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Strange behavior may occur in networks due to the non-cooperative nature of decision
making, when the latter are taken by individual agents. In particular, the well known
Braess paradox illustrates that when upgrading a network by adding a link, the resulting
equilibrium may exhibit larger delays for all users. We present here some guidelines to
avoid the Braess paradox when upgrading a network. We furthermore present conditions
for the delays to be monotone increasing in the total demand.

1. Introduction

Service providers or the network administrator may often be faced with decisions related
to upgrading of the network. For example, where should one add capacity? or where
should one add new links? Decisions related to the network capacity and topology have
direct influence on the equilibrium that would be attained.

A frequently used heuristic approach for upgrading a network is through Bottleneck
Analysis. A system bottleneck is defined as “a resource or service facility whose capacity
seriously limits the performance of the entire system” [10, p. 13]. Bottleneck analysis
consists of adding capacity to identified bottlenecks until they cease to be bottlenecks.
In a non-cooperative framework, however, this approach may have devastating effects; it
may cause delays of all users to increase; in an economic context in which users pay the
service provider, this may further cause a decrease in the revenues of the provider. The
first problem has already been identified in road-traffic context by Braess [3] (see also
[7,16]), and has further been studied in networking context in [2,4,6,5,11,13]. The focus
of Braess paradox on the bottleneck link in a queueing context, as well as the paradoxical
impact on the service provider have been studied in [14]. The Braess paradox has further
been identified and studied in the context of distributed computing [8,9] where arrivals of
jobs may be routed and performed on different processors.

Braess paradox illustrates that the network designer or service providers have to take
into consideration the reaction of non-cooperative users to his decisions. This is in par-
ticular important when upgrading the network. Some upgrading guidelines have been
proposed in [11-13] so as to avoid the Braess paradox or so as to obtain a better per-
formance. Our first objective is to pursue that direction and to provide new guidelines
for avoiding the Braess paradox when upgrading the network. Another related issue is
that of monotonicity of the performance measures in the demand. Our second objective
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is to check under what conditions are delays as well as the marginal costs at equilibrium
increasing in the demands.

The paper is organized as follows: In Section 2 we present the model, formulate the
problem, and mention some related work. In Section 3 we present a sufficient condition
for the monotonicity of performance measures when the demands increase. The proposed
methods for capacity addition are studied in section 4 and 5.

2. Problem formulation

We consider a network (N, £) where N is a finite set of nodes and L is a set of directed

links. For simplicity of notation and without loss of generality, we assume that at most
one link exists between each pair of nodes (in each direction). Considering a node v € N,
and let In(v) = {l € L|Fw € N,l = (w,v)} denote the set of its in-coming links, and
Out(v) ={l € £|Fw € N,l = (v,w)} the set of its out-going links. Let ¢; be the capacity
of link I. C' = (¢)iec is called the capacity configuration of the network.
We are given a set Z = {1,2,..,I} of users that share the network. We assume that all
users ship flow from a common source s to a common destination d. Each user ¢ has a
throughput demand that is some process with average rate 7, and let r = >, ;7" the
total throughput demand of users. User ¢ splits its demand r* among the paths connecting
the source to the destination, so as to optimize some individual performance objective.
Let z¢ denote the expected flow that user i sends on link /. The user flow configuration
Xt = (:cl)le ¢ is called a routing strategy of user 7. The set of strategies of user ¢ that satisfy
the user’s demand and preserve its flow at all nodes is called the strategy space of user 7 is
given by 8" = {X" € R'ﬁ‘ 0<zi<q,leL; > 1c0ut(v) T = > iein() zi+ri,v € V}, where
ri =7 ry = —r" and r{ =0 for v # s,d. The system flow conﬁguratlon X = (X% ..., X))
is called a routing strategy taking values in the product space S = @)1 St

The performance objective of user i is quantified by means of a cost function J¢(X).
The user aims to find a strategy X° € S’ that minimizes its cost. This optimization
depends on the routing decisions of the other users, described by the strategy X * =
(X1, ., XL X XT) since J¢ is a function of the system flow configuration X.
Typically, the performance of a link [ is manifested through some function 7;(z;), that
measures the cost per unit of flow on the link, and depends upon the link’s total flow
;=Y ;.7 %;. The users’ cost then typically satisfy the following properties [15]:

Al J(X) = Yy aiTi(a).

A2 T, :[0,00) = (0.00].

A3 T(x;) is positive, strictly increasing and convex.

A4 T)(z;) is continuously differentiable.

Functions that comply with these assumptions are referred to as type-A functions. Note
that 7;(z;) is the average delay on link [ and depends only on the total flow z; = Y, ;]
on that link. The average delay should be interpreted as a general congestion cost per
unit of flow, that encapsulates the dependence of the quality of service provided by a
finite capacity resource on the total load z; offered to it.



Some of our general results will require that the costs are of type A, whereas other
results will require the following more specific costs:
B1 J! is a type-A cost function.
B2 T, and 7] are strictly decreasing with respect to capacity ¢; of link .
Functions that comply with these assumptions shall be referred to as type-B functions.
Note that a type-B function is a special case of type-A.

A special kind of type-B cost functions is that which corresponds to an M/M/1 link
model. In other words, suppose that:

C1 J' is a type-B cost function.

1 — . . .
C21, = {h la—z) @ <a , where ¢; is the capacity of link /.
o0 T > g

Functions that comply with these assumptions shall be referred to as type-C functions.
We note that the above different type of assumptions on the cost have already been
introduced in the context of analysis of uniqueness of equilibria in [15].

Definition 2.1 A Nash equilibrium of the routing game is a strategy from which no
user finds it beneficial to unilaterally deviate. Hence, X € S is a Nash equilibrium if:
X' € argmingicgsi J'(¢", X7*),1 € T.

Consider the best reply X of user i to strategy X ' of the other users. This is the
unique solution to the (single-user) optimal routing problem for a network; the uniqueness
follows since the cost function of type-A or type-B or type-C is a convex function of its
strategy X* and &' is bounded for all 4 € Z (note that the uniqueness of best response
strategies does not imply the uniqueness of the Nash equilibrium). The Kuhn-Tucker
conditions imply that X? is the optimal response of user i to X ~* if and only if there exist
(Lagrange multipliers) (A ),ey (that may depend on X* and X %), such that [15,13]:

No=af T! + Ty + N, ifxl, >0, (u,v)€L,

uv T uv

No<al T+ T+ A, ifal, =0, (u,v) €L, My = 0. (1)

uv~— uv

Therefore, a strategy X € S is a Nash equilibrium if and only if there exist A¢, such that
the conditions (1) are satisfied for all i € Z. The Lagrange multiplier A’ can be interpreted
as the marginal cost of user i at the optimality point [13]. Due to this interpretation,
the Lagrange multipliers, and in particular, A’ (i.e. the marginal cost for at the source
node) have been advocated in [13] as yet another important performance measure for the
network. The latter was defined as the price for user .

We shall study the monotonicity of the total price and the total cost at equilibrium
in the demands r = (r);cz, and in the capacity allocation (¢;);cc. We recall that in
the Braess paradox, the monotonicity in the capacity allocation does not hold, since by
adding a link (which can be viewed as adding capacity to a link with zero capacity), the
performance of all users deteriorate at equilibrium. If we show that the total cost, or total
price, is monotone decreasing in the capacity then a Braess paradox does not occur (with
respect to the corresponding performance measure), since for at least one user, the cost
(or price) improves with addition capacity.

In order to compare Nash equilibria corresponding to different parameters, it may seem
desirable to make assumptions on the topology and costs such that under any throughput



demand of users or any additional capacity, the equilibrium is unique. Indeed, some results
on avoiding the Braess paradox (when adding capacity) have already been obtained in
[13] under conditions that imply uniqueness of the equilibria. We do not make such
assumptions, and our results allow us to compare the performance of any equilibrium in
a system, with any other which is obtained by increasing the capacity or the demand
appropriately.

We mention conditions that have been obtained in [13] under which Braess paradox can
be avoided. These were obtained for two classes of problems. The first is that of identical
users, i.e. systems in which the demands, the sources and the destinations of all users are
the same. The second is that of simple users, defined as follows: a user is said to be simple
if all of its flows are routed through paths of minimal delay (with link costs corresponding
to M/M/1 type queues). The proposed methods for capacity addition studied in [13] are
1. Multiplying the capacity of each link by some constant factor oo > 1
2. Adding a link between the source and the destination.

The second upgrade shows to yield an improvement only in user price (not in the cost).

3. Impact of throughput variation on the equilibrium

In this section, we study the monotonicity of performance measure at equilibrium given
by total price A, = Y_,.; A\ and total cost J = Y, ; J* when the total demand increases.
Under some assumption, the following study establishes that an increase of the total
demand of users, results in an increase of the total price. For a fixed capacity (¢))iec, we
consider two throughput demands (7*);ez and (7*);ez such that 7 =37, 7 <7 =Y, 7,
and let A" and A (resp., J* and J?) be the prices (resp., cost functions of type-A) of user
1 at the respective Nash equilibria X and X. We make the following observation.

Lemma 3.1 There exists some path p* between the source and destination such that T, >
Z; for all the links in that path.

Proof. We construct a directed network (N', L'), where N’ = N and the set of links £’
is constructed as follows:

1. For each link | = (u,v) € L, such that Z; > Z;, we have a link I' = (u,v) € L'; to such
a link [ we assign a (flow) value zp = ; — 2;.

2. for each link [ = (u,v), such that Z; < z;, we have a link I' = (v,u) € L'; to such a
link we assign a (flow) value zy = 2, — 7.

It is easy to verify that the value zy constitutes a nonnegative, directed flow in the
network. Since 7 < 7, zy must carry some flow (the amount of 7 — 7) from the source s
to the destination d, this implies that there exists a path p* from s to d, such that z; > 0
foralll' € p*. g

Assumption 1: We suppose that
1. z; >0foralll € p*and all 7 € 7.
2. For all [ € p* for which z; > 0 all users send positive flows in the equilibrium X , 1.e.
2 >0andall i € Z.

This assumption is inspired by the (much stronger) assumption in [15] for uniqueness
of Nash equilibrium, that states that if at equilibrium a flow on a link is positive then all
users have positive flow on that link. We now state our first monotonicity result:



Proposition 3.1 Let Assumption 1 hold, and consider cost functions J* of type A.
Consider two throughput demands (Nz)zez and (#);ez. Let X and X be the equilibria
assocwted to these demands, and N and N user i’s pmces computed respectively at X and
X. Then If 7 <7 then A; < Xs, where Ay = 3 ;cr Ak and Ay = 3 ;0p N

Proof. Consider now a link I' = (u,v) € p*. Since zp > 0 (the latter were defined in the
proof of Lemma 3.1), either Zy, > Zyy OF Ty > Ty

In the case where Zyy > Tuw, for all i € I we have, since X and X are Nash equlhbrla
)\’ — )\“ =3 T + T, , and )\’ - )\“ i T' 4T, where T, T, T', and T" stands

0bv1ously for T,,, and T}, computed at xuv and acm, X
Summing over i €T, we optaln Ay — Ay = xuvT’ +IT,,, and Ay — Ny < xuvT’U + 1T,
where )\, Zze.’[ X, and A, = 30, AL for all w eEN.

Since Ty, > Zuy and T, = Tuo(Tun), then T,, > T, and T' > T'U (Ass. A3), hence we
have A, — \, = xm,T’ + 1T, > xm,T' + 1T, > Ay — Ay Thus

My — Ay > Ay — Ay (2)

If Zyy > Fpu, We have by symmetry that A, — Ay, > Ay — Ay, thus we obtain (2).
Define more precisely the path p*, by p* = (s, u1, ug, ..., up«, d), where ug, k =1,2,.
is the k" node after the source s on the path p* and n* is the number of nodes between
the source s and the destination d. Hence, from (2) we have: A, — \, > Auy — Auy > e >
)‘un* - )\u > A=A\ =0 ()\d A = 0), and we conclude that Xs > s i

The followmg proposition gives sufficient conditions for obtaining the monotonicity of
the total cost of type-C, when the total throughput demand of the users increases.

Proposition 3.2 Consider cost functions J* of type C. Consider two throughput demands
(7)iez and (7")sez. Let X and X the Nash equilibria associated to these throughput de-
mands, and J* and Jt useri’s costs computed respectively at X and X assume that there
erists a set of links L, C L such that 2} >0, VieT forl e /Jl, and &t =0, Vi € T for
1 ¢ L. Hence if % > I then J < J.

Proof. Consider any link | = (u,v) € £y (2} > 0,Vi € T), then we have from (1):
Vi € T, )\Z = x’T’ + T + )\f], and for any link | = (u,v) € L for which #; = 0
Ql ¢ El we have: ‘v’z €z, N\, < x}T’ + Tm, + /\Z By summing over i € Z, we obtain

Au —:L'lTI + 1T, + N\, if ; >0, and)\ <xlT' +IT,, + )\, if 3, = 0. Thus,

Q T I C e ] 2 1 c

5, = S, if 2 >0, A< _ LA, ifa =0, (3
(Cl—il)2+cl—§?z+ n _(Cl—$1)2+cl—$z+ n 3)

Define the function V' by

(heee) =D 2= (1= 1) Y Il — i), (4)

lec lec
where (y)iez € S == {(y)iec € R : 0 <y <l € L D icout(v) Y1 = Diern(w) Y+ Tv; U €
V}, where 7y = 7, 7y = —7 and 7, = 0 for v # s, d.

Denote (). the vector of total link flows at the Nash equilibrium X. The condition
(3) can be interpreted as Kuhn-Tucker condition for a single-user minimization of the
function V', under the constraints y € S. This shows that the vector (Z;);c. is the unique



minimum of the function V.
Let (2;)1ec € R¥l defined by: z; = £7;, hence (1)1 € S, and since (2;);c. minimizes the
V-function, we have:

R

=

Z ! Cl

I Y s E § G ) ) Y O
o — 7z —f c— 7z
lec ! lec G 7l lec t !
T A T A
:l :./L'l
< DT o U-nY -5

e & T 7l lec

Hence, in order to prove that J(X) = Sier 22 p—- < J(X) = Yiec qf—lil, it is enough to
show that:
~ 7-" ~
=T
2l L (I-1)In(1l-
Cr— Iy Cp — ;Il C

which holds if 7/7 > I (see Appendix with o = 7/7). ¢

We recall the ”all-positive flows” assumption from [15], that assumes that at equilibri-
um, for every link on which the total flow is positive, all users have strictly positive flows.
Under this assumption, each link of the network satisfies the assumptions in Prop. 3.1
and 3.2. Hence we have the following result in this case.

Corollary 1 Consider two throughput demands (7')icz and (7#)icz, and let X' and X
(resp., J' and j’) be the prices (resp., the cost functions) of user i at the respective
equilibria X and X. Assume that the "all- positive flows” assumption holds. Then:

1. For the cost functions of type-A, zfr < 7 then /\ < Ay

2. For the cost functions of type- C if 2> I then J<J.

4. Impact of extra capacity on the equilibrium

In This section, we propose some methods for adding resources to general network that
guarantee an improvement in performance so that the Braess paradox does not occur. The
upgrade of general network, in terms of capacity can be obtained in different manners:
1. Multiplying the capacity of some specific links (I € £) by a constant factor oy > 1.

2. Adding a link between the source s and the destination d.

Consider an upgrade achieved by multiplying the capacity of each link [ € £ by a

constant factor oy > 1.

Proposition 4.1 Suppose that the cost function J'(-), i € I are of type-C. Let ¢ and ¢ be
two capacity configurations such that ¢; = oy¢; where oy > 1, and J¢ and J' are the value
of the cost functions of user i at the respective Nash equzlzbrw X and X. Consider a set
L1 C L defined by L1 = {l € E/xl > 0}; assume that there exists a set of links LiCL
such that:r;l >0, VieT forl € El, and 2t =0, 1 € T forl ¢E1 Ifay > 1 foralll € Ly
then J < J.

Proof. Using the procedure as in the proof of Prop. 3.2, we obtain:
I

“ I T I
)‘u: + +/\ lf.’L'l>0 )\ T +

— < — —|—)\ if 2;, =0(5
(OézCl - xz)Q oc — I (alcl - $z)2 ¢ — T ( )




Define the function V by

V((yl)leﬂ) = Z L - (-1 Zln = yi),

oy c —
leL lel

where (yl)leﬁ S é with

S’:{(yl)le£€Rw‘ZOSylfalél,ZEL; Z Y = Z yl—l-fv,UEV},

leOut(v) leIn(v)

where 7, =7, 7q = —7 and 7, = 0 for v # s, d.

Denote (). the vector of total link flows at the Nash equilibrium X. The condition (5)
can be interpreted as Kuhn-Tucker condition for a single-user minimization of function
V' under constraints y € S. Then we can deduce that the vector (Z1)1ec is the unique
minimum of the function V, and since (%) € S, we have

2 T alCl—fEl
Zac—x Zac—x Z oy — &
=7 b l~ 16 — Ty % 16— 2y

< Yy ——-(I-1) 1n1———§: -
¢ — Iy o C oc — I alcl
leL lel lelq

Hence, in order to prove that J(X) = Yer aag < J(X) = >iec 525> it is enough to
show that for all [ € L;:

T 7 T
2 L T-1)I(1-—Y)>0
a—%1 e — I G
which holds if oy > I (see Appendix). g

Now consider an upgrade achieved by adding a link connecting the source and des-
tination. The next result demonstrates that adding a link between the source and the
destination, may lead to an increase of both the total price and the total cost.

Proposition 4.2 Let ¢ and ¢, resp., be the capacity configurations after and before the
addition of a link [ between the source s and destination d. Consider /\Z and )\’ (resp., Ji
and JZ) the prices (resp., the cost functions) of user i at the respective Nash equilibria X
and X. We have

1. For the cost functions of type A, under assumption 1, if ;> 0 then As < As.

2. Assume that there exists a set of links [,1 C L such that {xl > 0,7 € I} forl € ﬁl,
and {3t =0,i € T} forl ¢ L. For the cost functions of type C, we have

ifa; > e(1-TJ0- —)) then J < J,

G
leL

where T; 1s the total flow on the link [ at Nash equilibrium X.

Proof

1. Consider the same network (A, L) with the initial capacity configuration ¢ and
throughput demand (7*);cz where 7 = r® — 2% for all user i € Z, and let X represent
the Nash equilibrium associated to the throughput demand (7 "iez- From conditions (1)
we have Z¢ = ¢ for all users 7 and | € £, and the Lagrange multipliers X}, = )\’, 1€l



and v € N. Hence if Z; > 0, then 7 < r hence from Prop. 3.1 Xs < A, thus As < As.

2. If #; = 0, by the above analysis, we show that z; = &;, VI € £, hence J=J.

If #; > 0, then by using same procedure in Prop. (4.1), we show that the vector (2;)ic.
where £' = £ U {l} is the unique minimum of the function:

((Yiiecr) CHEG ) > (@ — ),

o lec!
where (Y)iee € S = {()ierr € REFL 10 <y < 6,1 € L s 2icout(o) Y1 = 2ten() Yt T
Tv, ¥ € V}, Wherers—r 7q = —7 and 7, = 0 for v # s, d.

Let (Z;)ecr € R4’ defined by: 7, = & for [ € £ and z; = 0. Clearly (&;)ec € S. Since
(Z1)1ec minimizes the V-function, we have:

~ A

-@l Ci—Ij
< —(I-1) In( I1-1)1
Zél—.’fﬁl - ZCZ—.’EI Z Cl—.’El ( ) n( é" )

lel’ lel leL

I Z;
< lez,;él—fl_ —1[21111—— ~In(1 - C—l)}

lec l

To prove that J = 3", qf—lwl <J=Yr #, it is enough to remark that:
4 7
lnl—— —In(1—--) >0, orx>c(1— 1—7>

3 in -2 20 o za(1-[[a-2)
lec lec
which concludes the proof. g

Now, we consider a network (N, £) where there exists a link connecting the source and
the destination. Later, we will derive sufficient conditions that guarantee an improvement
in the performance when we increase the capacity of the link that connects the source s
to the destination d. Denote by [ the link connecting s and d.

Proposition 4.3 Let ¢ and ¢ be two capacity configurations such that ¢ = ¢ for | # [
and ¢ = a& where a € RY. Consider Xi and X! (resp., J* and JZ) the prices (resp., the
cost functions) of user i at the respective Nash equzlzbma X and X. Then

1. For the cost functions of type B, under assumption 1, if > 1 and &; > 0 then As < s
2. Assume that there ezists a set of links £1 C L such that {2t > 0,5 € T} forl € £1,
and {& =0,i € I} forl & L. For the cost functions of type C, if o> I then J < J.

Proof

1. Assume that Z; < 7;, hence if 7; = 0, then #; = 7; for all other links | € £, and the
price of each user are equal under both configurations.

If #; > 0, then we have Vi € T, )\“ = xZT' + T By summing over i € Z, we obtain:
As = = Ij T' +IT On the other hand, we have A5 < xZT' +IT Since #; < Z; and o > 1,
then from the last two equations we obtain )\ < s

Now assume that Z; > Z;. Let us consider the two network that differ only by the presence
or absence of link / that connects the source s and destination d. In both networks we have
the same initial capacity configuration ¢ and the same set Z of users, with respectively
demands 7 = 7' — 3% and 7 = r' — . Since &; > F; then 7 = 7, 7 < T =3, \ 7,

hence from Prop. 3.1 we have: A, < ),. On the other hand, for the network with
demands (7);ccair, it is easy to see that the conditions (1) are satisfied by the system flow



configuration X, with & = &, (Vi € Z,VI € L), and A= Xi (Vu € N). Similarly we
conclude that the network with demands 7 has the system ﬂow configuration X, with
Ti =i (Vi e IVl € £), and and X, = X, (Vu € N). Hence from the fact that A, < A,,
we obtain 5\3 < s

2. Using the procedure as in Prop. 4.1, we show that (&;);c. is the unique minimum of

y R
((Y)iec) - (I-1) > (e — ),
ez © leL

where (y1)iec € 5‘ with 8 = {(y)iecr € R 1 0 <y < &,1 € L D icou(w) Ui =
Zleln(v) Y1 + 7y, v € V}. Since (Z;)iec € S and since (Z;);e, minimizes the V-function,

C— Xy
Zz < z _ml— I-1) Z ln(él—il

~—

leL le{[,\{l}} tle{L\{i}}
+ ‘if (- w29y
ac; — I ac; — I
7 I % %
< - (/-1 | —(-1)1 .
2 aom - U-D 2 n(él—il)+aéi—ii (=1 =27)
le{L\{1}} le{L\{i}}
To prove that J = rer ik P <J=3 5 it is enough to show that:
. Z; T; G — I
o(Z7) = — I—1)In(1 - I-1 | >0
Quii) = o = U= - D= Y mE)

le{L\{i}}
By using the same procedure as in the Appendix, we show that for o > I, @, is strictly
increasing, and since Q,(0) > 0 and Z; > 0 then Q,(Z;) > 0. ¢

Remark 1

For the first part of Prop. 4.3 , we can obtain some results in the case where z; = 0 by
assuming that #; > 0 (Prop. 4.2). In second part of Prop. 4.3, we can replace assumptlon
Z; > 0 by #; > 0. Indeed, in this case we have Q,(0) > 0 and since @, is strictly
increasing, then Q. (Z;) > 0.

5. Experimental results

Let us now demonstrate the efficiency of the proposed capacity addition by means of a
numerical example. Consider the example studied in [13], in which an addition of capacity
may, in general, increase both the price and the cost of each and every user. In all cases
below, we computed the equilibrium iteratively with relaxation (which has been proven
for some topologies to converge to an equilibrium, see [1]) as follows:

1. Define a candidate solution {z(0)},c. for the total link flows which is obtained by
minimizing the function V defined in (4). The flow of each player ¢ in the initial iteration
is then defined as 7}(0) = 2;(0)r[32 ;e 7] 7"

2. At iteration n > 0, we first compute the best responses {Zi(n)} for each user ¢ when
all players other than 4 use {#(n — 1)},

3. The approximation of the equilibrium at step n is then given by Zi(n) = ai(n — 1) +
(1 — a)zi(n), for all i € T and [ € L. The procedure ends when Z(n) is sufficiently close
to Z(n — 1).
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Figure 1. Network example Figure 2. Total cost as a function of the
added capacity in path (2,3)

Remark 2 Note that if the ”all-positive flows” condition (defined before Corollary 1)
holds at equilibrium, then {#;(0)}, will already be the total link flow at equilibrium,
and only the individual link flows have to be defined. Note also that if the users were
identical, then by [15], there would be a unique equilibrium and it would be symmetric.
Hence the condition of ”all-positive flows” would indeed hold, and {#¢(0)};, would already
correspond to the equilibrium. No further iteration is needed.

In all our experimentations below, it turned out that the condition of ” all-positive flows”
indeed was satisfied, so we could check that our algorithm indeed provided the correct
value for the total link flows at equilibrium. The number of iterations that were required
in all cases was around 20 (which leads to a difference between Z(n) and Z(n + 1) of less
than 107°), and we used o = 1/2.

5.1. Braess paradox

Consider the network depicted in Fig. 1. Links (1,2) and (3,4) each have capacity
¢; = 2.7. Link (1,3) represents a path of n tandem links, each with capacity ¢, = 27.
Similarly links (2,3) and (2,4) are paths of n consecutive links each with capacity c3 = 4.8
and ¢, = 27 respectively. There are I users, each sending a flow r* from node 1 to node 4.

We consider the scenario of the Braess paradox, where extra capacity is added to link
(2,3). Fig. 2 shows, that the user cost as a function of the added capacity A in link (2,3),
forn =54, I =2, r' = 0.8 and r? = 1.2. The figure indicates that the total cost increases
when the additional capacity A increases, i.e., addition of capacity in link (2,3) leads to a
degradation of performance of the network until the total capacity on the link reaches 53.
Then it remains almost constant when the capacity is further increased (the cost slightly
decreases at that region).

5.2. Multiplying the capacity of some specific links (I € £) by a constant factor.

We use the method proposed in Prop. 4.1 for efficiently adding resources to this network.
Fig. 3 shows the total cost as a function of added capacity A, for ¢; = 2.7+ %, co =27+ %
and c3 = 4.8 + %. Fig. 3 indicates that the total cost decreases when the additional
capacity A increases. Hence the Braess paradox is indeed avoided.
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Total cost

o 10 20 30 40 50 60 70 80 90 100

Addition capacity A

Figure 3. Total cost as a function of the Figure 4. New network
added capacity in all links

5.3. Adding a link between source 1 and destination 4

Consider an upgrade as proposed in Prop. 4.2 and 4.3, i.e., the upgrade achieved
by adding a link connecting source 1 and destination 4. The results in Prop. 4.2 and
4.3 suggest that yet another good design practice is to focus the upgrades on direct
connections between source and destination; and figure 5 and 6 illustrate that indeed this
approach decreases the total price and the total cost.

Total price
Total cost

10 20 30 40 50 60 70 80 90 40 50 60 70 80 920

Addition capacity A Addition capacity A

Figure 5. Total price as a function of the Figure 6. Total cost as a function of the
added capacity in link (1,4) added capacity in link (1,4)

Appendix

In this appendix, we analyze a function H, : [0, a¢) — R defined by:

Ho(z) = Cfx - acx_ —+ (I = 1)n(1 - gc), (6)
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where a@ > 1 and ¢ is a constant positive. More precisely, we wish to determine « such
that H, is positive for every z in [0, o¢). By remarking that H(0) = 0, Va, it is enough
to determine « such that

0H, c ac
or  (c—2)? (ac—1)? < 1)ac—x >0
This last inequality is equivalent to
c Iac— (I - 1)z
(c —x)? (ac — x)?

which is equivalent to (a? —Ia)c® +cz?(3—Ta—2I) > 2x(2a—2Ia—T+1)— (I —1)z3. If
« > I, then it is enough to show that cx(3—Ta—2I) > ¢*(2a—2la—I+1)—(I—1)z? Since
1?2 + ¢® > 2cx, it is sufficient to verify that: ¢*(1 + 3Ia — 4a) > 2*(Ia — 1), or ¢*(a(l —
2) +1) > 0, which trivially holds.

REFERENCES

1. E. Altman, T. Bagar, T. Jiménez and N. Shimkin, Routing into two parallel links:
game-theoretic distributed algorithms, to appear in Journal of Parallel and Distribut-
ed Computing, 2001.

2. N.G. Bean, F.P. Kelly, and P.G. Taylor, Braess’s paradox in loss networks, J. Appl.

Prob. 34, 155-159, 1997.

D. Braess, ber ein Paradoxen aus der Verkehrsplanung, Unternehmensforschung 12,

258-268. 1968.

B. Calvert, W. Solomon, and I. Ziedins, Braess’s paradox in a queueing network with

state depending routing, J. Appl. Prob. 34, 134-154. 1997.

J.E. Cohen and F.P. Kelly, A paradox of congestion in a queueing network, J. Appl.

Prob. 27, 730-734. 1990.

J. E. Cohen and C. Jeffries, Congestion resulting from increased capacity in single-

server queueing network, IEEE/ACM Trans. on Networking, 5(2), 1220-1225. 1997.

S. Dafermos and A. Nagurney, On some traffic equilibrium theory paradoxes, Transpn.

Res. B 18, 101-110. 1984.

H. Kameda, E. Altman and T. Kozawa, A case where paradox like Braess’s occurs in

the Nash equilibrium but does not occur in the Wardrop equilibrium- situation of load

balancing in distributed computer systems, Proceeding of IEEE CDC’99, Phoenix,

Arizona, USA, DEC. 1999.

9. H. Kameda, E. Altman, T. Kozawa, and Y. Hosokawa, Braess-like paradoxes in dis-
tributed computer systems, IEEE Transaction on Automatic control, 45(9), 1687-
1691, 2001.

10. H. Kobayashi, Modeling and analysis, AN Introduction to system performance eval-
uation methodology, Addison Wesley, 1978.

11. Y. A. Korilis, A. A. Lazar and A. Orda, Architecting Noncooperative Networks, IEEE
J. on Selected Areas in Communications 13(7), 1241-1251, 1995.

12. Y. A. Korilis, A. A. Lazar, and A. Orda, Capacity Allocation under Non-Cooperative
Routing, IEEE Trans. on Autom. Control, 42(3), 309-325, 1997.

13. Y. A. Korilis, A. A. Lazar and A. Orda, Avoiding the Braess paradox in non-
cooperative network, J. of Appl. Prob., 36, 211-222, 1999.

14. Y. Massuda, Braess’s paradox and capacity management in decentralized network,
manuscript, 1999.

15. A. Orda, R. Rom and N. Shimkin, Competitive routing in multi-user communication
networks, IEEE/ACM Transactions on Networks 1, 510-520, 1993.

16. M.J. Smith, In a road network, increasing delay locally can reduce delay globally,
Transpn. Res. 12, 419-422. 1978.

= W

. N o



