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Abstract: Numerous techniques for optimal performance of an IEEE 802.11 WLAN have been investigated. These
techniques make use of either power control or PHY (physical layer) rate control or both to achieve maximum
throughput levels for the network at minimum power consumption. However most of these techniques are non-
cooperative by definition. Here, we analyse cooperative and non-cooperative rate and power control in an 802.11
WLAN that uses the Distributed Coordination Function (DCF). We formulate a payoff function comprising of the
throughput and costs related to power consumption. The payoff function is optimized and closed form expressions
for the optimal PHY rate are obtained. In the cooperative approach we seek to obtain the optimal rates under two
different scenarios –max-min fairrate andglobal multirateallocation. In the non-cooperative approach we consider
only multirate allocation. We consider optimization problems for both finite number of nodesn and for the limit
n → ∞ and obtain explicit expressions for the optimal PHY rate. Single node throughputs corresponding to the
optimal PHY rates are numerically studied and it is observed that network performance in the cooperative scenario
is superior to that in the non-cooperative scenario.
Keywords: IEEE 802.11, PHY rate, power control, WLAN, bandwidth sharing, GPS queue

1. INTRODUCTION

We analysecooperativeand non-cooperativepower and rate control in an IEEE 802.11 WLAN envi-
ronment, based on an explicit throughput expression [ 2] validated in [ 3] using ns2 simulations. We
consider optimizing either the achieved aggregate network throughput (cooperative approach) or an indi-
vidual node’s achieved throughput (in a non-cooperative setup) by adaptively selecting one of the available
PHY data rates. In the formulation of the optimization problems we further take into account a cost for
power consumption. We formulate a payoff functionWn for n users which comprises a utility part rep-
resenting the throughput and a cost part related to power consumption. In the cooperative case the global
payoff comprises the total network throughput and total transmission power costs of all mobile nodes is
maximized. In the non-cooperative game case, each player seeks to maximize its own payoff. The cor-
responding solution concept is then the Nash equilibrium. In the cooperative control analysis, we seek
to maximize the payoff with two different approaches: (i) obtaining an optimal fair assignment of PHY
rates, with amax-minflavor, to all nodes irrespective of their channel conditions (of course, this means
that a channel with bad conditions will have to use larger power); (ii)global multirateapproach, we allow
each node to use a different PHY rate and seek to obtain the optimal rate for each node. In this case, the
optimal PHY rate used by each node will depend on its channel conditions.

We also present a queueing model that allows us to study the dynamic behavior aspects and expected
transfer time and steady state probabilities for data transfers. Our main contribution is in obtaining explicit
expressions (or set of equations that can be solved numerically in the case ofn→∞) for the optimal PHY
rate. These expressions are then used to calculate explicit throughput values. Our discussion takes into
account both ad-hoc and infrastructure networks.
Related Work and Motivation: Application of power control in WLAN systems to minimize the required
power in thetransmit modeand adaptive selection of PHY rates has been studied by many researchers.
In [ 10] and [ 11], the authors have proposed rate adaptation algorithms–Auto Rate Fallback (ARF) and
Receiver based Auto Rate (RBAR). These are non-cooperative algorithms that use only PHY rate control
to achieve maximum throughput levels without considering any potential benefits that can be achieved by
combining power control. Some other schemes have been proposed in [ 13] and [ 14] which incorporate
only power control without considering the idea of an optimal PHY rate selection. The MiSer algorithm
in [ 12] which is based on the 802.11a/h standards, is probably one of the few algorithms that combines



the idea of PHY rate and power control. MiSer is also a non-cooperative attempt to obtain optimality by
using combined rate and power control.

Most control schemes in previous work either consider only rate control or only power control to max-
imize the application throughput. Some other schemes like MiSer use both rate and power control to
maximize the energy efficiency. However, all these schemes are valid only for a non-cooperative environ-
ment. That is, they attempt to optimize an individual node’s performance in terms of throughput or power
consumption, as mentioned before. But optimizing an individual node’s performance may cause the over-
all network performance to suffer. Interestingly, Tan et al. in [ 6] have shown that in a non-cooperative
scenario under DCF, a “rational” node may achieve a higher throughput by using a lower transmission rate
than by using a higher transmission rate, but at the expense of a reduced overall network throughput. We
will show later in Section 6 that a part of this result by Tan et al. can also be derived from our analysis.
Our contributions with respect to [ 6] are (i) we have explicit formulas for the equilibrium throughputs,
where as in [ 6] the throughputs are obtained numerically (ii) the formula used in [ 6] for the throughput
(as a function of the parameters choice) depends on the frame success rate for which there is no analytical
expression in [ 6], whereas we have an explicit expression for the frame success rate.

2. MODEL AND BACKGROUND

Our analysis is based on the results obtained in [ 2]. Let there ben active nodes in asingle cellIEEE
802.11 WLAN contending to transmit data. Each node uses the Distributed Coordination Function (DCF)
protocol with an RTS/CTS frame exchange before any data-ack frame exchange and each node has an
equal probability of the channel being allocated to it. It is assumed that there is no limit on the transmit
power of any node and that every node has infinitely many packets backlogged in its transmission buffer.
In other words, the transmission buffer of each node issaturated: there are always packets to transmit
when a node gets a chance to do so. It is assumed that all nodes use the sameback-offparameters. Letβ
denote the long run average attempt rate per node perslot (0 < β < 1) in back-off time1 (conditions for
the existence of a unique suchβ are given in [ 2]). We assume thedecoupling approximation[ 4] which
says that from the point of view of a given node, the number of attempts by the other nodes in successive
slots are i.i.d. binomial random variables with parameters(n−1) andβ. It is assumed that the decoupling
approximation and the ensuing fixed point analysis in [ 2] yield an accurate estimate of the attempt rate.
Let the MAC frame size of nodei beLi bits and let the PHY rate used by this node be denoted byCi bits
per slot. LetTo be defined as the transmission overhead in slots related to a frame transmission, which
comprises of the SIFS/DIFS, etc and letTc be defined as the fixed overhead for an RTS collision in slots.
Then it follows from [ 2] that the throughput of nodei is given by

θ(i, n) =
β(1− β)n−1Li

1 + nβ(1− β)n−1
(
To − Tc + 1

n

∑n
i=1

Li
Ci

)
+
(
1− (1− β)n

)
Tc

(1)

whereβ = β(n) (i.e.,β is a function ofn) for the case whenK →∞ is given by [ 2]

β =
ηp− LambertW (η(p− 1)eηp)

ηb0

with η = n−1
b0

. Note thatβ does not depend onLi or Ci, and all nodes achieve the same single node
throughput even if they use different rates. As is the case in IEEE 802.11, for all nodes that use an
RTS/CTS frame exchange before the data-ack frame transmission, we assume throughout our discussion
thatTo ≥ Tc. In our analysis in the following sections, we will consider optimization problems for both
finite n and for the limitn → ∞. For handling the latter case, we identify here the asymptotic aggregate
throughput asn → ∞ (this derivation can be found in [ 2] for the special symmetric case where allLi’s
andCi’s are equal). An appealing feature of the asymptotic case is theexplicitexpression forβ.
Asymptotic throughput: In our discussion we use asymptotic throughput in the following two contexts:
(i) In the max-min fair (MMF) case where we assign the same PHY rate to all mobile nodes, we consider
all nodes to be symmetric, i.e., they all use the same PHY rateC (they still may have different channel
conditions). In this case, if firstK → ∞ [ 2] and thenn → ∞, the global throughput is given by Sec.
VII.C in [ 2] as:

1If we plot transmission attempts as a function of ”real” time, and thencut outfrom the plot the channel activity periods (during
which all mobiles freeze their back-off), then the new horizontal axis is called the ”back-off time” [ 2].



τ(C) =
L
(
1− 1

p

)
1

ln
(

p
p−1

) +
(
1− 1

p

) (
To − Tc +

(
L
C

))
+ Tc

p ln
(

p
p−1

) (2)

wherep is the exponential back-off multiplier, i.e., ifbk is the mean back-off duration (in slots) at thekth
attempt for a frame thenbk = pkb0. According to the IEEE 802.11 specificationsp = 2.
(ii) In the case where we consider global multirate PHY rate assignment to all nodes, i.e., each node uses
one of thec distinct available values of the parameters (Ci, Li) with (Ci, Li) ∈ {(C1, L1), ..., (Cc, Lc)},
we derive here the corresponding asymptotic throughput. Assume that there aremi nodes using parameters
(Ci, Li). Denote byαi(n) = mi/n the fraction of the nodes using(Ci, Li) among all nodes in the cell.
Then the throughput of all nodes using(Ci, Li) is given by

θ(αi(n)) =
miβe

−nβLi

1 + nβe−nβ
(
To − Tc +

∑c
i=1

αi(n)Li

Ci

)
+
(
1− e−nβ

)
Tc

(3)

where we use the Binomial to Poisson approximated version of the throughput expression for the asymp-
totic case mentioned in Section VII.C of [ 2]. It is assumed thatαi(n) converges to a limitαi which is
a probability measure. Note that the attempt rateβ = β(n) and the collision probabilityγ as defined in
[ 2] are not functions ofLi norCi. Now, first takingK → ∞ [ 2] and then taking the limitn → ∞, it

can be observed thatlimn→∞ nβ(n) ↑ ln
(

p
p−1

)
(see Theorem VII.2 in [ 2]). Combining this result with

Equation (3) we get asn → ∞ the following expression for the aggregate throughput of all nodes using
(Ci, Li):

τ(αi) =
αiLi

(
1− 1

p

)
1

ln
(

p
p−1

) +
(
1− 1

p

)(
To − Tc +

∑c
i=1

(
αiLi
Ci

))
+ Tc

p ln
(

p
p−1

) (4)

DenoteEα[L/C] =
∑c

i=1
αiLi
Ci

andEα[L] =
∑c

i=1 αiLi. Then it follows from Equation (4) that the
asymptotic global throughput is given by

τ(α) =
Eα[L]

(
1− 1

p

)
1

ln
(

p
p−1

) +
(
1− 1

p

)
(To − Tc + Eα[L/C]) + Tc

p ln
(

p
p−1

) (5)

3. DEFINING THE PAYOFF FUNCTION

In an efficiently working WLAN, the goal of the mobile nodes is to achieve maximum throughput lev-
els with minimized power consumption costs. In a cooperative scenario, the nodes should cooperate to
achieve maximum overall network throughput at minimum combined power consumption. If each node
uses the highest available PHY rate, which is say common for all nodes, it may not be the best strategy
to achieve the most efficient overall network performance. The reason being that under the given channel
conditions, a node may be unnecessarily consuming more power by transmitting at the highest available
rate if transmitting at a lower PHY rate does not degrade the combined network throughput. Based on this
thought and the fact that under DCF, each node has an equal probability of gaining access to the channel
we define a long-term payoff functionWn for n active nodes in the WLAN as

Wn :=
n∑
i=1

(θ(i, n)− ζiQi(Ci)) (6)

whereθ(i, n) is the throughput of nodei as defined in Equation (1).Qi(Ci) is a cost related to the
power consumption of nodei and is a function of the PHY rateCi andζi is a weight that gives relative
importance for nodei to the cost versus the throughput. Note that, maximizing this payoff function
leads to maximizing the throughput and minimizing the costs related to power consumption. Experiments



conducted by Gruteser et al. in [ 7] with IEEE 802.11 equipment reveal that under given channel conditions
and a low transmission power range, the power consumed by a mobile node can be approximated as being
linearly proportional to the PHY rate used. Consequently,Qi(Ci) can be considered as a linear cost
function of the form:Qlini (Ci) = aiCi, whereai is a random variable that may depend on the path
attenuation under given channel conditions. Next, motivated by the Shannon’s theorem and assuming
an AWGN channel that uses complex symbols , the transmission rate of a node is of the formC(π) =
W log2

(
1 + π

z

)
, whereW is the passband spectrum inHertz. π is the transmission power of the node and

z = WNo/h, whereNo is the one-sidedpower spectral densityof the channel noise andh is a random
variable that characterizes the signal attenuation.z is therefore a random variable that may depend on
channel fading and shadowing. The previous equation can be rewritten as:π(C) = z(eψC − 1), where
ψ = ln2

W . It has also been seen in the results of the experiments in [ 7] that the power consumed by
mobile nodes is piecewise linearly proportional to the transmission power. Therefore, an exponential cost
Qexpi (Ci) can be assumed, which is of the form:Qexpi (Ci) = zi(eψCi − 1). From the definitions ofai and
zi in the foregoing discussion it is evident that their values may vary from one mobile node to another. We
denote the expected values ofai andzi byE[ai] andE[zi].

4. COOPERATIVE APPROACH

In the cooperative approach to PHY rate and power control, we shall consider two different scenarios. In
the firstmax-min fairscenario, we assign each node the same PHY rateC and MAC frame sizeL at all
channel states. This will of course require an appropriate power control so that in bad channel conditions
the transmitted power is larger. We seek to obtain the optimal PHY rate that will maximize the overall
payoff of the network. As discussed before, an optimal PHY rate may not be the highest available PHY
rate. In the secondglobal multiratescenario, we allow each node to use a different PHY rateCi depending
on its channel conditions and we seek to obtain the globally optimal PHY rates for all nodes. In both the
scenarios, it is assumed that all nodes use the same MAC frame sizeL. We will pursue analysis for finite
n number of nodes and also consider the situation whenn → ∞ for both cases. We shall consider the
set of possible values ofC or Ci, as the case may be, to lie in an interval of the formC := [Cl, Cu]. In
802.11a, this interval could be[6, 54].

4.1. Obtaining the max-min fair PHY rates

A max-min assignment of resources to users is a fairness concept characterized by the property that no
useri can be assigned more resources unless we decrease the assignment to another userj who already
has the same amount or a lesser amount of resources than useri. This is an efficient assignment in the
Pareto sense. In our case it is the PHY rates that are assigned according to the max-min approach leading
to an identical assignment to all users. Note that the actual throughputs are already the same for all users
even if the PHY rates are different.
Finite number of nodes: We seek to maximize the payoff function defined in Section 3 while assigning
the same PHY rateC to each node irrespective of the channel conditions. Consider the following problem:

FindC∗ that maximizesWn :=
n∑
i=1

(θ(i, n)− ζiQi(C)) (7)

Wn is concave with respect toC (see [ 1] for proof) and thus has a unique maximizerC∗. In particular, we

have the linear and the exponential costs as:Qlini (C) = E[ai]C, Qexpi (C) = E[zi]
(
eψC − 1

)
. Denote

ulin =
∑n

i=1 ζiai and uexp =
∑n

i=1 ζizi and set

q1 = nβ(1− β)n−1L, q2 = 1 + nβ(1− β)n−1(To − Tc) + (1− (1− β)n)Tc (8)

Then W lin
n (C) =

q1
q2 + q1/C

−E[ulin]C W exp
n (C) =

q1
q2 + q1/C

−E[uexp]
(
eψC − 1

)
(9)

By differentiating the payoff w.r.t.C and equating the derivative to zero, we get the following results:

(i) In the linear case, the unique positive solution ofdW lin
n (C)
dC = 0 is given by

C∗ =
q1
q2

(
1√

E[ulin]
− 1

)
(10)



provided that0 < E[ulin] < 1. If E[ulin] ≥ 1 then there is no positive solution.

(ii) In the exponential case the unique positive solution ofdW exp
n (C)
dC = 0 is given by

C∗ =
2
ψ
LambertW

(
1
2
q1
q2

√
ψ

E[uexp]
exp

(
1
2
q1
q2
ψ

))
− q1
q2

(11)

See [ 1] for the definition ofLambertWfunction. In either the linear or the exponential case, ifC∗ lies
within C then it is the unique globally optimal rate assignment solution for problem (7). If not, then the
optimal solution is obtained on one of the two boundary points ofC. We defer the discussion on the
numerical computations ofC∗ to Section 6.
The asymptotic case:We present below the asymptotic behaviour for large number of mobile nodes. Our
optimization will be based on the expression for the asymptotic throughput given by Equation (2). Here
we assume thatai, zi andζi have the same distribution for all mobiles. Consider the following problem:

FindC∗ that maximizesW (C) := τ(C)− ζQ(C) (12)

whereQ(C) = E[a]C for the linear cost andQ(C) = E[z]
(
eψC − 1

)
for the exponential one.W (C)

turns out to be concave inC (see [ 1] for proof) and therefore it has a unique maximizer. WritingW (C)
for the linear and exponential case as

W lin(C) =
q1

q2 + q1/C
− E[a]C and W exp(C) =

q1
q2 + q1/C

− E[z]
(
eψC − 1

)
where q1 = L

(
1− 1

p

)
, q2 =

1 + Tc/p

ln
(

p
p−1

) +
(

1− 1
p

)
(To − Tc). (13)

Then the optimalC is obtained by differentiatingW lin(C) andW exp(C) and equating them to zero,
which gives the following unique positive solution for the linear and exponential cases, respectively:

C∗lin =
q1
q2

(
1√
ζE[a]

− 1

)
, C∗exp =

2
ψ
LambertW

(
1
2
q1
q2

√
ψ

ζE[z]
exp

(
1
2
q1
q2
ψ

))
− q1
q2
.

If C∗ lies withinC then it is the unique globally optimal rate assignment solution for problem (12). If not
then the optimal solution is obtained on one of the two boundary points ofC. Also note thatC∗ here has
the same form as in the finiten case but with differentq1 andq2.

4.2. The dynamic case

So far we have considered a fixed number of mobile nodes in the system. In this section we consider
a dynamic setting. Let mobiles arrive in a WLAN system according to an independent Poisson process
with rateλ. Thenth mobile is assumed to have a service requirementσn whereσn are i.i.d. generally
distributed.
Max-min fair case: We assume that the assignment of physical rates follows the max-min fairness ap-
proach, so that the physical rate of each mobile node is given byC(n), wheren is the number of mobiles
in the system;n can be referred to as the system state. Then the throughput of each mobile when the
system is in staten is given by

θ(n) =
β(1− β)n−1L

1 + nβ(1− β)n−1
(
To − Tc + L

C

)
+
(
1− (1− β)n

)
Tc

(14)

Since all mobiles use an identical MAC frame sizeL in the max-min fairness approach and hence theo-
retically achieve the same throughput, the whole network can be viewed as anM/G/1/∞ queue where
the service discipline is a generalized processor sharing (GPS) [ 9]. If we denoteρ := λE[σ0] and define
φ(n) = 1/

∏n
i=1 θ(i) then applying the general theory of [ 9] for GPS queues, we obtain the following

expressions for the steady state probabilities and sojourn times:



Theorem 4.1 Assume that
∑∞

i=1 ρ
iφ(i)/i! < ∞. Then the steady state probabilities exist. They, as well

as the expected sojourn time of a mobile are given by

Pr(N = n) =
ρnφ(n)

n!
∑∞

i=0
ρi

i! φ(i)
, E[T ] = E[σ]

∑∞
j=0

ρj

j! φ(j + 1)∑∞
j=0

ρj

j! φ(j)

Remark 1 Using [ 9] one can in fact (i) obtain explicit expressions for the QoS of more complex arrival
process, and in particular for on/off sources having general thinking times, (ii) obtain explicit expressions
for the case when there is a limit (enforced by a call admission control) on the number of active mobiles.
Proportional fairness: We next consider the case in which the MAC frame sizeLi is not identical for all
nodes but is taken to be proportional to the PHY rateCi, so thatΩ := Li/Ci does not depend oni. Then
even if the MAC frame sizeLi is not the same for all nodes (unlike in all other cases in the paper), we still
get the throughput of each node in terms ofpackets per secondto be identical and is given by:

θ(n) :=
θ(n)
Li

=
β(1− β)n−1

1 + nβ(1− β)n−1 (To − Tc + Ω) +
(
1− (1− β)n

)
Tc

(15)

Now, (i) Theorem 4.1 still holds withθ(n) replacingθ(n) in the definition ofφ(n), and (ii) the expected
sojourn time of mobilei is given by:

E[Ti] =
E[σ]
Li

∑∞
j=0

ρj

j! φ(j + 1)∑∞
j=0

ρj

j! φ(j)
.

4.3. Global multirate (channel dependent) optimization

In this section we consider the global optimization in which we allow each node to use a different PHY
rateCi and we seek to obtain the best choice ofCi, i = 1, ..., n. We assume that all values ofE[ai],E[zi]
andζi are known by the decision maker. By allowingCi to differ from one node to another we expect to
achieve higher efficiency.
Finite number of nodes, channel-dependent case:Consider the following problem:

FindC∗ = (C∗1 , ..., C
∗
n) that maximizesWn :=

n∑
i=1

(θ(i, n)− ζiQi(Ci)) (16)

whereθ(i, n) is defined by Equation (1). Then we have,

W lin
n =

q1

q2 + q1
n

∑n
i=1(

1
Ci

)
−

n∑
i=1

ζiE[ai]Ci and W exp
n =

q1

q2 + q1
n

∑n
i=1(

1
Ci

)
−

n∑
i=1

ζiE[zi](eψCi−1)

(17)

whereq1 andq2 are defined in (8). Define

qi2 = q2 +
q1
n

n∑
j=1,j 6=i

1
Cj
, Ĉ =

(
n∑
i=1

1
Ci

)−1

and H(Ĉ) =
q21(

q2 + q1
nĈ

)2
n
.

With these definitions and by differentiatingW lin
n we get

∂W lin
n

∂Ci
=

nq21
(nqi2Ci + q1)2

− ζiE[ai] =
q21(

q2 + q1
nĈ

)2
nC2

i

− ζiE[ai] (18)

and similarly by differentiatingW exp
n we get

∂W exp
n

∂Ci
=

nq21
(nqi2Ci + q1)2

− ψζiE[zi]eψCi =
q21(

q2 + q1
nĈ

)2
nC2

i

− ψζiE[zi]eψCi (19)

Now by equating the derivatives in Equations (18) and (19) to zero, we obtain:



(i) In the linear case, we get from Equation (18)

Ci =

√
H(Ĉ)
ζiE[ai]

and also, Ĉ =

(
n∑
i=1

√
ζiE[ai]
H(Ĉ)

)−1

=

√
H(Ĉ)

Y
, whereY =

n∑
i=1

√
ζiE[ai]

(20)

which implies that the solution̂C∗ is given byĈ∗ = 1
n
q1
q2

(√
n
Y − 1

)
. Substituting the solution of

this equation in (20) gives theC∗i ’s.
(ii) In the exponential case, we get from Equation (19)

Ci =
2
ψ
LambertW

1
2

√
ψH(Ĉ)
ζiE[zi]

 (21)

Therefore, using the definition of̂C, Ĉ∗ is the solution ofĈ = 2

ψ

n∑
i=1

LambertW
1

2

√
ψH(Ĉ)
ζiE[zi]

−1

which yields theC∗i ’s through (21).
The above solutions are globally optimal provided they are within the rangeC. We defer the discussion on
the numerical computations ofC∗i ’s to Section 6.
Large number of nodes:To model the case of a large number of users we shall use a fluid approximation
in which there are (non-countably) infinite number of users. (This type of approach is frequently used in
other engineering fields, see e.g. [ 5].) We introduceR population classes of mobiles. The parameterz
in the exponential cost function will be the same for all mobiles of the same typer, r = 1, 2, ..., R so that
mobiles belonging to a given classr have the same channel conditions. We shall thus use the notationz(r)

to indicate this dependence. We shall use similarly the notationa(r) for the coefficient appearing in the
linear cost. In short, mobiles with the same value of(a(r), ζ(r)) (in the linear case) or(z(r), ζ(r)) (in the
exponential case) are said to belong to the same class of mobiles having identical channel conditions.

We define for eachr the vectorx(r) = (x(r)
1 , ..., x

(r)
c ) to be the amount ofr-type mobiles that use each

of the ratesC1, ..., Cc. Definex = (x(1), ...,x(R)) to be a multistrategy for all mobiles. With some abuse

of notation, letxi :=
∑R

r=1 x
(r)
i denote the global amount of mobiles that use the rateCi underx. Denote

ν to be the total amount of users. Thenν =
∑c

i=1 xi. Defineαi(x) = xi/ν. It follows from Equation (5)
that

τ(α(x)) =
Eα(x)[1]q1

q2 + q1Eα(x)[1/C]
=

νq1

νq2 + q1
∑c

i=1 xiC
−1
i

whereq1 and q2 are given by Equation (13). To simplify, we shall denoteτ(x) = τ(α(x)). Define

Q
(r)
i (x(r)

i ) = a(r)Ci for the linear cost andQ(r)
i (x(r)

i ) = z(r)
(
eψCi − 1

)
for the exponential cost. Then

our problem of maximizing the payoff function turns out to be a non-linear optimization problem defined
by:

max
x

W (x) whereW (x) := τ(x)−
R∑
r=1

ζ(r)
c∑
i=1

x
(r)
i Q

(r)
i (x(r)

i )

=
νq1

νq2 + q1
∑c

i=1

(∑R
r=1 x

(r)
i

)
C−1
i

−
R∑
r=1

ζ(r)
c∑
i=1

x
(r)
i Q

(r)
i (x(r)

i )

subject to
c∑
i=1

x
(r)
i = gr,∀r, x

(r)
i ≥ 0,∀i, r

wheregr is the predefined constraint on the number of mobiles in classr. Describing the solution for this
problem is outside the scope of this paper. However,W (x) turns out to be concave and the feasible set is
compact. We conclude that there exists a unique solution.



5. NON-COOPERATIVE GAME

In this section we analyse the non-cooperative behaviour of mobile nodes. We shall model this situation
using non-cooperative game theory and obtain the equilibrium. Here we will consider only the case when
there are finite number of nodesn (see [ 1] for the asymptotic case). In a non-cooperative setting, each
node uses the same MAC frame sizeL and is allowed to use a different PHY rate as in the global multirate
allocation in the cooperative approach. But here the objective of each node is to maximize its individual
payoff function which can be denoted byΩi(Ci) and defined as

Ωi(Ci) = θ(i, n)− ζiQi(Ci) (22)

For everyi, Ωi is concave w.r.t.Ci and continuous w.r.t.Cj , j 6= i. It then follows from Rosen [ 8] that
a Nash equilibrium exists. In particular, we shall be interested in the linearQlini (Ci) = E[ai]Ci and the
exponentialQexpi (Ci) = E[zi]

(
eψCi − 1

)
cases. We have

∂Ωlin
i

∂Ci
=
H(Ĉ)
nC2

i

− ζiE[ai],
∂Ωexp

i

∂Ci
=
H(Ĉ)
nC2

i

− ψζiE[zi]eψCi (23)

These are the same equations as we had in Section 4.3 except an extra factor ofn in the denominator.
Equating them to zero:

(i) For the linear case:̂C∗ = 1
n
q1
q2

(
1
Y − 1

)
, whereY is the same as defined in (20) andC∗i ’s are

obtained from

Ci =

√
H(Ĉ)
nζiE[ai]

. (24)

(ii) Similarly for the exponential case, we obtain̂C∗ as a solution of

Ĉ =
2

ψ
n∑
i=1

LambertW
1

2

√
ψH(Ĉ)
nζiE[zi]

−1 which yields C∗i =
2
ψ
LambertW

1
2

√
ψH(Ĉ∗)
nζiE[zi]



(25)

We defer the discussion on the numerical computations ofC∗i ’s to Section 6.

6. NUMERICAL STUDIES

In this section, we numerically examine the closed form expressions for the optimal transmission rates
obtained in the previous sections. We also examine the corresponding single node throughputs and overall
payoffs. We compute the optimal transmission rates, throughputs and payoffs as a function of number of
nodesn (see[ 1] for variation with frame sizeL). Since we considerC or Ci, to lie in the continuous
intervalC := [Cl, Cu], we don’t getC or Ci’s to be a set of discrete values that can be directly assigned
to nodes as per the 802.11 specifications. Consequently, if the obtained optimal rateC or Ci does not
coincide with one of the discrete values specified in the 802.11a specification i.e., one of6, 9, ..., 54Mbps,
then a discrete specified value which is closest to the obtained optimal rate can be used. We use the
following set of parameters to study the optimal transmission rates and the corresponding single node
throughputs and overall payoffs. In the linear costE[ai] is set to vary uniformly fromamini = 0.5 ∗ 10−3

to amaxi = 1 ∗ 10−3 watts per bits/slot for each mobilei. In the exponential costE[zi] is set to vary
uniformly from zmini = WNo/h

min
i to zmaxi = WNo/h

max
i where value ofW (passband spectrum) is

taken as20 MHz for an 802.11a system,No (one-sided power spectral density) is taken as5.52 ∗ 10−21

watts/Hz and for the Rayleigh fading casehmini = 10−11 andhmaxi = 10−8. The back-off multiplier
p = 2 andb0 = 16 slots inbk = pkb0. The data frame transmission overheadTo = 52 slots, the RTS
collision overheadTc = 17 slots and the MAC frame sizeL = 12000bits(1500bytes). The slot size is
taken as20µs andK = 10 [ 2]. For simplification the parameterζi is taken to be the same for all nodes



i = 1..n. The values are displayed below each plot. The plots obtained from the numerical computations
are presented at the end of the paper.
Comparison between cooperative and non-cooperative solutions:In the PHY transmission rate plots
(Figure 1- 3 and 7- 9), we observe that the optimal PHY rate of each node decreases with increasing
number of nodes. It can be seen that in the cooperative global multirate and non-cooperative multirate al-
locations, for a given number of nodes, each node is assigned a different rate depending on the parameters
E[ai] andE[zi] for channel conditions. The curvature along the “node index” axis is more significant in
the exponential case than in the linear case due to the inherent form of the solution for the exponential
case that consists of a “LambertW” function representation. When we have alinear cost associated with
the power consumption, then forn = 2, the single node throughput in the cooperative global multirate
case (Figure 5) is around11% higher than in the non-cooperative multirate case (Figure 6). In fact with
increasingn the single node throughput percentage gain in the cooperative global multirate scenario over
the non-cooperative multirate scenario goes from11% for n = 2 to up to more than200% for n = 10.
When the cost associated with the power consumption isexponentialthe single node throughput percent-
age gain in the cooperative allocation (Figure 11) over the non-cooperative allocation (Figure 12) varies
from around12% for n = 2 to up to100% for n = 10. We also observe that the cooperative max-min fair
scheme (Figure 4, 10) performs almost equally well as the cooperative global multirate scheme ( Figure
5, 11). These observations clearly illustrate that cooperative PHY rate allocation strategy results in higher
single node throughputs and hence higher total network throughput as against a non-cooperative strategy.
Our analysis thus confirms the results obtained by Tan et al. in [ 6]. Indeed the DCF protocol under a
non-cooperative setting is not efficient.

7. CONCLUSION AND FUTURE WORK

We have analysed cooperative and non-cooperative rate and power control in an IEEE 802.11 WLAN. We
consider both cooperative and non-cooperative scenarios by optimizing a payoff function that comprises
of the throughput and costs related to power consumption. It is observed through numerical studies that
cooperative control is more efficient than non-cooperative control. With a linear cost approximation, the
single node throughput in the cooperative approach is observed to be11% to 200% more than in the
non-cooperative game approach. The improvement varies from12% to 100% in the exponential cost
approximation case. Thus a first glimpse of cooperative and non-cooperative control in an 802.11 WLAN
by our analysis shows that the currently used mandatory DCF protocol in 802.11 does not perform with
the highest efficiency in a non-cooperative setting. Our future work will include designing an efficient
cooperative rate and power control algorithm based on the analysis illustrated in this paper. The algorithm
should bedistributedin the lines of DCF so that it can be used in both ad-hoc and infrastructure networks.

REFERENCES

1. E. Altman, A. Kumar, D. Kumar, R. Venkatesh, ”Cooperative and Non-Cooperative Control in IEEE
802.11 WLANs”, Research Report, INRIA, Sophia Antipolis, France, March 2005. Available at: http://www-
sop.inria.fr/maestro/personnel/Dinesh.Kumar/

2. A. Kumar, E. Altman, D. Miorandi and M. Goyal, ”New insights from a fixed point analysis of single cell IEEE 802.11
WLANs”, Proceedings of IEEE Infocom, Miami, USA, March, 2005.

3. R. Venkatesh, A. Kumar and E. Altman, ”Fixed point analysis of single cell IEEE 802.11e WLANs: uniqueness, multista-
bility and throughput differentiation”, ACM Sigmetrics, June 6-10, 2005, Banff, Alberta, Canada.

4. G. Bianchi, “Performance analysis of the IEEE 802.11 distributed coordination function”,IEEE Journal on Selected Areas
in Communications, 18(3): 535-547, March 2000.

5. Patriksson, M., “The Traffic Assignment Problem: Models and Methods” P.O. Box 346, 3700 AH Zeist, The Netherlands:
VSP BV, 1994.

6. Godfrey Tan and John Guttag, ”The 802.11 MAC Protocol Leads to Inefficient Equilibria”, Proceedings of IEEE Infocom,
Miami, USA, March, 2005.

7. M. Gruteser, A. Jain, J. Deng, F. Zhao and D. Grunwald “Exploiting physical layer power control mechanisms in IEEE
802.11b network interfaces”,Technical Report, Univ. of Colorado at Boulder, December 2001.

8. Rosen, J. B. ”Existence and Uniqueness of Equilibrium Points for Concave N-person Games”Econometrica33, pp. 153–
163, 1965.

9. J. W. Cohen, ”The multiple phase service network with generalized processor sharing”,Acta Informatica12, 245–284,
Springer Verlag, 1979.

10. A. Kamerman and L.Monteban, “WaveLAN-II: A high-performance wireless LAN for the unlicensed band”,Bell Lab
Technical Journal,118-133, Summer 1997.

11. G. Holland, N. Vaidya and P. Bahl, “A Rate-Adaptive MAC Protocol for Multi-Hop Wireless Networks”,Mobicom’01,
ACM, July 2001.

12. D. Qiao, S. Choi, A. Jain and K.G. Shin, “MiSer: An optimal low-energy transmission strategy for IEEE 802.11a/h”,
MobiCom’03,ACM, September 2003.

13. J. Gomez, A.T. Campbell, M. Naghshineh and C.Bisdikian, “Conserving Transmission Power in Wireless Ad Hoc Net-
works”, Proc. IEEE ICNP’01, pp. 24-34, Nov. 2001.

14. S. Agarwal, S.V. Krishnamurthy, R.K. Katz and S.K. Dao, “Distributed power control in Ad-Hoc wireless networks”,Proc.
IEEE PIMRC’01, pp. 59-66, 2001.



Variation with n and linear cost

Cooperative Approach Non-cooperative game
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Figure 1. Using Equation 10,
ζi = 6
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Figure 2. Using Equation 20,
ζi = 9
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Figure 3. Using Equation 24,
ζi = 9
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Figure 4.Using Equation 9,ζi =
6
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Figure 5. Using Equation 17,
ζi = 9
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Figure 6. Using Equation 22,
ζi = 9

Variation with n and exponential cost
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Figure 7. Using Equation 11,
ζi = e5
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Figure 8. Using Equation 21,
ζi = e5
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Figure 9. Using Equation 25,
ζi = e5
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Figure 10. Using Equation 9,
ζi = e5
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Figure 11. Using Equation 17,
ζi = e5
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Figure 12. Using Equation 22,
ζi = e5


