥ ... ≥ δ[n](j), j = 1, 2.
Note that (2) implies, in particular, that

• the largest element ofδ(2) (i.e. δ[1](2)) is larger than the
largest element ofδ(1) (i.e. δ[1](2)).

• the smallest element ofδ(2) (i.e. δ[n](2)) is smaller than
the smallest element ofδ(1) (i.e. δ[n](1)).

Definition 3.3: A function f : IRn → IR is Schur convex
if δ(1) ≺ δ(2) impliesf(δ(1)) ≤ f(δ(2)). f is Schur concave
if δ(1) ≺ δ(2) implies f(δ(1)) ≥ f(δ(2)).

We define strong majorization as in Definition 3.2 but with
at least one of the inequalities in (2) being strict. We then
define a function to be strictly Schur convex (resp., concave)
by requiring in Definition 3.3 that the inequalities as well as
the majorization order betweenδ(2) andδ(1) be strict.

The next proposition follows from Proposition C.2 of [12, p.
67] (that states that any functionf : IRn → IR is Schur-convex
if it is symmetric and convex).

Proposition 3.1: (i) ( [12, Proposition 2.1]) Letψ : IR →
IR, be a concave (resp., convex) function. Define

g(δ) =

n
∑

i=1

ψ(δi). (3)

Theng is Schur concave (resp., convex).
(ii) Let ψ : IR → IR, be a strictly concave (resp., strictly

convex) function. Theng is strictly Schur concave (resp.,
convex).

IV. FSU SCHEDULING

A. The equilibrium

Theorem 4.1:Consider the FSU network strategy. Letλi =
λ for all i; i.e., the energy cost per radio,λi, does not depend
on i. Then the following hold:
(i) for each useri, and for any fixed policyS−i of users other
than i, a necessary condition forsi to be a best response is
that for all c, kc

i takes either the value 0 or the value 1.
(ii) A Nash equilibrium in pure strategies exists.
(iii) Any equilibrium has the following structure. For eachuser
i and each channelc, kc

i takes either the value 0 or the value
1.

Proof. Assume thatkc
i > 1 for somei andc. Since the rate

received by useri at channelc does not depend on the number
of radios kc

i applied there, by reducingkc
i by 1 the total

rate that the user receives in that channel does not decrease,
whereas the energy cost strictly decreases. We can therefore
reduce the strategy space of the users by restrictingkc

i to take
values zero or one only, without loss of optimality. This proves
(i).

The game that is thus obtained by restricting the strategy
space (as justified above) is a congestion game as defined in
[18]. Indeed,

Ui(S) =
∑

c∈Ci(S)

(

Rc(kc(S))

kc(S)
− λ

)

where we have used the fact thatkc
i ∈ {0, 1}. Thus, the

contribution to a user’s payoff from channelc is only a
function of the number of users,kc

i , that use channelc; hence,
we have a congestion game. As [18] shows, such games always
have an equilibrium in pure strategies. This establishes (ii).

(iii) is then a direct consequence of (i) and (ii). ⋄
We shall call the game with the reduced set of strategies

introduced in the proof above theReduced Game. As we
saw, for any multistrategyS of the users, there is no loss of
optimality to restrict the best response of any playeri to S−i

to its set of restricted strategies. Thus in the rest of the paper,
whenever we consider the network policy to be the FSU, we
shall study the restricted game instead of the original one.

We note that when restricting to the reduced game, the FSR
policy for the network will yield the same user performance
as the FSU policy, since the number of users that share a
frequency band is the same as the number of radios that share
it. We can then usekc rather thannc to describe the network’s
policy for allocating bit rate.



Remark 4.1:The structural property of the equilibrium
given in Theorem 4.1(iii) holds not only for the game problem
but also for the team problem, in which all users have a
common objctive which is the (possibly weighted) sum of
utilities of all players (the weights are some strictly positive
constants). The structure thus carries to any Pareto optimal
strategy.

B. The potential and its properties

We require thatλi = λ for all usersi, 1 ≤ i ≤ N . Then it is
straightforward to see (e.g., [15]) that the following function
is a potential for this game:

G(S) =

|C|
∑

c=1

hc(kc(S)) where hc(k) :=

k
∑

ℓ=1

(dc(ℓ) − λ)

(4)
For example, suppose that useri does not use channelc under
strategyvi. Then (denoting byec ∈ IRC the unit vector with
a 1 in positionc) we see that

G([vi + ec, S−i]) −G([vi, S−i]) = dc(kc([vi, S−i]) + 1) − λ;

on the other hand

Ui([vi + ec, S−i])−Ui([vi, S−i]) = dc(kc([vi, S−i])+ 1)−λ.

Lemma 4.1: 1) If Rc(k)
k

is decreasing ink, thenhc(k)
is concave ink.

2) If Rc(k)
k

is strictly decreasing ink, thenhc(k) is strictly
concave ink.

Proof. We see that

hc(k) − hc(k − 1) = dc(k) − λ =
Rc(k)

k
− λ

and the result follows from the hypothesis. ⋄
Proposition 3.1 then immediately yields the following:
Theorem 4.2:If hc(k) is concave (resp. strictly concave),

then the potentialG(S) of the reduced game is Schur concave
(resp., strictly Schur concave).

The decreasing property ofR
c(k)
k

can be obtained un-
der several situations. First, numerical computations on the
throughput in Figure 1 shows that this property holds. In
addition we can introduce the following assumptions.
A1 (resp., A1s):Rc(·) is concave (resp., strictly concave) and
Rc(0) ≥ 0.
A2 (resp., A2s):Rc(·) is nonincreasing (resp., strictly nonin-
creasing). This was the case suggested in [5].

Then the following is easily shown to be true.
Lemma 4.2:We have the following results:

1) If either A1 or A2 hold thenRc(k)
k

is decreasing ink.
2) If either A1s or A2s hold thenR

c(k)
k

is strictly decreas-
ing in k.

Proof.
1) Indeed, if A1 holds, then, fork2 > k1 > 0, using

concavity ofRc(·)

Rc(k2) −Rc(k1)

k2 − k1
≤

Rc(k1) −Rc(0)

k1 − 0

which holds iff

k1R
c(k2) − k1R

c(k1) ≤ k2R
c(k1) − k2R

c(0)

−k1R
c(k1) + k1R

c(0).

Canceling the common term on each side

k1R
c(k2) ≤ k2R

c(k1) − (k2 − k1)R
c(0),

≤ k2R
c(k1),

where we used the nonnegativity ofRc(0) in the last
step. It follows that

Rc(k2)

k2
≤
Rc(k1)

k1
.

The conclusion from A2 is evident.
2) This is also immediate.

⋄

C. A characterisation of the equilibrium strategies

The Schur concavity of the potential allows us to obtain a
regularity property not only for the equilibrium strategies (see
Theorem 4.1 (iii)), but also on theaggregated strategykc (i.e.
the total number of radios sent by all user to each channelc)
at equilibrium.

Theorem 4.3:Consider the restricted game.
(i) If hc(k) is concave then there exists an equilibrium multi-
strategyS such that for anyc,

max
c,c′

(

kc(S) − kc′(S)
)

≤ 1. (5)

(ii) If hc(k) is strictly concave then (5) is a necessary condition
for S to be an equilibrium.

Proof. Recall that the potentialG as defined in (4) is Schur
concave (Theorem 4.2). Now by Eqn. 4, and Lemma 4.1, we
see thatG is a separable concave function, and, thus, satisfies
the larger midpoint property (LMP) [26]. It follows that if
S is a Nash equilibrium multistrategy, then it maximizes the
potential; see also Remark 3.1. By the definition of Schur
concavity, it is majorized by any other multistrategyS′. This
then implies thatS can be chosen such that for anyc, (5) holds.
Indeed, assume that under anyS that maximizes the potential,
there are somec and c′, such thatkc(S) − kc′(S) > 1. Now
consider the policyS′ obtained from policyS by transfer-
ing one radio transmission fromc to c′. Then S majorizes
S′. SinceG is Schur concave, it follows by definition that
G(S′) ≥ G(S). SinceS maximizesG this is only possible
when in factG(S′) = G(S). By repeating this procedure
we obtain a policyS that maximizesG and satisfies (5).
The second part follows since in this caseG is strictly Shur
concave. ⋄

D. Convergence of the single user improving policy

TheSingle User Improving Policy(SUIP) is the following.
Consider any strictly increasing time sequenceTn where at
eachTn one user changes its strategy so as to strictly improve
its own utility.



We restrict without loss of optimality to the reduced game
defined in the previous subsection. It is a potential game,
where the potential is given by (4). Hence at each improvement
step of the SUIP policy by a user, the potential strictly
increases (by the same amount as the improvement of the
payoff of the user). Since there are finitely many strategies
in S, after a finite number of improvements the potential will
reach a maximum. The strategies of the users at this maximum
are in Nash equilibrium; a deviation of a single user that would
improve that user’s utility is not possible anymore (since such
a deviation would mean that the potential can further increase).

Note that while the potential increases at each improvement
step by some user, say useri, the utilities of the other users
need not improve as a result of the deviation of useri.

V. A DDITIONAL RESULTS

As we saw in the last section, if the network uses the FSU
policy, the users can restrict without loss of optimality tothe
restricted game. It is evident that the same results apply to
the FSR policy if the strategies are restricted so that each user
deploys 1 or 0 radio on each channel.

We assume throught this section that the problem is sym-
metric. In particular,dc are the same functions for all channels
c, and the players haveλi = λ.

A. Global optimization

Theorem 5.1:Consider either the FSR policy with the re-
stricted strategies or the FSU policy,
(i) Assume that Assumption A1 holds. ThenU(S) is Schur
concave, and there exists an optimal strategyS satisfying (5).
(ii) If Assumption A1s holds thenU is strictly Schur concave,
and a necessary condition for a strategyS to be optimal is
that (5) holds.

Proof of Theorem 5.1.
Define g(x) = Rc(x) − xλ. Theng is also concave, and the
global utility U has the form (in the FSR case with restricted
strategies and the FSU case)

U(S) =

|C|
∑

c=1

g(kc(S)). (6)

It then follows Proposition 3.1 thatU(S) is Schur concave.
The rest follows from the same steps as those in the proof of
Theorem 4.3. ⋄

Note that the Schur concavity ofU allows us to obtain not
only the structure of optimal policies, but also to compare the
performance of two non-optimal policies, whenever one of the
policies majorises the other.

B. The game problem for FSR

We consider the FSR model without the restricted strategies.
Assume that a strategyS is such that for everyc, |kc| radios

use channelc. Then we can show by induction over the number
of players thatG(S) as given in (7) can be expressed as (4).

Note that for any useri and any strategyS−i of other
players,Ui([0, S−i]) = 0, where0 stands for the strategy of
player i that does not use any radio. Hence, using repeatedly

(1), and settingG(0) = 0, we obtain (by induction) the
following expression that a potentialG has to satisfy: Let
i be an integer not greater thanN , and define the policy
si = (s1, ..., si, 0, ..., 0). Then

G(sj) =

j
∑

i=1

[G(si) −G(si−1)] =

j
∑

i=1

[Ui(s
i) − Ui(s

i−1)],

=

j
∑

i=1

Ui(s
i). (7)

In particular, for any policyS we have

G(S) =

N
∑

i=1

Ui(s
i). (8)

But (8) should further be independent of the order: for any
permutationπ : N → N we require

G(S) =
N

∑

i=1

Ui(s
π(i)). (9)

But this is not always the case. This is illustrated in the next
example.

Example 5.1:Consider a single channel with 2 users. The
total number of radios isx + y, because user 1 hasx radios
and user 2 hasy radios. Then the utility obtained, using the
FSR model, by each user is:

U1(x, y) = xd(x + y), and U2(x, y) = yd(x+ y),

because the total bit rate is shared among the total number of
radios. Given relation 9, in order to be a potential,G should
satisfy the two permutations:

G(S) = U1(s
1) + U2(s

2) = U1(s
2) + U2(s

1),

with s1 = (x, 0) ands2 = (x, y). But

U1(x, 0) + U2(x, y) = xd(x) + yd(x+ y),

and

U1(x, y) + U2(x, 0) = xd(x + y).

We observe that both expressions are different in the FSR
model whered(x) = R

c
(x)
x

.
Then we conclude that in the setting with the FSR model,

we do not have a potential game.

VI. BACKWARD LEARNING ALGORITHM

In [5], the authors propose three algorithms to enable
the selfish users to converge to a Nash Equilibrium. Their
algorithms use different set of available information. Thefirst
one is a centralized where each user has perfect information
about the number of radios on each channels. The second is
distributed and each user has also perfect information about the
overall system. The last one considers imperfect information
where each user knows the total number of radios only on
those channels on which he operates. Due to the insufficiency
of the local information, the system can be stabilized at a



false Nash equilibrium, i.e., a stable point in which local
information might be insufficient for the players to determine
if it is a Nash equilibrium. In order to solve this problem, they
allow each user to change a channel even if it is not necessary.
This mechanism induces convergence to a Nash equilibrium
with high probability but it does not stay in a Nash equilibrium
solution. One can observe in their simulation that even if a
Nash equilibrium is reached, the algorithm runs and can leave
this stable point. For the last two algorithms, they consider
only the restricted game.

We propose here an algorithm which always converges to
a Nash equilibrium for the game with the FSU model and in
the restricted game with the FSR model. This algorithm is
specifically related to cognitive radio technology [7] because
each user’s decision is taken considering past perceived utility
as learning process. This algorithm, provided in [24], is dis-
tributed and needs no information. Learning is one important
specificity of cognitive radio technology [14], [17] and is
often ignored in the study of such wireless networks using
normal form game model such as in [25]. This algorithm has
been used in [28], for the study of a power control allocation
problem.

It is also important to notice that the algorithm does not
need a backoff mechanism as proposed in [5], that delays the
convergence. Also in their algorithms, each user has to know
lots of information, like the total number of radios on each
link it operates, that is very inconvenient for the deployment
of such distributed algorithm.

A. Distributed Algorithm

The action of each playeri ∈ {1, . . . , N} is a vectorsi

composed ofK elements whose elements are the channel
allocation of each radio, i.e., for eachj ∈ {1, . . . ,K}, si,j

is the channel chosen by useri for his jth radio (for all i, j,
si,j ∈ {1, . . . , C}).

Note that the iterations could pass through strategies that
are not restricted. Then this algorithm can be used for both
models, FSR and FSU.

The strategy of any user is a probability matrixPi(t) of size
C×K where(Pi(t))c,k represents the probability for useri of
using channelc for the transmitterk at time slott. We denote
by si,k(t) the channel used by useri for his transmitterk
at time slott. The parameter0 < b < 1 is the step size. We
denote byP the vector composed of theN matricesPi. Then,
the expected utility of playeri depending on mixed strategies
of all other users and his own is:

gi(P ) =
∑

S

Ui(S)
N
∏

i=1

K
∏

k=1

(P i)si,k ,k,

whereS = (s1,1, s1,2, . . . , sN,K) is the vector all decisions of
all users, of lengthN ×K. The expected utility of useri, if
he chooses actionsi = (si,1, si,2, . . . , si,K) is defined as:

Hisi
(P ) =

∑

S\si

Ui(S)
N
∏

j=1,j 6=i

K
∏

k=1

(P j)si,k,k,

with S \ si = s1,1, . . . , si−1,K , si+1,1, . . . , sN,K describes the
actions of all users but not useri. We have also the expected
utility of user i choosing the channelc for his radiok:

(Hi)c,k(P ) =
∑

S\si,k

Ui(S)|si,k=c

N
∏

j=1,j 6=i

K
∏

k=1

(P j)si,k,k

K
∏

l=1,l6=k

(P i)si,l,l,

with S \ si,k = (s1,1, . . . , si,k−1, si,k+1, . . . , sN,K) represents
the actions of all users but not the channel of the radiok of
useri. Note that we have the following relation:

gi(P ) =
∑

si,1,...,si,K

Hisi
(P )

K
∏

k=1

(P i)si,k,k,

=

C
∑

c=1

(Hi)c,k(P )(P i)c,k.

We describe the totally decentralized algorithm defined
in [24] adapted to our multi-decision game where each player
strategy is a matrix.

1) Set an initial mixed strategy probability matrixPi(0),
for each useri = 1, . . . , N .

2) At every time stept, each user chooses a channelsi,k(t)
for each transmitterk according to its probability matrix
Pi(t).

3) Each player obtains his payoffUi(t) based on the global
channel allocation. The utility is normalized using:

ũi(t) =
Ui(t)

Mi

,

whereMi is the maximum utility that can be perceived
by useri. One user gets the maximum utility if he is the
only one to transmit on each channel, then his maximum
utility is K × maxxRc(x).

4) Each user updates its action matrix probability according
to the following rule

• (Pi(t+1))c,k = (Pi(t))c,k − bũi(t)(Pi(t))c,k if c 6=
si,k(t),

• (Pi(t+ 1))c,k = (Pi(t))c,k + bũi(t)(1 − Pi(t))c,k.

5) A stopping criterion met; else go to step 2.

The normalization process in step 3 ensures that the updated
probabilities described in step 4 lie in the interval ]0,1[.Note
that depending on the system, the value ofMi, the maximum
of the utility of useri, can be not known in advance and has
to be estimated [28].

In [24], the authors prove that asb → 0, the sequence of
probabilities converges weakly to solution of the following
ordinary differential equation∀i, c, k:

d(Pi)c,k

dt
= (Pi)c,k

∑

s6=c

(Pi)s,k[(Hi)c,k(P ) − (Hi)s,k(P )],

whereP (t) denotes the the channel allocation strategy at
time t (a matrix of sizeC × K × N ) and (Hi)c,k(P ), the
expected utility of useri for choosing action channelc for the
transmitterk. Then, they show that (a) all stationary points that
are not Nash equilibria are unstable and (b) all pure strategies



that are strict Nash equilibria are asymptotically stable.By
contradiction, we state the following result.

Proposition 6.1 ( [24]): The algorithm does not converge
to a stable channel allocation which is not a Nash Equilibrium.

It is equivalent to say that a stable stationary point must
be a Nash Equilibrium. The problem is that the algorithm can
exhibit limit cycle behavior. Hence, in [24] (Theorem 3.3) the
authors propose a necessary condition for convergence, and
they propose an example when users have a common payoff,
which is the case here considering the FSU scheduling policy
with the same unit energy cost.

Proposition 6.2:The learning algorithm, for any initial
conditionPi(0) for each useri = 1, . . . , N , always converges
to a Nash equilibrium in the case of FSU or the restricted
game with FSR.

Proof of Proposition 6.2.We use the potential functionG
defined in (4) in order to construct the following function:

F (P ) =
∑

s1,1,s1,2,...,sN,K

G(S)
N
∏

i=1

K
∏

k=1

(Pi)si,k,k.

This function has the following property:

∂F

∂(Pi)c,k

(P ) = lim
t→0

F (P )|(Pi)c,k+t − F (P )

t
= lim

t→0

∆t

t
.

We have:

∆t =

∑

s\si,k

Gi(S)|si,k=c

N
∏

j=1

j 6=i

K
∏

k=1

(P j)sj,k,k

K
∏

l=1

l 6=k

(P i)si,l,l(P
i
c,k + t)

−

∑

s\si,k

Gi(S)|si,k=c

N
∏

j=1

j 6=i

K
∏

k=1

(P j)sj,k,k

K
∏

l=1

l 6=k

(P i)si,l,lP
i
c,k,

= t

∑

s\si,k

Gi(S)|si,k=c

N
∏

j=1

j 6=i

K
∏

k=1

(P j)sj,k,k

K
∏

l=1

l 6=k

(P i)si,l,l,

= t(Hi)c,k(P ).

Then we obtain:
∂F

∂(Pi)c,k

(P ) = (Hi)c,k(P ).

Combining this result with the ode (10), we have:

dF

dt
=

∑

i,c,k

∂F

∂(Pi)c,k

d(Pi)c,k

dt
,

=
∑

i,c,k

∂F

∂(Pi)c,k

(Pi)c,k

∑

s6=c

(Pi)s,k [(Hi)c,k(P ) − (Hi)s,k(P )],

=
∑

i,c,k

∑

s6=c

(Pi)c,k(Pi)s,k[(Hi)c,k(P )2 − (Hi)c,k(P )(Hi)s,k(P )],

=
∑

i,c,k

∑

s>c

(Pi)c,k(Pi)s,k[(Hi)c,k(P ) − (Hi)s,k(P )]2 ≥ 0.

We have proved that the functionF is nondecreasing along
the trajectories of the ode. Then all solutions of the ode will
be in the set of probabilities such that∂F

dt
(P ) = 0. Thus

all solutions converge to some stable stationary points and,
as from theorem 6.1, all stable stationary points are Nash
equilibria, the result follows.

⋄
This kind of result is obtained in [22] in the context of

population game with the continuous version of the potential.

B. Numerical applications

In this section we consider the following parameters: num-
ber of usersN = 3, number of channelsC = 4, number
of radios per userK = 3. The stopping criterion for our
distributed algorithm is that

max
c,k,i

(|(Pi)c,k(t) − (Pi)c,k(t− 1)|) < 10−9,

and the updating parameter isb = 0.1. We compare different
rate functions obtained from different network managementor
wireless technology.

1) FSU and constant rate function:We consider as spec-
ified in [5] the constant rate functionRc(x) = 1Mbps. We
take the cost per radio isλ = 0.1.
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Fig. 2. Radios position of user 1 radios at the NE whenλ = 0.1.

We observe on figures2 that at equilibrium, the user 1 puts
his radios on channels 3, 4 and 2. The nash equilibrium is:

• for user 1, one radio on channels 3, 4 and 2,
• for user 2, one radio on channels 3, 2 and 1,
• for user 2, one radio on channels 1, 4 and 3.

We observe that all users have decided to use all their radios.
We now increase the cost byλ = 0.3. We observe now that
the algorithm converges to the following nash equilibrium:

• for user 1, one radio on channels 2, 1 and 3,
• for user 2, one radio on channels 2 and 4, and his last

radio is not used,
• for user 2, one radio on channels 3, 4 and 1.

Then the total number of radios on each channel is 2 and
one user uses only 2 of his 3 radios.



2) FSR and IEEE 802.11 DCF:Using the FSR model we
don’t have the proof of the convergence of the distributed
algorithm because we cannot use a potential function (it does
not exist). We still observe the convergence of the distributed
algorithm in this numerical example.
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Fig. 3. Radios position of user 1 radios at the NE whenλ = 2.

VII. CONCLUSIONS

This paper considers a resource allocation problem where
several users, equipped with multiple radios, share in a mul-
tichannel wireless access. We study two model of network
allocation strategy and we prove the existence of a well know
structure of congestion game in one model. Therefore we
find properties of the equilibrium strategy and finally we
propose a totally distributed algorithm that converge to a Nash
equilibrium of this resource allocation game.
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