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Abstract: Numerous techniques for optimal performance of an IEEE 802.11 WLAN have been investigated. These
techniques make use of either power control or PHY (physical layer) rate control or both to achieve maximum
throughput levels for the network at minimum power consumption. However most of these techniques are non-
cooperative by definition. Here, we analyse cooperative and non-cooperative rate and power control in an 802.11
WLAN that uses the Distributed Coordination Function (DCF). We formulate a payoff function comprising of the
throughput and costs related to power consumption. The payoff function is optimized and closed form expressions
for the optimal PHY rate are obtained. In the cooperative approach we seek to obtain the optimal rates under two
different scenarios max-min fairrate andylobal multirateallocation. In the non-cooperative approach we consider
only multirate allocation. We consider optimization problems for both finite number of nadasd for the limit

n — oo and obtain explicit expressions for the optimal PHY rate. Single node throughputs corresponding to the
optimal PHY rates are numerically studied and it is observed that network performance in the cooperative scenario
is superior to that in the non-cooperative scenario.
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1. INTRODUCTION

We analysecooperativeand non-cooperativgpower and rate control in an IEEE 802.11 WLAN envi-
ronment, based on an explicit throughput expression [ 2] validated in [ 3] using ns2 simulations. We
consider optimizing either the achieved aggregate network throughput (cooperative approach) or an indi-
vidual node’s achieved throughput (in a non-cooperative setup) by adaptively selecting one of the available
PHY data rates. In the formulation of the optimization problems we further take into account a cost for
power consumption. We formulate a payoff functidf, for n users which comprises a utility part rep-
resenting the throughput and a cost part related to power consumption. In the cooperative case the global
payoff comprises the total network throughput and total transmission power costs of all mobile nodes is
maximized. In the non-cooperative game case, each player seeks to maximize its own payoff. The cor-
responding solution concept is then the Nash equilibrium. In the cooperative control analysis, we seek
to maximize the payoff with two different approaches: (i) obtaining an optimal fair assignment of PHY
rates, with anax-minflavor, to all nodes irrespective of their channel conditions (of course, this means
that a channel with bad conditions will have to use larger power)gl@ibal multirateapproach, we allow

each node to use a different PHY rate and seek to obtain the optimal rate for each node. In this case, the
optimal PHY rate used by each node will depend on its channel conditions.

We also present a queueing model that allows us to study the dynamic behavior aspects and expected
transfer time and steady state probabilities for data transfers. Our main contribution is in obtaining explicit
expressions (or set of equations that can be solved numerically in the case of) for the optimal PHY
rate. These expressions are then used to calculate explicit throughput values. Our discussion takes into
account both ad-hoc and infrastructure networks.

Related Work and Motivation: Application of power control in WLAN systems to minimize the required
power in thetransmit modeand adaptive selection of PHY rates has been studied by many researchers.
In [ 10] and [ 11], the authors have proposed rate adaptation algorithms—Auto Rate Fallback (ARF) and
Receiver based Auto Rate (RBAR). These are non-cooperative algorithms that use only PHY rate control
to achieve maximum throughput levels without considering any potential benefits that can be achieved by
combining power control. Some other schemes have been proposed in [ 13] and [ 14] which incorporate
only power control without considering the idea of an optimal PHY rate selection. The MiSer algorithm
in [ 12] which is based on the 802.11a/h standards, is probably one of the few algorithms that combines



the idea of PHY rate and power control. MiSer is also a non-cooperative attempt to obtain optimality by
using combined rate and power control.

Most control schemes in previous work either consider only rate control or only power control to max-
imize the application throughput. Some other schemes like MiSer use both rate and power control to
maximize the energy efficiency. However, all these schemes are valid only for a non-cooperative environ-
ment. That is, they attempt to optimize an individual node’s performance in terms of throughput or power
consumption, as mentioned before. But optimizing an individual node’s performance may cause the over-
all network performance to suffer. Interestingly, Tan et al. in [ 6] have shown that in a non-cooperative
scenario under DCF, a “rational” node may achieve a higher throughput by using a lower transmission rate
than by using a higher transmission rate, but at the expense of a reduced overall network throughput. We
will show later in Section 6 that a part of this result by Tan et al. can also be derived from our analysis.
Our contributions with respect to [ 6] are (i) we have explicit formulas for the equilibrium throughputs,
where as in [ 6] the throughputs are obtained numerically (ii) the formula used in [ 6] for the throughput
(as a function of the parameters choice) depends on the frame success rate for which there is no analytical
expression in [ 6], whereas we have an explicit expression for the frame success rate.

2. MODEL AND BACKGROUND

Our analysis is based on the results obtained in [ 2]. Let thene detive nodes in aingle celllEEE

802.11 WLAN contending to transmit data. Each node uses the Distributed Coordination Function (DCF)
protocol with an RTS/CTS frame exchange before any data-ack frame exchange and each node has an
equal probability of the channel being allocated to it. It is assumed that there is no limit on the transmit
power of any node and that every node has infinitely many packets backlogged in its transmission buffer.
In other words, the transmission buffer of each nodsaituirated there are always packets to transmit

when a node gets a chance to do so. It is assumed that all nodes use thmaskro#parameters. Lef

denote the long run average attempt rate per nodslpef0 < 3 < 1) in back-off timé (conditions for

the existence of a unique sughare given in [ 2]). We assume tliecoupling approximatiop4] which

says that from the point of view of a given node, the number of attempts by the other nodes in successive
slots are i.i.d. binomial random variables with parameters 1) andg. Itis assumed that the decoupling
approximation and the ensuing fixed point analysis in [ 2] yield an accurate estimate of the attempt rate.
Let the MAC frame size of nodebe L; bits and let the PHY rate used by this node be denoted;Hyits

per slot. LetT, be defined as the transmission overhead in slots related to a frame transmission, which
comprises of the SIFS/DIFS, etc andTetbe defined as the fixed overhead for an RTS collision in slots.
Then it follows from [ 2] that the throughput of nodés given by
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with n = "b;ol Note that3 does not depend oh; or C;, and all nodes achieve the same single node
throughput even if they use different rates. As is the case in IEEE 802.11, for all nodes that use an
RTS/CTS frame exchange before the data-ack frame transmission, we assume throughout our discussion
thatT, > T.. In our analysis in the following sections, we will consider optimization problems for both
finite n and for the limitn — oo. For handling the latter case, we identify here the asymptotic aggregate
throughput as. — oo (this derivation can be found in [ 2] for the special symmetric case whete all

andC;’s are equal). An appealing feature of the asymptotic case isxplcit expression fofs.

Asymptotic throughput: In our discussion we use asymptotic throughput in the following two contexts:

() In the max-min fair (MMF) case where we assign the same PHY rate to all mobile nodes, we consider
all nodes to be symmetric, i.e., they all use the same PHYCafihey still may have different channel
conditions). In this case, if firskk — oo [ 2] and thenn — oo, the global throughput is given by Sec.
VI.Cin[ 2] as:

L1f we plot transmission attempts as a function of "real” time, and theroutfrom the plot the channel activity periods (during
which all mobiles freeze their back-off), then the new horizontal axis is called the "back-off time” [ 2].
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wherep is the exponential back-off multiplier, i.e.,if, is the mean back-off duration (in slots) at thi
attempt for a frame theb), = p*b,. According to the IEEE 802.11 specificatioms= 2.

(ii) In the case where we consider global multirate PHY rate assignment to all nodes, i.e., each node uses
one of thec distinct available values of the parametet$, ;) with (C;, L;) € {(C1,L1), ..., (Ce, Le) },

we derive here the corresponding asymptotic throughput. Assume that thergravdes using parameters

(Ci, L;). Denote bya;(n) = m;/n the fraction of the nodes usin@’;, L;) among all nodes in the cell.

Then the throughput of all nodes usif@;, L;) is given by
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where we use the Binomial to Poisson approximated version of the throughput expression for the asymp-
totic case mentioned in Section VII.C of [ 2]. It is assumed thgdi) converges to a limity; which is

a probability measure. Note that the attempt rate 5(n) and the collision probabilityy as defined in

[ 2] are not functions of.; nor C;. Now, first takingK — oo [ 2] and then taking the limik — oo, it

can be observed théin,, ., nG(n) T In (1%) (see Theorem VII.2 in [ 2]). Combining this result with
Equation (3) we get as — oo the following expression for the aggregate throughput of all nodes using
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DenoteE,[L/C| = >, aéfi andE,[L] = >°7 , a;L;. Then it follows from Equation (4) that the
asymptotic global throughput is given by
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3. DEFINING THE PAYOFF FUNCTION

In an efficiently working WLAN, the goal of the mobile nodes is to achieve maximum throughput lev-
els with minimized power consumption costs. In a cooperative scenario, the nodes should cooperate to
achieve maximum overall network throughput at minimum combined power consumption. If each node
uses the highest available PHY rate, which is say common for all nodes, it may not be the best strategy
to achieve the most efficient overall network performance. The reason being that under the given channel
conditions, a node may be unnecessarily consuming more power by transmitting at the highest available
rate if transmitting at a lower PHY rate does not degrade the combined network throughput. Based on this
thought and the fact that under DCF, each node has an equal probability of gaining access to the channel
we define a long-term payoff functidi,, for n active nodes in the WLAN as

Wy, = ;(Q(i, n) — GQi(Ci)) (6)

whered(i,n) is the throughput of nodé as defined in Equation (1)Q;(C;) is a cost related to the
power consumption of nodeand is a function of the PHY rat€; and(; is a weight that gives relative
importance for nodé to the cost versus the throughput. Note that, maximizing this payoff function
leads to maximizing the throughput and minimizing the costs related to power consumption. Experiments



conducted by Gruteser et al. in [ 7] with IEEE 802.11 equipment reveal that under given channel conditions
and a low transmission power range, the power consumed by a mobile node can be approximated as being
linearly proportional to the PHY rate used. Consequerly,C;) can be considered as a linear cost
function of the form: Q}"(C;) = a;C;, wherea; is a random variable that may depend on the path
attenuation under given channel conditions. Next, motivated by the Shannon’s theorem and assuming
an AWGN channel that uses complex symbols , the transmission rate of a node is of th€ (feym-

W log, (1 + g) wherelV is the passband spectrumffertz. 7 is the transmission power of the node and

z = WN,/h, whereN, is the one-sidegower spectral densitgf the channel noise andis a random
variable that characterizes the signal attenuatioiis therefore a random variable that may depend on

channel fading and shadowing. The previous equation can be rewritter{@s:= z(e¥“ — 1), where

Y = Z”WQ It has also been seen in the results of the experiments in [ 7] that the power consumed by
mobile nodes is piecewise linearly proportional to the transmission power. Therefore, an exponential cost
Q5" (C;) can be assumed, which is of the for@:*? (C;) = z;(e¥“ — 1). From the definitions of; and

z; in the foregoing discussion it is evident that their values may vary from one mobile node to another. We

denote the expected valuesagfandz; by E|a;] and E[z;].

4. COOPERATIVE APPROACH

In the cooperative approach to PHY rate and power control, we shall consider two different scenarios. In
the firstmax-min fairscenario, we assign each node the same PHY('aaaed MAC frame sizd. at all
channel states. This will of course require an appropriate power control so that in bad channel conditions
the transmitted power is larger. We seek to obtain the optimal PHY rate that will maximize the overall
payoff of the network. As discussed before, an optimal PHY rate may not be the highest available PHY
rate. In the seconglobal multiratescenario, we allow each node to use a different PHY ¢atdepending

on its channel conditions and we seek to obtain the globally optimal PHY rates for all nodes. In both the
scenarios, it is assumed that all nodes use the same MAC framg.s¥e will pursue analysis for finite

n number of nodes and also consider the situation when oo for both cases. We shall consider the

set of possible values @f or C;, as the case may be, to lie in an interval of the f@m= [C;, C,]. In
802.11a, this interval could 46, 54].

4.1. Obtaining the max-min fair PHY rates

A max-min assignment of resources to users is a fairness concept characterized by the property that no
useri can be assigned more resources unless we decrease the assignment to anothehaséready

has the same amount or a lesser amount of resources thah Udas is an efficient assignment in the
Pareto sense. In our case it is the PHY rates that are assigned according to the max-min approach leading
to an identical assignment to all users. Note that the actual throughputs are already the same for all users
even if the PHY rates are different.

Finite number of nodes: We seek to maximize the payoff function defined in Section 3 while assigning
the same PHY raté€’ to each node irrespective of the channel conditions. Consider the following problem:

Find C* that maximizedV,, := > (6(i,n) — (;Qi(C)) @)
i=1
W, is concave with respect {@ (see [ 1] for proof) and thus has a unique maximizér In particular, we
have the linear and the exponential costs@$*(C) = E[a;]C, Q:""(C) = E|[z] (ew - 1). Denote
ulm =3 Ga; and  wf =Y"" | (;z; and set

q=nB(1—0)"""L, q=1+nB(1-p)""NT,—T)+(1—(1-p3")T. (8)
lin _ 41 o lin ex _ 41 o ex PpC
Then Wi(C) = —f oo — BW™C Wi(0) = —f = Bl (e 1) 9)

By differentiating the payoff w.r.tC' and equating the derivative to zero, we get the following results:
(i) Inthe linear case, the unique positive solutiorBf ) = 0 is given by

cr=0( L (10)
72 Elubn]



provided that < E[u""] < 1. If E[u!"] > 1 then there is no positive solution.

(ii) Inthe exponential case the unique positive solutioﬁ%%:éﬂ = 0 is given by

.2 Lq Y (1 q ) q
C* = —LambertW | = — exp| -— - = 11
(0 <2 g2 \| Eluc®?] P2 Q2¢ Q@ (1)

See [ 1] for the definition oLambertWfunction. In either the linear or the exponential cas, fflies
within C then it is the unique globally optimal rate assignment solution for problem (7). If not, then the
optimal solution is obtained on one of the two boundary point§.olWe defer the discussion on the
numerical computations @f* to Section 6.

The asymptotic caseWe present below the asymptotic behaviour for large number of mobile nodes. Our
optimization will be based on the expression for the asymptotic throughput given by Equation (2). Here
we assume that;, z; and(; have the same distribution for all mobiles. Consider the following problem:

Find C* that maximizedV (C) := 7(C) — (Q(C) (12)

whereQ(C) = El[a]C for the linear cost and)(C) = E|z] (ewc - 1) for the exponential onelV (C')

turns out to be concave ifi (see [ 1] for proof) and therefore it has a unique maximizer. WritingC)
for the linear and exponential case as

wine) = —2 — _Eldc and WeP(C)= —L B[] (¥ 1

(€)= e~ Pl €)= e 2](e¥ 1)

where ¢ =L <1 — 1) , q2 = M + (1 — 1> (T, — T¢). (13)
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Then the optimalC is obtained by differentiating?’!*(C) and W**?(C) and equating them to zero,
which gives the following unique positive solution for the linear and exponential cases, respectively:

« _qQ 1 . 2 g Y (1 q ) q
Cin=—"|——-1]1, oap = —LambertW | —— e —= - =.
i g ( CE[a] ) L) (2 ¢\ CBE] P\ 2 qu 4

If C* lies withinC then it is the unique globally optimal rate assignment solution for problem (12). If not
then the optimal solution is obtained on one of the two boundary poirds Afso note thatC* here has
the same form as in the finitecase but with differeng; andg..

4.2. The dynamic case

So far we have considered a fixed number of mobile nodes in the system. In this section we consider
a dynamic setting. Let mobiles arrive in a WLAN system according to an independent Poisson process
with rate \. Thenth mobile is assumed to have a service requireragnivhereo,, are i.i.d. generally
distributed.

Max-min fair case: We assume that the assignment of physical rates follows the max-min fairness ap-
proach, so that the physical rate of each mobile node is giveri(by, wheren is the number of mobiles

in the systemy can be referred to as the system state. Then the throughput of each mobile when the
system is in state is given by

pL—p)" 'L

0(n) =
" 1+ nB(1 — g1 (TO—Tc+é)+(1—(1—ﬁ)n)Tc

(14)

Since all mobiles use an identical MAC frame sizén the max-min fairness approach and hence theo-
retically achieve the same throughput, the whole network can be viewed &g @fi1/00 queue where

the service discipline is a generalized processor sharing (GPS) [ 9]. If we denet@F[o| and define
é(n) = 1/];, 0(7) then applying the general theory of [ 9] for GPS queues, we obtain the following
expressions for the steady state probabilities and sojourn times:



Theorem 4.1 Assume thap_;°, p'¢(i)/i! < co. Then the steady state probabilities exist. They, as well
as the expected sojourn time of a mobile are given by

) pigb .

n 05 7+ 1
# E[T] = Elo] 2 ~ 7 j( ‘ )
nl iz, ol ) Z]’:o %¢(J)
Remark 1 Using [ 9] one can in fact (i) obtain explicit expressions for the QoS of more complex arrival
process, and in particular for on/off sources having general thinking times, (ii) obtain explicit expressions
for the case when there is a limit (enforced by a call admission control) on the number of active mobiles.
Proportional fairness: We next consider the case in which the MAC frame dizés not identical for all
nodes but is taken to be proportional to the PHY x@teso that(2 := L,;/C; does not depend an Then

even if the MAC frame sizé,; is not the same for all nodes (unlike in all other cases in the paper), we still
get the throughput of each node in termgpatkets per secortd be identical and is given by:

Br) i o(n) _ B —p)t
L; 1+n801 - )T, —T.+Q) + (1 —(1- ﬁ)”)Tc

Now, (i) Theorem 4.1 still holds with(n) replacingd(n) in the definition ofg(n), and (ii) the expected
sojourn time of mobilé is given by:

gry) = Elol 320 Lo + 2

Li Zjoolfrqﬁ( )

Pr(N =n) =

(15)

4.3. Global multirate (channel dependent) optimization

In this section we consider the global optimization in which we allow each node to use a different PHY
rateC; and we seek to obtain the best choicepfi = 1, ..., n. We assume that all values Bfa;|, E[z]

and(; are known by the decision maker. By allowiag to differ from one node to another we expect to
achieve higher efficiency.

Finite number of nodes, channel-dependent cas€onsider the following problem:

FindC* = (CY, ..., C;) that maximizesV;, := > "(6(i,n) — G;Qi(C)) (16)
i=1
wheref(i, n) is defined by Equation (1). Then we have,

n

whin — a;]C; and WeP = Elz -1
n q +q121 ) 1Z ;CZ ’l ’L n q +qlzz 1 1 ZCZ )

s i=1

whereg; andg, are defined in (8). Define
"1 nop\ 2
{ = ﬂ _— 9 = _— 5 = —ql
G =+ .Z,Cj’ C (ZC) and  H(C)
J=1j#i i=1 a

With these definitions and by differentiatifg’" we get

oWtin ngs q
) (Y. 2 2
aC; (ng5C; + q1) (qg i T%) nC?
and similarly by differentiating?;;"* we get
exp 2
MW _ nai — YGE[z]e" = o — PG E[zi]e? (19)

oc; (ngsCi + q1)? <q2 I 7%)2”01‘2

Now by equating the derivatives in Equations (18) and (19) to zero, we obtain:



() Inthe linear case, we get from Equation (18)

H é N “ iE a; ! H<é) -
C; = CiJE([aZ)»] and also, C = (; CH([C)]> = whereY = ; VG Ea;]

(20)

which implies that the solutiod™* is given byC* = 14 (@ — 1). Substituting the solution of

@2 \'Y
this equation in (20) gives th€;’s.
(i) Inthe exponential case, we get from Equation (19)

2 1 [¢H(C)
Ci = aLambertW (2 GE[z] ) (21)

Therefore, using the definition 6f, C* is the solution o = 2

& 1 [pH(CO)
wz !LambertW (2 GE[Z] )

=1

—1

which yields theC’s through (21).
The above solutions are globally optimal provided they are within the réntée defer the discussion on
the numerical computations 6f;’s to Section 6.
Large number of nodes: To model the case of a large number of users we shall use a fluid approximation
in which there are (non-countably) infinite number of users. (This type of approach is frequently used in
other engineering fields, see e.g. [ 5].) We introdiézpopulation classes of mobiles. The parameter
in the exponential cost function will be the same for all mobiles of the samertype 1,2, ..., R so that
mobiles belonging to a given clas$iave the same channel conditions. We shall thus use the not&tion
to indicate this dependence. We shall use similarly the notafitrfor the coefficient appearing in the
linear cost. In short, mobiles with the same valugf), ¢(")) (in the linear case) ofz("), ¢(") (in the
exponential case) are said to belong to the same class of mobiles having identical channel conditions.

We define for each the vectorx(”) = (a:(f), cey xff)) to be the amount af-type mobiles that use each
of the rateg, ..., C,. Definex = (x| ..., x(®)) to be a multistrategy for all mobiles. With some abuse
of notation, letz; := S 7 2\") denote the global amount of mobiles that use the@atenderx. Denote

r=11

v to be the total amount of users. Ther= ) 7, z;. Definea;(x) = xz;/v. It follows from Equation (5)
that

Ea(x) [1](]1 vq

@+ aByx[1/Cl Tgt+q X, 20t

whereq; and ¢, are given by Equation (13). To simplify, we shall denefex) = 7(a(x)). Define
Q" (") = aC; for the linear cost and)” (2{") = () (e¥Ci — 1) for the exponential cost. Then

)

our problem of maximizing the payoff function turns out to be a non-linear optimization problem defined
by:

7(a(x))

X

R c
max W (x) whereW (x) := 7(x)— Z C(T) Z %(T)Qz(‘r) (xz(‘r))
r=1 i=1

_ R c
_ rqi . Z C(T) Z x(r)Q(r) (x(r))
U@+ qry iy (25:1 l‘,m) Cfl r=1 i=1

subject to sz(’") =g,,Vr, ngr) >0,Vi,r
i—1

whereg,. is the predefined constraint on the number of mobiles in elaBescribing the solution for this
problem is outside the scope of this paper. HoweMéfx) turns out to be concave and the feasible set is
compact. We conclude that there exists a unique solution.



5. NON-COOPERATIVE GAME

In this section we analyse the non-cooperative behaviour of mobile nodes. We shall model this situation
using non-cooperative game theory and obtain the equilibrium. Here we will consider only the case when
there are finite number of nodes(see [ 1] for the asymptotic case). In a non-cooperative setting, each
node uses the same MAC frame sizand is allowed to use a different PHY rate as in the global multirate
allocation in the cooperative approach. But here the objective of each node is to maximize its individual
payoff function which can be denoted by(C;) and defined as

Qi(Ci) = 0(i,n) — GQ:i(Cy) (22)

For everyi, ; is concave w.r.tC; and continuous w.r.tC;, j # . It then follows from Rosen [ 8] that
a Nash equilibrium exists. In particular, we shall be interested in the liQEa(C;) = F[a;]C; and the
exponential)"" (C;) = E[z] (e¥“i — 1) cases. We have
oQlin  H(C)
oC;  nC?

o™ H(C)

9C = nc? — YGE[z)e? (23)

- C’LE[ai]v

These are the same equations as we had in Section 4.3 except an extra factortioé denominator.
Equating them to zero:

(i) For the linear caseC* = 14 (1 — 1), whereY is the same as defined in (20) a6tj’s are
obtained from

[ H(O)
C; = G (24)

(i) Similarly for the exponential case, we obtdifi as a solution of

€= : — Whichyields C} = zLamberﬂ/v 1 [$H(CY)
. 1 ¥ 2\ nGE[zi]
1 [¢H(C)

L -
w; ambertW 2\ nGER]

(25)
We defer the discussion on the numerical computatiorts/tf to Section 6.

6. NUMERICAL STUDIES

In this section, we numerically examine the closed form expressions for the optimal transmission rates
obtained in the previous sections. We also examine the corresponding single node throughputs and overall
payoffs. We compute the optimal transmission rates, throughputs and payoffs as a function of number of
nodesn (see[ 1] for variation with frame siz&). Since we considet’ or C;, to lie in the continuous
intervalC := [C}, C,], we don't getC or C;’s to be a set of discrete values that can be directly assigned

to nodes as per the 802.11 specifications. Consequently, if the obtained optimal sate; does not
coincide with one of the discrete values specified in the 802.11a specification i.e.,8e.of 54 Mbps,

then a discrete specified value which is closest to the obtained optimal rate can be used. We use the
following set of parameters to study the optimal transmission rates and the corresponding single node
throughputs and overall payoffs. In the linear cB%t;] is set to vary uniformly fronu*" = 0.5 103

to a"®® = 1 % 1073 watts perbits/slot for each mobile. In the exponential cosk|z;] is set to vary
uniformly from 2" = W N, /h"™ to z["** = W N,/h[*** where value o/’ (passband spectrum) is

taken a0 M H z for an 802.11a systend, (one-sided power spectral density) is takers 88 » 102!
watts/Hz and for the Rayleigh fading cag¢"™ = 10~!! andh"®® = 10~8. The back-off multiplier

p = 2 andby = 16 slots inb;, = pFby. The data frame transmission overhdad= 52 slots, the RTS
collision overhead, = 17 slots and the MAC frame sizé = 12000bits(1500bytes). The slot size is
taken a0us and K = 10 [ 2]. For simplification the parametgy is taken to be the same for all nodes



1 = 1..n. The values are displayed below each plot. The plots obtained from the numerical computations
are presented at the end of the paper.

Comparison between cooperative and non-cooperative solutiongn the PHY transmission rate plots
(Figure 1- 3 and 7- 9), we observe that the optimal PHY rate of each node decreases with increasing
number of nodes. It can be seen that in the cooperative global multirate and non-cooperative multirate al-
locations, for a given number of hodes, each node is assigned a different rate depending on the parameters
Ela;] and E|z;] for channel conditions. The curvature along the “node index” axis is more significant in
the exponential case than in the linear case due to the inherent form of the solution for the exponential
case that consists of a “LambertW” function representation. When we Haveaa cost associated with

the power consumption, then far = 2, the single node throughput in the cooperative global multirate
case (Figure 5) is around % higher than in the non-cooperative multirate case (Figure 6). In fact with
increasingn the single node throughput percentage gain in the cooperative global multirate scenario over
the non-cooperative multirate scenario goes frdi¥t for n = 2 to up to more thar200% for n = 10.

When the cost associated with the power consumptierg®nentiathe single node throughput percent-

age gain in the cooperative allocation (Figure 11) over the non-cooperative allocation (Figure 12) varies
from around12% for n = 2 to up to100% for n = 10. We also observe that the cooperative max-min fair
scheme (Figure 4, 10) performs almost equally well as the cooperative global multirate scheme ( Figure
5, 11). These observations clearly illustrate that cooperative PHY rate allocation strategy results in higher
single node throughputs and hence higher total network throughput as against a non-cooperative strategy.
Our analysis thus confirms the results obtained by Tan et al. in [ 6]. Indeed the DCF protocol under a
non-cooperative setting is not efficient.

/. CONCLUSION AND FUTURE WORK

We have analysed cooperative and non-cooperative rate and power control in an IEEE 802.11 WLAN. We
consider both cooperative and non-cooperative scenarios by optimizing a payoff function that comprises
of the throughput and costs related to power consumption. It is observed through numerical studies that
cooperative control is more efficient than non-cooperative control. With a linear cost approximation, the
single node throughput in the cooperative approach is observed t@%edo 200% more than in the
non-cooperative game approach. The improvement varies f2yinto 100% in the exponential cost
approximation case. Thus a first glimpse of cooperative and non-cooperative control in an 802.11 WLAN
by our analysis shows that the currently used mandatory DCF protocol in 802.11 does not perform with
the highest efficiency in a non-cooperative setting. Our future work will include designing an efficient
cooperative rate and power control algorithm based on the analysis illustrated in this paper. The algorithm
should bedistributedin the lines of DCF so that it can be used in both ad-hoc and infrastructure networks.
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