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Abstract—We consider a resource allocation problem in a on the one in [5]. Several nonoverlapping channels are -avail
multichannel wireless access system being shared by sevienaers  aple to be shared by some users who wish to transfer elastic
for uplink transfer of elastic traffic. Each user can allocate its traffic over this system. Each user has several radios, and it
resources (e.g., radios, antennas or power) to one or more of . L . . '
the carriers. In this network scenario we consider a problemof strategy lies in deploying On? Qr more of its radios on ?aCh of
noncooperative allocation of resources by the users, withagh the channels. For each such joint strategy, the users eaivk de
user’s objective being to maximize its own utility. We applythe some throughput, and suffer the energy cost of operating the
theory of potential games to solve this problem by transforing it radios. The throughputs obtained by each of the users depend
into an equivalent global optimization one. We obtain strutural on the network resource allocation strategy. We consider tw

properties of the equilibrium policies using tools from Schur con- N ) . . .
cave stochastic orders. Finally, we propose a totally distiouted possibilities.FSU: Fair Share between Users, in which each

algorithm that converges to a Nash Equilibrium of the system  Channel is equally shared among the users that transmit on
that frequency (irrespective of the number of radios ea@r us
. INTRODUCTION assigns to each channel), aA8R: Fair Share between Radios,
Noncooperative control in wireless communication has beértroduced in [5], where the capacity of each channel is Bygua
an active academic research field due to its decentralized shared among the radios that use it. We recover many of the
ture which enables to reduce the burden of resource allmtatiresults of [5] on the structure of the equilibrium and obtadw
from a central network manager. Several directions hava begnes by applying the theory of potential games which allows
studied of which we cite only a few: power control [1], [9],us to solve the noncooperative frequency selection problem
[13], [23], access to a common channel [11], incentive foy transforming it into an equivalent global optimizationeo
relay or forward packets [4], [21], and flow or rate controWe then obtain structural properties of the equilibriumigies
[30]. Today, the noncooperative aspects of decision makingusing tools from Schur concave stochastic orders.
wireless networks is not just an academic issue. It is common
practice to delegate decisions to terminals. For examgienwv
one wishes to connect a mobile computer to a wireless LAN, Next generation fixed wireless broadband networks are be-
the association decisions (which access point to join)akert ing increasingly deployed as mesh networks in order to pl®vi
in a decentralized noncooperative way by the users (baswt extend access to the internet. These networks are eharac
on the information they receive concerning the number térized by the use of multiple orthogonal channels and nodes
available access points and the channel quality to eachvath the ability to simultaneously communicate with many
them). neighbors using multiple radios (interfaces) over orthmjo
Putting intelligence at the terminals rather than in theecochannels [29]. Networks based on the IEEE 802.11a/b/g and
network is in line with a whole trend that saw the ATM802.16 standards are examples of these systems. Moresver, a
networks disappearing first from wireline networks and datehe cost of radios plummeted, single radio products evoteed
from wireless (e.g., from the UMTS standard which moved tsupport more radios per mesh node with the additional radios
all IP network). It is also in line with the emerging techngyo providing specific functions- such as client access, badkha
of cognitive radios [6] in which the radios have sufficienservice or scanning radios for high speed handover in ntgbili
intelligence to be able to alter their actions in reaction tapplications. The mesh node design also became more modular
changes in their environment. With more intelligent magjlié - one box could support multiple radio cards - each operating
is possible to delegate to each mobile the decisions comgernat a different frequency.
its performance. The decision making can then be viewed asThere is an important growing area of research on wireless
a noncooperative game. This formalism has been used in [Blesh networks with devices equipped with multiple radios.
[16] in the context of cognitive radios. Indeed, the lower and lower cost of RF transceivers allows
In this paper we study an uplink resource allocation probleas to consider two or more radios in the same device which
in a noncooperative setting. The basic model we adopt ishas@an be also heterogeneous [27]. The use of multiple radios

II. MOTIVATIONS



is interesting in a mesh architecture in which this techaiqu 7
permits to increase capacity of the network [29]. It has also of
been proved in [2] that the capacity of relays with multiple
radios is not halved. Using multiple radios offers tradsoff
that can improve robustness, connectivity and performaifice
the system. In [2], authors study the problem of routing in a
context of multiple radios mesh network. Their experiménta
results on a testbed where each node has two 802.11 multiband
radios using different channels, shows good improvemeits o % S ol 20
the throughput for each mobile.
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Fig. 1. Total throughput (in Mbps) vs. number of users forisadusing
CSMA/CA random access, as standardised in IEEE 802.11, altieadios
use the same physical transmission rate: 11 Mbps (top), BpsMmiddle),

We consider the foIIowing model. The set of users i@ 2 Mbps. The queues of the transmitters are saturated. iJfain example
. ) - f the function R (k) twork strategy that yields FSR.
denoted byV, with N := |\]. There is a a set containingC of the function (k) for a network strategy that yields
channels. Each user has a device equipped Witk |C| radio
transmitters, each with the same communication capacity.jger payoffs (or utilities):

A device can use at the same time any number ofAts  \yhen the users employ a joint strategy each obtains
transmitters. The problem is for each user to distribute esomy payoff that depends on the transmission rate it gets, and
or all of its transmitters over th€’ channels, so as to optimiseine cost (e.g., energy cost) it has to pay in order to use its

certain objectives. There is no limit on the number of radig$,gios. We model this as follows. When the joint strateégig

per channel. employed, then usérobtains the throughput (S) on channel
¢; useri’s total throughput is;(S) = ZCC:1 r£(S). Then for
the strategysS, U;(S) = r;(S) — \k;(S) is the utility (net

User strategies: payoff) of useri, where); represents the cost that ugencurs

The users’ strategies comprise the allocation of theiraadior using each of its radios; this could model energy cost and
transmitters to the channels. A; may vary from user to user. By changing the valugsone
can model various tradeoffs between throughput and energy.

Network policies for allocating bit rates:

The transmission rates that users get on each channel
depend on the network’s resource allocation policy and the
joint strategy of the users. We consider two models for the
network’s resource allocation strategy.

o FSR: Fair Share between Radios [5]: The total bit rate
of channelc when k¢ radios use channel is given by
Ec(kc) > 0. Figure 1 (see [8]) shows an example of such
a network scenario, where the users employ CSMA/CA in
order to access each of tif¢ channels. The rat& (k)
is shared equally between the radios allocated to that
channel, i.e., for strategy, each radio using channel
c receives a bit rate of (suppressiq§) in the notation)

Ill. SYSTEM MODEL AND THEORETICAL BACKGROUND

A. System description and notation

k¢ := the number of radio transmitters that useallocates

to channek, with kf < K

the vector(k?, ..., k¢) of radio allocations of use,

with S°¢ | k¢ < K; this is thestrategyof useri

S;:= the set of strategy vectors of user

S:= a strategy vector of all users; i.&5,= (s1, -+, Sn),
with s; being a strategy of user i

S_;:= the strategy vectors of all players except playén

the strategyS

S:= the set of all strategy vectors
Given a strategys, we define the following.

k; := the total number of radio transmitters (K') used by
useri; thus, k; = chzl kf

S; =

C;:= the set of channels used by uger —ec

C; = |Cz| EC(/{C) — R (kc)

K¢ := the set of radio transmitters using channel ke

ke = |K€| Thus, the total transmission throughput for a usés

N¢:= the set of users each having at least one radio that
uses channel
n¢:= |N¢|
[v;, S_;]:= the strategy obtained when all users follow
the strategys except usef, which uses strategy; €
Si
Since the previous notation depends on the strafegpder

ri= Y d (k)=
ceC; ceC;

o FSU: Fair Share between Users: The total bit rate of

channelc when n¢ users use channel is given by

R¢(n¢) > 0. A TDM mechanism is used to access the

channek in a way thatkR“(n°) is shared equally between

consideration, we sometimes include explicitly the depece
on the strategy in the notation. For exampé(S) stands for
the number of radio transmitters using channehder strategy
S.

the users. Hence, for a stratefyat channet, each radio
of user: receives a bit rate of (suppressi§) in the
notation)

RE(n®)/(n® x k),



and the total rate that userreceives at channel is Proposition 3.1:(i) ( [12, Proposition 2.1]) Let) : R —

Rcrgfc), that does not depend ditf. Define IR, be a concave (resp., convex) function. Define
c c\ __ Rc(nc) -
di(nf) = — 3 9(6) = D_ v (%), (3)

Then the total transmission rate for ugeis .
Theng is Schur concave (resp., convex).

Ty = Z d°(n®). (i) Let ¢ : IR — IR, be a strictly concave (resp., strictly
c€C; convex) function. Thery is strictly Schur concave (resp.,
B. Potentials, majorization and Shur concavity convex).
The following background will be essential to the later IV. FSU SCHEDULING

discussions. We provide it here for ready reference.

Definition 3.1: [15] A function G : § — R is called a
potential if for every useri: and every strategys, and for
every strategw; for useri

A. The equilibrium

Theorem 4.1:Consider the FSU network strategy. Let=
A for all ¢; i.e., the energy cost per radig;, does not depend
on i. Then the following hold:
G([si,5-4)) — G([vi, S—i]) = Ui([ss,S—s]) — Us([vi, S—4]). (i) for each uset, and for any fixed policyS_; of users other
(1) thani, a necessary condition fof; to be a best response is
Remark 3.1:The potential is useful for the following rea-that for all ¢, k¢ takes either the value 0 or the value 1.
son. If a game has a potentiél, then any policyS that (ii) A Nash equilibrium in pure strategies exists.
maximises the potential is an equilibrium for the game [15{iii) Any equilibrium has the following structure. For eaciser
Here we have a discrete strategy set, hence, if the potentiand each channel k¢ takes either the value O or the value
function satisfies certain types of concavity (e.g., thgdar 1.
midpoint property (LMP) defined by Ui [26]) the converse is Proof. Assume thak¢ > 1 for somei ande. Since the rate
also true: if S is an equilibrium, then it maximize&. Thus received by usei at channet does not depend on the number
a potential allows us to transform a game into an equivalegit radios k¢ applied there, by reducings by 1 the total
optimization problem. rate that the user receives in that channel does not degrease
Consider twon-dimensional vectors(1), §(2). whereas the energy cost strictly decreases. We can therefor
Definition 3.2: [12] We say that§(2) majorizes 6(1), reduce the strategy space of the users by restriéfnig take
denoted byds(1) < 46(2), if §(2) is more “unregular” (less values zero or one only, without loss of optimality. This yee

“balanced”) in the following sense: (i).

& & The game that is thus obtained by restricting the strategy
25[1'](1) < 25[1,}(2)7 k=1,..,n—1, space (as justified above) is a congestion game as defined in
i=1 i=1 [18]. Indeed,

2
RE(k(S))

n n Ui(S) = Y ( . -
> M) =202 cecis \ F)

i=1 =1

where we have used the fact thaf € {0,1}. Thus, the
contribution to a user's payoff from channelis only a
function of the number of users?, that use channet hence,
we have a congestion game. As [18] shows, such games always
have an equilibrium in pure strategies. This establishs (i
[ _ (iii) is then a direct consequence of (i) and (ii). o
« the smallest element @f(2) (i.. 9, (2)) is smaller than  \ye shall call the game with the reduced set of strategies
the smallest element @¥(1) (i.e. df, (1)) introduced in the proof above thReduced Game As we
Definition 3.3: A function f : IR" — IR is Schur convex saw, for any multistrategys of the users, there is no loss of
if 6(1) < 6(2) implies f(5(1)) < f(5(2)). f is Schur concave optimality to restrict the best response of any playés 5~
if 5(1) < 4(2) implies f(5(1)) > f(6(2)). to its set of restricted strategies. Thus in the rest of theepa
We define strong majorization as in Definition 3.2 but withyhenever we consider the network policy to be the FSU, we
at least one of the inequalities in (2) being strict. We theghall study the restricted game instead of the original one.
define a function to be strictly Schur convex (resp., confave we note that when restricting to the reduced game, the FSR
by requiring in Definition 3.3 that the inequalities as wedl apolicy for the network will yield the same user performance
the majorization order betweef{2) and4(1) be strict. as the FSU policy, since the number of users that share a
The next proposition follows from Proposition C.2 of [12, pfrequency band is the same as the number of radios that share
67] (that states that any functigh: IR" — IR is Schur-convex it We can then usé® rather tham< to describe the network’s
if it is symmetric and convex). policy for allocating bit rate.

where d;1(j) is a permutation ob;(j) satisfying op;(j) >
Note that (2) implies, in particular, that
« the largest element a¥(2) (i.e. d;1)(2)) is larger than the
largest element of(1) (i.e. 6;17(2)).



Remark 4.1:The structural property of the equilibrium which holds iff
given in Theorem 4.1(iii) holds not only for the game problem . . . .
but also for the team problem, in which all users have a kiRE(kz) — ki Ro(k1) < kaRE(k1) — k2R%(0)
common objctive which is the (possibly weighted) sum of —k1R¢(k1) + k1 R°(0).
utilities of all players (the weights are some strictly pivei

. . Canceling the common term on each side
constants). The structure thus carries to any Pareto optima

strategy. k1R°(ka) < kaR(k1) — (k2 — k1)R(0),
B. The potential and its properties < k2RO(R),

We require that\; = X for all usersi, 1 < < N. Thenitis where we used the nonnegativity &(0) in the last
straightforward to see (e.g., [15]) that the following ftioo step. It follows that

is a potential for this game:

Bo(ks) _ R°(k1)

IC| k ka = Kk
G(S) = _h(k°(5)) where he(k):= (d°(f) = \) The conclusion from A2 is evident.
e=1 =1 4) 2 Thisis also immediate.
For example, suppose that ugetoes not use channelunder ©

strategyv;. Then (denoting by € IR the unit vector with

: . C. A characterisation of the equilibrium strategies
a 1 in positionc) we see that

The Schur concavity of the potential allows us to obtain a
G(vi + €%, 5-i]) = G([vi, S—i]) = d°(k“([vi, S=i]) + 1) = A;  regularity property not only for the equilibrium strategiésee
on the other hand Theorem 4.1 (iii)), but al_so on theggregated strategy© (i.e.

the total number of radios sent by all user to each channel
Uz([vz + e, Sfl]) — Ui(['Ui, Sfl]) = dc(k}c([vi, Sfl]) + 1) —A. at equilibrium.
Theorem 4.3:Consider the restricted game.

(i) If he(k) is concave then there exists an equilibrium multi-
strategyS such that for any,

Lemma 4.1: 1) If @ is decreasing irk, then h¢(k)
is concave ink.
2) If RTW is strictly decreasing ik, thenh®(k) is strictly
concave ink. max (kC(S) _ kc/(g)) <1. (5)
Proof. We see that &¢
Re(k)

he(k) — he(k —1) =d°(k) — X = Y (i) If he(k) is strictly concave then (5) is a necessary condition
. & for S to be an equilibrium.
and the result follows from the hypothesis. ¢ Proof. Recall that the potential as defined in (4) is Schur

Proposition 3.1 then immediately yields the following:  concave (Theorem 4.2). Now by Eqn. 4, and Lemma 4.1, we

Theorem 4.2:1f he(k) is concave (resp. strictly concave)see thats is a separable concave function, and, thus, satisfies
then the potentiad-(S) of the reduced game is Schur concavghe larger midpoint property (LMP) [26]. It follows that if
(resp., strictly Schur concave). S is a Nash equilibrium multistrategy, then it maximizes the

The decreasing property of 52 can be obtained un- potential; see also Remark 3.1. By the definition of Schur
der several situations. First, numerical computations e tconcavity, it is majorized by any other multistrate§$. This
throughput in Figure 1 shows that this property holds. lthen implies thaf can be chosen such that for any5) holds.

addition we can introduce the following assumptions. Indeed, assume that under afighat maximizes the potential,
Al (resp., Als):R°(-) is concave (resp., strictly concave) andhere are some and ¢/, such thatk¢(S) — k¢ (S) > 1. Now
Re(0) > 0. consider the policyS’ obtained from policyS by transfer-
A2 (resp., A2s): R°(+) is nonincreasing (resp., strictly nonin-ing one radio transmission from to ¢’. Then S majorizes
creasing). This was the case suggested in [3]. S’. Since G is Schur concave, it follows by definition that
Then the following is easily shown to be true. G(S") > G(S). Since S maximizesG this is only possible
Lemma 4.2:We have the following results: when in factG(S’) = G(S). By repeating this procedure

1) If either A1 or A2 hold then@ is decreasing irk. we obtain a policyS that maximizesG and satisfies (5).

2) If either Als or A2s hold thepﬁ“k(_k) is strictly decreas- The second part follows since in this caSeis strictly Shur
ing in k. concave. <o
Proof.

1) Indeed, if Al holds, then, foks, > k; > 0, using
concavity of R°(-)

D. Convergence of the single user improving policy

The Single User Improving Policy (SUIP) is the following.
Consider any strictly increasing time sequeriGe where at
R(ka) — R°(k1) < R¢(k1) — R°(0) eachT,, one user changes its strategy so as to strictly improve

ko — k1 = ki —0 its own utility.




We restrict without loss of optimality to the reduced gamél), and settingG(0) = 0, we obtain (by induction) the
defined in the previous subsection. It is a potential ganfel/lowing expression that a potenti@d has to satisfy: Let
where the potential is given by (4). Hence at each improvémenbe an integer not greater thaN, and define the policy
step of the SUIP policy by a user, the potential strictly’ = (s1,...,s;,0,...,0). Then
increases (by the same amount as the improvement of the ; ;
payoff of the user). Since there are finitely many strategies s) = Z[G(Si) —G(sY)] = Z[Ui(si) — Uy(si )],
in S, after a finite number of improvements the potential will
reach a maximum. The strategies of the users at this maximum j
are in Nash equilibrium; a deviation of a single user that \dou - Z Ui(s"). 7)
improve that user’s utility is not possible anymore (sinoets P
a deviation would mean that the potential can further inee¢a In

Note that while the potential increases at each improvement
step by some user, say usgrthe utilities of the other users N ,
need not improve as a result of the deviation of user G(5) = Z Ui(s"). (8)

=1

i=1 i=1
particular, for any policyS we have

V. ADDITIONAL RESULTS But (8) should further be independent of the order: for any

As we saw in the last section, if the network uses the FSpérmutationr : N/ — N we require
policy, the users can restrict without loss of optimalitythe N
restricted game. It is evident that the same results apply to G(S) = ZUi(Sﬁ(i)). 9)
the FSR policy if the strategies are restricted so that eaen u p
deploys 1 or 0 radio on each channel.

We assume throught this section that the problem is sy
metric. In particulard® are the same functions for all channel§
¢, and the players havg; = \.

Rut this is not always the case. This is illustrated in thetnex
xample.
Example 5.1:Consider a single channel with 2 users. The
total number of radios is: + y, because user 1 hasradios
A. Global optimization and user 2 hag radios. Then the utility obtained, using the

Theorem 5.1:Consider either the FSR policy with the reFFSR model, by each user is:
stricted strategies or the FSU policy, _ _
(i) Assume that Assumption Al holds. Thén(S) is Schur Di(@,y) = zdz +y), and Uale,y) = yd(z+y),
concave, and there exists an optimal strat8gsatisfying (5). because the total bit rate is shared among the total number of
(ii) If Assumption Als holds thef/ is strictly Schur concave, radios. Given relation 9, in order to be a potenti@l should
and a necessary condition for a strategyto be optimal is satisfy the two permutations:
that (5) holds. GUS) — U (1) + U (82) — U (82) 4 U (s

Proof of Theorem 5.1. (8) =U(s") + Ua(s7) = Un(s7) + Uals),
Define g(x) = R°(x) — xA. Theng is also concave, and thewith s' = (z,0) ands? = (z,y). But
global utility U has the form (in the FSR case with restricted

strategies and the FSU case) Ur(z,0) + Ua(x,y) = wd(z) +yd(z +y),
Ic| and
u(s) = ; g(k*(S))- ©6) Ui(z,y) + Us(z,0) = zd(z+y).

It then follows Proposition 3.1 thal/(S) is Schur concave. We observe that both expressions are different in the FSR

The rest follows from the same steps as those in the proofrobdel whered(z) = RT(E).

Theorem 4.3. o Then we conclude that in the setting with the FSR model,
Note that the Schur concavity @f allows us to obtain not we do not have a potential game.

only the structure of optimal policies, but also to compdre t

. " VI. BACKWARD LEARNING ALGORITHM
performance of two non-optimal policies, whenever one ef th

policies majorises the other. In [5], the authors propose three algorithms to enable
the selfish users to converge to a Nash Equilibrium. Their
B. The game problem for FSR algorithms use different set of available information. st

We consider the FSR model without the restricted strategi@me is a centralized where each user has perfect information
Assume that a strategy is such that for every, |k¢| radios about the number of radios on each channels. The second is
use channel. Then we can show by induction over the numbatistributed and each user has also perfect informationtegheu
of players thatG(S) as given in (7) can be expressed as (4pverall system. The last one considers imperfect inforomati
Note that for any uset and any strategy5_; of other where each user knows the total number of radios only on
players,U;([0, S—;]) = 0, where0 stands for the strategy of those channels on which he operates. Due to the insufficiency
player: that does not use any radio. Hence, using repeatediy the local information, the system can be stabilized at a



false Nash equilibrium, i.e., a stable point in which locakith S\'s; = s11,...,8-1.K,Si+1.1,- -, SN,k describes the
information might be insufficient for the players to detemmi actions of all users but not usér\We have also the expected
if it is a Nash equilibrium. In order to solve this problemegh Ulility of useri choosing the channelfor his radiok:

allow each user to change a channel even if it is not necessary N oK K _

This mechanism induces convergence to a Nash equilibrid@:)c,x(P) = Z Ui(S)s; ree H H(P”)si,k,k H (P")s; 105
with high probability but it does not stay in a Nash equililri S\sik J=1j#i k=1 I=1,1#k
solution. One can observe in their simulation that even if g.

Nash caibrm i reache, theagorm s and carseag oot o i Lo e
this stable pqlnt. For the last two algorithms, they conswdglse”._ Note that we have the following relation:

only the restricted game.

We propose here an algorithm which always converges to , Ko
a Nash equilibrium for the game with the FSU model and in 9'(P) = Z His, (P) H(PZ)SI.JW,C,
the restricted game with the FSR model. This algorithm is 8i1ses84, K k=1
specifically related to cognitive radio technology [7] besa c .
each user’s decision is taken considering past perceivkty ut = Z(Hi)cﬂk(P)(Pl)c,k'
aslearning process This algorithm, provided in [24], is dis- e=1

tributed and needs no information. Learning is one impdrtan We describe the totally decentralized algorithm defined
specificity of cognitive radio technology [14], [17] and isin [24] adapted to our multi-decision game where each player
often ignored in the study of such wireless networks usirgjrategy is a matrix.
normal form game model such as in [25]. This algorithm has 1) Set an initial mixed strategy probability matri;(0),
been used in [28], for the study of a power control allocation for each usef = 1,..., N.
problem. . _ 2) Atevery time step, each user chooses a channgl(t)

It is also important to notice that the algorithm does not  for each transmittet according to its probability matrix
need a backoff mechanism as proposed in [5], that delays the  p;(¢).
convergence. Also in their algorithms, each user has to know3) Each player obtains his paydf(¢) based on the global
lots of information, like the total number of radios on each channel allocation. The utility is normalized using:
link it operates, that is very inconvenient for the deployme

of such distributed algorithm. (t) = in(t)’

A. Distributed Algorithm where M; is the maximum utility that can be perceived
The action of each player € {1,...,N} is a vectors; by useri. One user gets the maximum utility if he is the
composed ofK elements whose elements are the channel only one to transmit on each channel, then his maximum

allocation of each radio, i.e., for eaghe {1,..., K}, s;; utility is K x max, R.(x).
is the channel chosen by usefor his j*" radio (for all i, j, 4) Each user updates its action matrix probability accaydin
si; €{1,...,C}). to the following rule

Note that the iterations could pass through strategies that o (P;(t+1))cx = (Pi(t)) e — biti(8)(Pi(t)) ek if ¢ #
are not restricted. Then this algorithm can be used for both sik(t),
models, FSR and FSU. o (Pi(t+1))er = (Pi(t))er + bii(t)(1 — Pi(t))e-

The strategy of any user is a probability matfit) of size  5) A stopping criterion met; else go to step 2.

c x K v;/]heree(&P;(t)t)ﬁ,k trepres&_—:‘t?t;thtetprobalbltlgtyvv) r(t;sz‘eo{ The normalization process in step 3 ensures that the updated
using channet for the transmitiel at ime slote. Ve denote probabilities described in step 4 lie in the interval ]0,Mipte

by sik(t) the channel used by usérfor his transmitterk that depending on the system, the valueléf, the maximum

3t tlrr:e EI(])Dttt.hThe ﬁarameteﬂ < db <fti17;’5 thi_Ster;D_S'_Zri‘ we of the utility of useri, can be not known in advance and has
enote byP the vector composed o matricesP;. Then, o octimated [28].

ﬂ}e Ielxrz[ﬁcted utility 0(; ﬁllayez'r de_p.endlng on mixed strategies In [24], the authors prove that ds— 0, the sequence of
ot all oIher users and nis own 1s- probabilities converges weakly to solution of the follogin

. NoOK o ordinary differential equatiowi, c, k:
g'(P)=>_"U(S T TT(P)sist 4P
i=1 k= i)e,k o
s =t dt = (Pi)c,k Z(Pi)s,k[(Hi)c,k(P) - (Hi)s,k(P)]a
whereS = (s1,1, 51,2, - - -, Sn,k) IS the vector all decisions of s#c

all users, of lengthV x K. The expected utility of usef, if Wwhere P(t) denotes the the channel allocation strategy at

he chooses actios; = (s;.1, $i.2 - - -, Si,i) IS defined as: time ¢ (a matrix of sizeC' x K x N) and (H;).x(P), the

N K expected utility of uset for choosing action channelfor the
H;,,(P) = Z U;(S) H (Pj)si,k,k, transmitterk. Then, they show that (a) all stationary points that

S\s; j=1,j#i k=1 are not Nash equilibria are unstable and (b) all pure stiaseg



that are strict Nash equilibria are asymptotically staldg. all solutions converge to some stable stationary points and
contradiction, we state the following result. as from theorem 6.1, all stable stationary points are Nash
Proposition 6.1 ( [24]): The algorithm does not convergeequilibria, the result follows.
to a stable channel allocation which is not a Nash Equilibriu o
It is equivalent to say that a stable stationary point must This kind of result is obtained in [22] in the context of
be a Nash Equilibrium. The problem is that the algorithm cgsopulation game with the continuous version of the poténtia
exhibit limit cycle behavior. Hence, in [24] (Theorem 3.8t
authors propose a necessary condition for convergence, @dNumerical applications
they propose an example when users have a common payo
which is the case here considering the FSU scheduling polic
with the same unit energy cost.
Proposition 6.2: The learning algorithm, for any initial

fﬁ’n this section we consider the following parameters: num-
Xr of usersN = 3, number of channel®’ = 4, number

of radios per userK = 3. The stopping criterion for our
distributed algorithm is that

condition P;(0) for each usei = 1,..., N, always converges
to a Nash equilibrium in the case of FSU or the restricted max(|(B)er(t) — (Pt — 1)) < 10~9
game with FSR. ek ¢ ¢ ’

Proof of Proposition 6.2.We use the potential functio¥

defined in (4) in order to construct the following function: and the updating parameterdis- 0.1. We compare different

rate functions obtained from different network managenoent
wireless technology.

F(P) = Z H H 1) sk 1) FSU and constant rate functioniMe consider as spec-
$1,1,81,2,-,8N, K i=lk=1 ified in [5] the constant rate functioR.(z) = 1Mbps. We
This function has the following property: take the cost per radio is = 0.1.
OF . FP)pypre —F(P) A
) T : ST
We have:
Av = Z Gi(S)ls Si,k=¢ H H(P )S]kk H (P )51ZL(PCk+t) :Zz
s\s; & j=1 k=1
J#i l¢k
N K K
R I [ | (G T ) (U YU
s\, k j=1 k=1 =1 o
J#i 1#k Fvw»
N K y”"“
- ¢ e I T [T y
S\ K j=1 k=1 i L :
J#i l#k b, ,)«rw
= t(Hi)ex(P). : S
Then we obtain:
Fig. 2. Radios position of user 1 radios at the NE whes: 0.1.
OF
P) = (H;)er(P).
8(Pi)c,k( ) ( ) ,k( )

We observe on figures?2 that at equilibrium, the user 1 puts

Combining this result with the ode (10), we have: his radios on channels 3, 4 and 2. The nash equilibrium is:

iF OF  d(Pi)ey « for user 1, one radio on channels 3, 4 and 2,
. 8(P)c L dt « for user 2, one radio on channels 3, 2 and 1,
« for user 2, one radio on channels 1, 4 and 3.
= Z 8(13 " (Pi)e,k Z(Pi)s,k[(Hi)c,k(P) — (Hi)s,k(P)], We observe that all users have decided to use all their radios
s#e We now increase the cost by = 0.3. We observe now that
= ZZ ek (P)s.el(Hi)er (P)? — (Hy)en(P)(H;)s 1 (P)),the algorithm converges to the following nash equilibrium:
bek se « for user 1, one radio on channels 2, 1 and 3,
= ZZ ek (P)s il (Hi)ek(P) — (Hi)s x(P))? > 0. « for user 2, one radio on channels 2 and 4, and his last
ik s>c radio is not used,

We have proved that the functidhi is nondecreasing along ¢ for user 2, one radio on channels 3, 4 and 1.
the trajectories of the ode. Then all solutions of the odé wil Then the total number of radios on each channel is 2 and
be in the set of probabilities such théj?(P) = 0. Thus one user uses only 2 of his 3 radios.



2) FSR and IEEE 802.11 DCRJsing the FSR model we [8] A. Kumar, D. Manjunath, and J. KurMireless NetworkingMorgan-

don’t have the proof of the convergence of the distributei
algorithm because we cannot use a potential function (isdo
not exist). We still observe the convergence of the distabu

algorithm in this numerical example. (10]
Radio 3
5 [11]
4 -
=
AN [12]
< 3 f
s |/
£ [13]
&
©,
Radio 10 1000 2000  Raed2 (14]
5 itn@ﬁnn
[15]
- 4 4
8 16
£, 3 (el
o
5}
g2 2 —
£
9 1\3‘(]\ 1 [17]
o e o 1e]
0 1000 2000 3000 O 1000 2000 3000
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[19]
Fig. 3. Radios position of user 1 radios at the NE whes 2. [20]
VIlI. CONCLUSIONS 21]

This paper considers a resource allocation problem where
several users, equipped with multiple radios, share in & m
tichannel wireless access. We study two model of network
allocation strategy and we prove the existence of a well knd&]
structure of congestion game in one model. Therefore we
find properties of the equilibrium strategy and finally weoq
propose a totally distributed algorithm that converge toasiN
equilibrium of this resource allocation game.
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