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Abstract

We study the effect of adding redundancy to an input stream on the losses that occur due to buffer overflow. We consider
several sessions that generate traffic into a finite capacity queue. Using multi-dimensional probability generating functions,
we derive analytical formulas for the loss probabilities and provide asymptotic anaysis (for large n and small or large p). Our
analysis allows us to investigate when does adding redundancy decrease the loss probabilities. In many cases, redundancy is
shown to degrade the performance, as the gain in adding redundancy is not sufficient to compensate the additional losses due
to the increased overhead. We show, however, that it is possible to decrease loss probahilities if a sufficiently large amount of
redundancy is added. Indeed, we show that for an arbitrary stationary ergodic input process, if p < 1 then redundancy can
reduce loss probabilities to an arbitrarily small value. [0 1999 Elsevier Science B.V. All rights reserved.

Keywords: Forward error correction; Loss probabilities; Multi-dimensiona generating functions; M/M/1/K queue; Stationary
ergodic arrival processes

1. Introduction

An important trend in telecommunicationsis to integrate different type of traffic in a single network.
The various traffic types typically have different requirements on quality of services, and in particular,
on loss probabilities. Rapid progress in the development of fiber optics allows to achieve a bit error rate
of 10~4; information lossis then essentially due to congested nodes and buffer overflow.

Often, a group of consecutive packets are grouped into a frame, and loss of one packet results in the
loss of the whole frame. This is the case in ATM where a transport layer protocol (known as AAL)
is responsible for this grouping, see e.g. Chapter 5 in [11]. In order to reduce the loss probabilities,
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one may add redundant packets into the frame, so that lost packets can be often reconstructed. Indeed,
there exist erasure recovery codes that, by including additional k redundant packets in a frame, enable
to reconstruct up to k losses (see [5,10,13,4] and references therein). We note, however, that by adding
redundant packets, the workload increases and thus the loss probability of a packet increases.

Adding redundant packetsto aframe is quite frequent in networks, especialy in the ATM adaptation
layer (AAL), seee.g. [3]. It also plays an important role in several applications on the Internet (see e.g.
[2,12]). If the number of redundant packets j that is to be added to a set of n packetsis one, the simplest
way to do it is by letting the kth bit of the redundant packet be the modulo 2 sum of the kth bit of al n
packets. For the case of | > 2 there are several known methods, see e.g. [4], or the Reed Solomon code
[6]. The procedure of adding redundancy is known as Forward Error Correction (FEC). (This method is
in contrast with feedback error correction methods based on retransmissions, which may require long
delays due to the retransmission.)

We analyze the tradeoff between the effects of increase of workload and the recovery of lost packets,
and calculate the probability of no more losses than k packets within n consecutive ones in the presence
of k redundant packets. The computations are based on recursive formulas obtained by Cidon, Khamisy
and Sidi [5]. We consider the possibility of multiplexing between several sources so that the packets
of a given source to which redundancy is added may be separated in the queue by packets from other
sources. This type of models (with more general arrival processes) was studied also in Kawahara et al.
[10] who obtain a procedure for the numerical solution. By restricting in this paper to Poisson arrivals,
we are able to obtain exact formulas for the loss probabilities.

In [13], the authors have used an approximation based on an assumption of independence between
consecutive losses, and shown that redundancy results in decrease of |oss probabilities by 10% to 100%.
Exact numerical methods based on recursions [5] led to an opposite conclusion, i.e. that redundancy
causes increase in loss probabilities. One of the advantages of our analytical approach, together with
the asymptotic approximations which we present, is that they enable to study both qualitative and
quantitative behavior of the effect of redundancy in a systematic way. As was already shown in [1,9]
for the case of a single source, we show that for both light traffic as well as heavy traffic conditions,
redundancy decreases |oss probabilities.

In this paper we identify a fundamental property of losses with redundancy. We show that for any
value p smaller than one of the traffic load of sessions to which we wish to add redundancy, adding
redundancy in an appropriate way results in arbitrarily small loss probabilities. This property is shown
to hold for any stationary ergodic arrival sequence. For the special case of Poisson arrivals we actually
compute the rate of redundancy that has to be added.

The paper is structured as follows: in Section 2, we describe the model and we set the main results:
probability generating function (etc.), the proofs are given in Section 3. The asymptotic analysis is
presented in Section 4. In Section 5, we show that in light traffic, adding redundancy decreases the
loss probabilities. Numerical examples which illustrate this improvement are given in Section 6. In
Section 7 we show that frame losses can be almost completely eliminated, and we compute the required
rate of redundancy. In Section 8 we extend some of these results to general arrival and service time
distributions. We conclude with some remarks and future work in Section 9.
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2. Themodel and the main results

We consider an M/M /1 queue with a finite buffer of size K served according to the FIFO (first in
first served) discipline. We assume that packets arrive to the queue from S independent sources, i.e. the
inter-arrival times and the transmission times of packets from each source are mutually independent.
The arrival process from sources, s = 1,2, ..., S, is assumed to be Poisson with rate As. The overall
arrival processto the system is then Poisson with rate . 2 Y5, As. Define ps £ As/A and ps 2 1 — ps,
0 = A, ps = As/i = Psp. We summarize the recursive scheme introduced in [5] for computing
PS(j,n),s =1, 2,..., Swhich are the probabilities of j losses among n consecutive ones originating
from source s. For the system with Poisson arrivals with rate A and exponential transmission rate p,
in steady state, the probability of finding i packets in the system at an arbitrary epoch is given by
i) =p' /(X1 0. Define Q; (k) to be the probability that k packets out of i leave the system during
an inter-arrival epoch. We have

Qi(k) = paktl, 0<k<i-—-1,

St )
Qi) =d, wherea ;= (1+ p)~ L.

Denote by P>%(j,n) resp. P>%(j,n), i = 0,1,...,K,s=12,..,Sn>10<j <n,the

probahilities of j lossesin ablock of n packets coming from source s, given that there arei packetsin

the system just before the arrival of the first packet in the block, and just before the arrival of a packet

from any other source (denoted by §), respectively. Since the first packet in the block is arbitrary, we

have

K
PS(j,n) =Y M@{)P>(j,n). @)

i=0

The probability that an arbitrary arrival isfrom source sisequal to As/A. The recursive schemeis

s.a,: 11 J :O! .
PSa(j, 1) = i=0,1,...,K-1 ®)
0, j=1,
1, j=1,
Pe2(j, 1) = 4
kU 0 j=0j>2 @
Forn > 2, wehavefor0 <i < K — landfori = K, respectively:
i+1 _
PG M =Y Qia(k [ PP n— 1+ PP n - D).
k=0 5

K
PRAG, M =) Qk(K) [psP,i"i‘k(j —Ln—1+ psP%(j —1n— 1)] :
k=0
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where P*2(j, n) for n > 1isgiven by

i+1

P>2(j,n) = ZQ.H(k)[ps k(s M+ psP n)] 0<i<K-1, ©
k=0

P2(j, n) = Pg?,(j, n).

The complexity of these recursionsis O(K 2nj) in arithmetic operations and O(K ) in memory space.
Next, we state the main results, whose detailed proofs are given in next section. Define:

sy, 22 ) > yIZ"Pe(j,n).

j=0n=1

Let x1(2) and x»(z) bethe solutionsin x of x> — (1 4+ p)X + p(Ps + psz) =0

1@ = (1+p+ @+ )7~ 4o(ps+ ps2)) /2

Xe@ = (1+p = /AL +p)? = 40(Ps+ Ps2)) /2.

We shall often write simply x; and x» for x1(z) and X2(z). Both these functions are analytic in the
disk {lz| < ((1+ p)2 4ps) /4ps}. Define, for all k, 8 = X¥ — X5, gk = (Ps + Ps2)dk—1 — Sk. Let

Rk = (ZI 0P>
Proposition 1. The probability generating function gs is given by
Rk (PK_l(l — 2)[5k 41]? [ 1 ] 1 PK_15K+1>
2 = + R+ ————). (7
D=1y 2 B — ok —pzpky] < 2px 0

Once the probability generating function is obtained by Proposition 1, one can obtain the required
probabilities by inverting gs. We focus in the sequel on P3(> j, n), which is the probability of losing
more than | packets out of n consecutive ones coming from source s. We investigate in particular the
caseof j =0, 1, in order to be able to decide when does including one redundant packet in each frame
resultsin a decrease of the loss probability.

We shall use the notation [Z¢] f (z) to denote the coefficient of Z* in the Taylor expansion of the
function f(2),i.e.if f(2) =Y, fkZ“then[Z]f (2) = f«.

Corollary 2. The probability of losing morethan j packets out of n consecutive packetsthat arrive from
sourcesis

) j
PS> j.n) = RKpK+J[n1—J] 1 [ SK+1 }( o ) ®)

z— 1| z6x —dk+1] \ 20k — dk+1

In the following, we obtain a simple recursion on n, for computing the probabilities P3(> j, n).
Thus, we avoid arecursion on j and aresolution of a set of linear equations of size K for al j andal n
requiredin[5].
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Define 8, y and 6 as

4
y=1+p, B=v1d+p)?—4ps, o=— "5 )

(1+ p)? —4ps
Let G = K/2for K evenand (K + 1)/2 otherwise, and set

n=t- @>“i(§kii)(k) ()

=n

B - K+1 4y (2K + 1)n B\
=0 Z<2k+1>< )(ﬂ(K+1)(K+1—2k)+9ﬁ> (?)

(we usethe conventionthat 3¢, = 0if n > G).

Corollary 3. For n > 1 we have

n-1

1
PS(> 0,n) = Rx o + = > (br-kPS(> 0.k) + Re pFa) . (10)
k=1

For j <n,n> 1, P3(> j, n)isgiven by the expression

1y [n=2 n—j-1
ZHHM 1 kPS> K+ D)+ Rep Y Rk (11)

Aji10 =

where

k n
k
Hk,n = E <r>(_1)k—r Ak—r,n—mBr,m—r,
r=0

Py

=}

I
M~
jn
A
= x

) (_1)k—r Ak—r+1,n—m Br,m,

with

n

k
k —_ / /
Acn = [2"] (Bk+D)" = Z (r)(—l)k "8 (k +1),mBk—r) (K +1),n—m>

m=0r=0

n k
k / /
Bk,n = [ (3K) = Z Z <r>(_1)k_rarK,m (k—r)K,n—m>

Or=
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= () () (4) S

r=0

, KA (K =B\ T(n—r1/2)
n =0 (2) Z%(r) ( % ) ntr(-r/2)’

For computing the probabilities P7(> 0, n), we first compute the terms a, and b, k = 0,...,n
which requires O(K n) arithmetic operations, then we compute the sum, which is a ssmple recursion on
n, with compIeX|ty of O(n?) arithmetic operations and O(K n) in memory space if we consider that all
thevalues() O0<r <nr <k =< K/2remainin memory (and need not be computed). In the case
j >0, weprocewlnthememmna wefirst computethetermsay ., by k=K +1,..., j(K+1),
m =0, ..., nwhichreguires O(K nj?) arithmetic operations, after this, we computetheterms Ax.m; B,
k=1,...,j,m=0,...,nwith complexity of O(j2n?), after what, we compute the terms Hj4+1m and
Rimm=0,...,n Which requires O(jn?). Finally, the probabilities are computed from Eq. (11) with
complexity of O(nz) arithmetic operations. Thus, the complexity of this procedureis O(j2n? + Knj?) in
arithmetic operations and O(K 2j2) in memory spaceif we consider, again, that all values (r) 0<r <k,
K+1<k=< (K +1) arestored beforehand in the memory and need not be computed.

where

Remark 4. All the resultsin [1], who considered a single source, can be obtained as specia case of our
results by substituting 1 for ps.

3. Proof of the main results

Proof of Proposition 1. The following derivation is a generalization of the one given in [1] for the case
of no exogenousflow i.e. ps = 0. Define

5 (X) £ Zx P>2(j, n),

75 0(X) = Zx P32(j, ),

K
(0 £ X [pst’a(j, n) + ngf’a(j,n)], n>1,j>0.
i=0
It follows from Eg. (5) that

K-1 i+l
75000 = 2oX Y Qa0 [ PP (n = D+ psPSE (.- D]
i=0 k=0

K
+x° 3" Qk (k) [psP.i‘i‘k(j —1,n—1+psPS?(j—1,n— 1)] .
k=0
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Next, we substitute Eq. (1) as well as the definition of d) (x) into the last equation. Using the fact
that @5,(0) = pspsa(j, n) + psPy(j, n), we obtain for n > 2,j =1

i
75 0(X) = ZX <Zpak“[ps S (Gon =1 + psP33_(j.n— 1)]
i=0
|+1 g’a .
[ Pepge(iin = ) + psPS (J,n—1>]>
K-1 )
< (Z pak“[psp;ek(j —1n—1+ psPe?(j —1.n— 1)]

k=0

“[Pspza(i =10 = D+ psPS( — 1,n— 1)])

2 2
Pz (1 L0 = @0K o5 1(a—1>) pe (i—(ax>K)¢i§n_1(0>

1 aX X 1—ax \ax
1-— (ax)K s§ s§
+am¢j’n_1(0)+ap(ax) cD 2 1ne (™ )+a(ax) <D > 1ne 1(0). (12

Proceeding similarly as above, we obtain from Eq. (6) forn > 1, j > O:

2 2
75000 = —o (1 0 — (@K @5S (—1)> i (i—(ax)K>q§f§n(O)

1—ax 1—ax \ax

- (OtX)K

D50 + ap(@X) < D%, (@) + a(@x) %,(0). (13)
1—ax

Define, with some abuse of notation, the generating functions of P*2(j, n) resp. P>2(j, n):

ﬂS(X,y,Z)éZZyJ 2" (), resp. ng(x,y,z)éZZyl 2" ().

j=0n=1 j=0n=1

Define also, with some abuse of notation, the generating function of psP>2(j, n) + psP>2(j, n):

PI(x,y,2) £ YO () = psr (X, Y, 2) + psTi(X, Y, D). (14)
j=0n=1

Whenwefix y and |z| < 1, thethree generating functions are polynomialsin x, and therefore analytic
functions. In order to use EqQ. (12), which holdsonly forn > 2and j > 1, we note that

Y Y Y00 = 7%, Y, D) — Zzn (%) — Zyj 1209 + 76100
j—1n=2 J=0

=n°%(X,Y,2) —7%(X,0,2) — 75%(x, y, 0) + 7°(X, 0, 0).
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From Egs. (3) and (4) we get

1—xK s 1—xK
X O:
T % (X, Y, 0) T x

In Eq. (15), as well as in the rest of the paper, we consider that for x = 1 and for al K,
(1—xX)/(1 —x) = K (in particular, Rx = 1/(K + 1) for p = 1). From Eq. (12), after substituting
Eq. (14), we obtain

73(X,0,0) =

+ yxK. (15)

2

po 1 sS sS
—z[® —®%(x,0
1_00(00(2[ (X, ¥,2) (x,0,2)]

pa?

1—ax
2
i (i - (ax)K) z[@%(0.y.2) — 2%(0,0,2)]

73X, y,2) —75(x,0,2) = yxK +

@x)z[@S@ ™y, 2) — 25,0, 2)]

1—ax \ax

1— (@x)X
1—ax

+ap@) zy [0Sy, 2) + 2500, y, 2)]

+a z[#%(0,y,2) — ©%(0,0, 2)]

= yx" +

p 2 1 sS sS
—z[® —®%(x,0
1_00(00(2[ (X, ¥,2) (x,0,2)]

+ pa(ax)f (y — L) z [cpsg(a‘l, Yy, 2) + E<1>S§’(a‘1, 0, z)]
1—ax P
pa?(ax)k
1—ax
—pa® 1 o
* (1—0{Xo; * 1—oax
Similarly, from Eq. (13) after substituting Eq. (14), we have

_ 1 .
z [cpss(a—l, 0,2) + —@%(0, 0, z)}
P

) z[®%(0,y, 2) — ¢%°(0,0, 2)] . (16)

73X, Y, 2) = pa(ax)K (1 - L) [cbsg(a—l, V.2 + Zo%@1 0, z)]
1—ax o

2 2
po 1 S5 a“(X—p) S5
— —— P> . 17
T axax? *Y.D+ R ©,y,2) 17
By using therelation « + pa = 1, we get from Eqg. (17) and Eq. (14)
3(p, Y, 2) = ®5(p, y,2) = n%(p, Y, 2). (18)

This means that the distributions of the number of the customers in the queues taken at the arrival
times of the packets from source s are the same when taken at the arrival times of the other packets
(packets coming from other sources§). (Thisis due to the Pasta property.)

We note that in order to establish the proof of Proposition 1, it follows from Eq. (2) that it sufficesto
obtain 75(x, y, z) a X = p, since

as(Y, 2 = Re (0, Y, 2). (19)
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From Egs. (16) and (18) we have
— @%5(0,0,2)]

ypK + Z(pO[)K+1 [@Sg(a_l, 0, 2)
— 0%(0,y,2)]. (20)

+2(y — D(pa) T[St y, 2)

In order to compute the function 75(p, y, z) it sufficesto compute the functionsin the square brackets

[7%(p,y,2) = 7%(p,0,9] (1 - 2) =

aswell as5(p, 0, z). To do that, we first compute ng’n by proceeding in the same manner asin Eq. (12)

Since Pg?(0, n) = 0 we have
2 o2
pat 1 _
nos,n 1— ax X On l(X) (O‘X) ¢On 1(0‘ 1)
—(ozx)K a? 1 _
+ am On 1( ) — 1 X _X — (ClX) (pcs)’sn_l(O).

By taking the generating function of both sides of the above equation and substituting Eq. (15), we

can write
K
_ ,OCIZ(CIX)K_H'Z

1-x .
< (1 — axX)ax + pa’zdS(x, 0, 2)

(1 — ax)axmz3(x, 0, z) =
[¢S§(a—1, 0,2) + %cpsg(o, 0, z)} +a?(x — p)z®%=(0,0,2), (21)

from which we get, for x = p, and after substituting Eq. (18)
(22)

(1-27%p,0,2) = Rty — (pa)F1z [cpsg(a-l, 0,2) + =0%(0,0, z)].
P

From Egs. (14), (16) and (17) we have
(1 —ax)ax — pa® (ps + Ps2)) [@5(X, Y, 2)
= (ps + Ps2) (¢%(x — p)) [#%5(0, y, 2) — ¢%(0, 0, 2)]
+ pa(@x)* [psa (o = X) + (y (1 — ax) — @) psZ] [@Sg(a—l, Y2+ 2%y, z)]

— 9%5(x,0,2)]

+ psL— ax)ayx T + pa(@x)* T (ps(x — p) + ps2) [@S%rl, 0,2) + p@ssm 0 z)]
(23)

Also, from Egs. (14) and (17) for y = 0 and Eq. (21) we obtain

(Q- ax)ax — pa (Ps + Psz)) 5(x, 0, 2)
11_ (1 — ax)axps + a?(x — p) (ps + psz) (0,0, 2)
+ pa?(@x) L (ps(x — p) + ps2) [q)sg(a—l, 0,2) + ;cbsg(o, 0, z)]

(24)
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We now apply the ‘kernel method’ for solving the functional equations Egs. (23) and (24). For each
i = 1,2, when X = x;(2), the term that multiplies ®5(x, 0, 2) in the left-hand side of Eq. (24) (the
kernel) vanishes. Since @55(x, 0, z) is polynomial in x and therefore analytic in x, the left-hand side
of Eq. (24) vanishes at x = X;(z). Thus by substituting x; for x into Eq. (24), we obtain for each
z two equations with two unknowns: ®@35(0, 0, z) and [®53(«¢~2, 0, 2) + %qﬁsg(o, 0, 2)]. Solving these
equationsyields

o~ (K+D (Xf _ Xg)

P K Xz — pe) (X1 — p) — XK (X1 — pe) Xz — )’

_ 1 .
3@ 1,0,2)+ =9%(0,0,2) = (25)
0

Ps

®%%(0,0, 2) =
(X1 — p)(X2 — p)

psXK (X1 — ps) (Xp — p) (XK — xK) ]
XX (X2 — ps) (X1 — p) — XK (X1 — ps) (X2 — p) |
(26)

[—1+ X§ +

We use again the same argument as above, for eachi = 1, 2, when X = X; (2) the term that multiplies
DB(X, Y, 2) — DP(X, 0, 2) intheleft-hand side of Eq. (23), vanishes. Since @5(x, y, z) and @55(x, 0, z)
are both analytic in x, after substituting Egs. (25) and (26) into Eq. (23), for x = X;(2), we obtain
two equations with two unknowns: [@53(a~1,y, 2) + %@Sé(o, y, 2)] and ®%5(0, y, z). Solving these
equationsyields

i 1
oSty 2) + ;(DSS(O, Y, 2)

psa = KD (x£ (y(x2 — p) — 1) — x5 (y(x1 — p) — 1))

_ . 27
XK (x2 — p) [X2(1 = yx2) — ps(L = Y) | — x5 (X1 — p) [X2(1 — yX2) — ps(1 — y)] @)
Finally, by substituting Egs. (22), (25) and (27) into Eqg. (20), we abtain
i} 1 .
(1—27%(p, y. 2) = ypX + Rty + 2y — D(pa) T [éss(a‘l, y.2) + ;cDSS(O, Y, 2)]
= yIOK + REil
psz(y — Dp" (X (y(x2 — p) = D) = X3 (y(x1 — p) = 1)) 28)

XK (%2 — p) [Xa(1 = yX2) — ps(L — V)] — xF (x1 — p) [X2(1 — yX2) — ps(1 — V)]’

In the derivation of the above, we used the following relations: X;X, = ps+ Psz, X1+ X2 = 1+ p and
ps(l—2) = (X — p)(X —1),i =1, 2. Moreover, p¢x = dx — Sk 1 Since

Sk1 = XK —x K = xEK e I — p(ps + ps2)] — XX %2 — p(ps + ps2)]

= a 18k — p(Ps + Ps2)dk -1 = Sk — PPk -

The proposition, finally, follows from Eq. (19). O



O. Ait-Héllal et al. / Performance Evaluation 36-37 (1999) 485-518 495

Proof of Corollary 2.

o0

PS> j.m =R [2"71] Y [Y]7%0.y.2)

k=j+1

= Re [2Y] pt [5K+1]2 i( PZPK )k

2ok 28k — Sk +1] ke 20k — Sk 41

— R [Zn—l] oK SK+1 2 i PZPK k-1
Z8K — Sk+1 Syt Kk — k41

_R [Zn—l]pK Sk +1 2 PZPk J 1
K Z0Kk — 0K +1 Z0Kk — 0K +1 1_ PZPK '

Z6k — 6k +1
Eq. (8) isobtained by noting that
2k — k41 — PZPK = Z(8k — pPK) — Ok 41 = Z0k 41 — Sk 41 = —(1 — 2)dk 41. O
Proof of Corollary 3. From Eg. (8), it followsthat
> 1
j+1 -1 : _ K '
(Z8k — 8k +1)’ (;Zn P> j, n)) = —Rkp" 150k (pz¢)! . (29)

Particularly, for j = 0, by computing the coefficient of [z"~] in both sides of Eq. (29), given that
[2"11(2/(1-2) = Yk _o[Z]f(2), we get

o n-1
[2"71] (z8k — 8k +1) (Z " 'PS(> 0, n)) => [ @k — k41 PS> 0.k + 1)

n=1 k=0
n—1
= [2%] 28k — 6k42) PS(> 0.m) + > " [2"7*] (z8k — 8k41) PS(> 0.K)
k=1
n—-1
= —R«p" [Zo] Sk+1— Rcp Z [Zk] SK +1-
k=1

Eqg. (10) follows by noting that a, and by, defined below Eq. (9) are given by

= (2] (4)" St

(z0x — 6k +1)

bh = [Zn] (g)K \/1];—02
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Y K 1 y K -1
'] <_) JI—6z (@5 = Bk +1) = [2] (E) m&wl = —ao.

By proceeding similarly as above, for j > 0, we have

) n-1
[21] @k — 8kn)) (Zz”—1P5<> j,n)> Y [ @k = k) PS> k4 1)
n=1 k=0
n—-2

= (DI L] PS o+ D [ K] @8k — ok PS> Lk + 1)
k=]
n—j—1

= —Rep Y [2]8k11 6k —dksn) . (30)
k=0

Eq. (11) follows from Eq. (30) by setting

Hjsin 2 [2"] @0k — k1) ™

and

Rin 2 [2"]8k41 5k — dk+1))
and noting that P3(> j, n) = 0, for j > n. Moreover,

j+1 n

+1
HH—ln—ZZ(J )( 1)J+1 k[ m— k]ak [ n— m]agrll k.

k=0 m=k

Thus Hy , and Ry ,, are obtained as functions of Ay ,, and By ,, by using Newton’s binomial, where

k

Ak,n — [Zn] (8K+1)k [ ] (XK+1 K+1) — Z (r) (_1)k—l’ [Zn] X;-(K—Fl)xék—r)(K—Fl)

r=0

n

XK:Z( )( 1T [27] XL KHD [n-m] DD

r=0 m=0

and By, = |2" 8K, Whlch is obtained in the same way. Finaly, ak n and b n in Corollary 3 are the
coefficients [2"] xX and [2"] Xk respectively. O
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4. Asymptotic behavior

In order to reduce the complexity of calculations of P3(> j, n), we shall approximate it by an
expression Ps(> j,» n) which we derive below. From Eq. (8) we have

K+1 K1 _ j
P§(> j,n) = —RK/OK [Zn—l] - 1 ( X1 (ZX]_ a X1)> +f] (Z))

-z \x ' (z—x) \ X (z—x1)

1 1 Joi 1 ps(x1 — p)\ !
_ K -n-1 S . .
= —Rkp" [Z ]1_2 ((Xl_ngr 1_X1> (Xz e ) + f,(z))

£ P> j.m = Rep" [277]

1-—

We show in Proposition A.1 that the term [z"1] f;(2) can be neglected for large n and n < K
(j =0,1)andhence P3(> j, n) = PS(> j,n, Whlchwecomputenext
Forj =0,1, wehave

5s _ RKIOK n—1 1 2 _
Pp(>0,n)—2(1—_p§)[2 ]|:(1_Z)2<1—p+\/(1+,0) —4,03—4/032)

s 1 ~ e — 2 _ dpe
i (L e = s = V4 9 = s = 4p2)
Ps o 2 A
1— psps—2 (1 + pPs — Ps \/(1 +p) 4ps 4Psz):|
2 Rep* [ Yo(2) (31)

and

55 _ Rc p" n—1 2 _
P,O(> 1,n)—m[z ]|:(1—Z)2 (22—1 p+\/(1+,0) 4,05—4pSZ>

5 1
— T (@4 p9? + (s = 12— 1= 2052 — (L+ ps — po)V (L+ p)? — 4ps — 4ps2)
1- ,031—
1
4 sPs (22— 1= p+ @+ )2 = 405~ 4052)
1—psz—ps
3
Ps
+ L= (@+ 99+ (ps = D2 =1 2052 — (1+ ps — poV/ (1 + )7 — 4ps — 4ps2)
1—psz—ps
3
IO_
+—— ((1 + 092+ (ps — 1D? — 1= 2psz — (1 + ps — ps)v/ (1 + p)2 — 4ps — 4psZ>
(s — 2)
Rk p¥

(1>

A 2 1%@. (32)
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Proposition 5. For n > 1, for p fixed, and for n < K, I5§(> 0, n) isgiven by

RK/) _ Ps  PsPs n -3/2 i
T [(1 )n+(1_p 1_p§)+0 O(n )} if p <1,
1 1 Ps ﬁ 1 : . .
K+1E[<Zm+mn>ﬁ<l+o<ﬁ>)_ps} o=t
B ( 4 psps ( 1 p-1 ))
p(p =13 p(l—ps) \p—1 A4+ps—ps)?))’
1 B ea ifp>1
x 6 m( +0(1) iTp >
and P$(> 1, n) isgiven by
ReoSos [, ps+p—1  psps NA (n—3/2 }
1 )2[(1 p)n + 1, 1_p§+0 O(n™%?)
1 1 2ps \ VN 1 ]
krap (2P o) T (200 (5)) - a0
‘ 1_ _Ps ( 4ps ps(p — 1) ((1 + ps — ps)®
1 plp—13  p(d—ps)(A+ ps— ps) (p —1)?
B Ps s Apsp2(L—ps) |\ 6" 1pn—32
At pa—ps T <1+ps—pg>2)> A= pom LW

Proof. From Eq. (31), we get, for p < 1,

—-p 4ps

1 1- —

a5 ( +\/ i 2” )>

Ps 1 4ps
_1—,031 Z<1+Ps Ps(l—P)\/l—(l_p)z(Z—l)>
( +Z ( (2= )))

4_

5 1
P 2ps —
1 0s 1-2z

21— p) 1 ps
(1-27? 1-p 1-0ps

Yo(2) = ¥1(2) +

(1 - 2)2

+Y1(2) =

(33)
ifp <1,
ifp=1,

(34)
if o> 1.

2ps
) 1 + ¥2(2) + ¥1(2),
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where
. = ) 4ps J j—2 ps(1— p) = ) 4ps J -1
e (a%m) @-» P 0 (a%m) &

Y2(2) is analytic at z = 1 and has a singularity of type /e a z = zg = ((1+ p)? — 4ps) /4ps.
Therefore, when ziscloseto zg,

B (14 p)? — 4ps
V2(2) o(\/4—p’5 —z) .

It is easily checked that

(39

1%
1—psps—2

s1+ps—ps) 1 4
_ ps(1+ ps — ps) 1- [1— %(Z—pg)
1—ps ps —Z 1+ ps — ps)

ps(1+ ps — ps) — ( 4ps )j -1
ST TN (T ) (z— pe)i L, 36
1-ps ; "\ @+ ps — ps)? ) 0

VY1(2) =

(14 ps = ps = VA + ) = 4ps — 4p2)

Y1(2) is also analytic at z = ps and for the same argument as above, when z is close to
(A4 p)? — 4ps) /4ps,

B (14 p)? — 4ps
V1(2) o(\/4—p’5 —z) .

In addition to this singul arity, vrg is seen to have apole of degree2 at z = 1. We get

[ vo = 2a- o+ 20 (1 - 12 )+ (g ) O072).

1-p 1-ps) \(L+p)?—4ps

This is obtained, by applying Theorem 1 of Flgolet and Odlyzko [8]. This theorem is applicable,
since Yp(z) is anaytic in the whole complex plan except the segment along the real axis z €

[((L+ p)? — 4ps) /4ps, oo
For p = 1 we have

2/Ps +2|Os
1-2%  /ps(1-

1
Yo(2) = S TV

and

o0 1\ ‘
V1(2) = 2p§ZCj (F) (z— ps))t

j=1 S
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is analytic at z = ps and has a singularity o type /e at z = 1 i.e when z is close to 1, ¥1(2) =

O(v1-12). Weget
(1 po2) = 2p 021 2ps F(n—1/2) 1

rap) m-n' ' Jps '@/2 n-1!

we obtain the corresponding equation in Proposition 5, by using Proposition 1 of [8] aswell as the fact
that I"(3/2) = 3r1/2) = J/w/2:

—2ps+0(n~%?),

rm+12 1 2 1
r@2 oo - mY" (”O(ﬁ))'

For p > 1 wenotethat

_21—pg)p (1
o = 2CL2 (L) @ @
where
1- s(1+ps—ps) 1 s(1+ps—ps) 1
V() = e ps(1+ ps— ps) ps(1+ ps — ps)

T (1-27? 1—ps 11—z  1—ps ps—z2

n psy(1+p)2 —4ps 1 \/1 4ps 2-pyp 1

— V4
1— ps ps—Z 1+ p)? —4ps p—1 1-z

\/(1+p)2—4p§\/1 4ps Z_pgv(1+p)2—4p§ 1 \/1 4ps

- - Z.
(1-2)? 1+ p)2— 4ps 1— ps 1-z (L+ p)2— 4ps

When z is close to (1 + p)2 — 4ps) /4ps, equivalently, as (z — 1) tends to (1 — p)2/4ps, also, as
(z — ps) tendsto (1 + ps — ps)?/4ps, We have

Ps 4ps ps(1+ ps— ps)  4ps 2(1—ps)p  4ps
= + —
v 1—ps 1+ ps— ps) 1-ps  (1—p)? p—1 (1-p)?
(0 —D(@ps)®* ( (40s)>  4psps ( 1 1 ))
1-p) L-p* 1-ps\A—-p)? 1+ ps—ps)?

« \/(1+p)2—4p§\/1 Lz+o<\/l Lz).

(A4 p)2—4ps (A4 p)2—4ps

It followsfrom[2, p. 219 (2.2)] that

n1 _( (4ps)? _4psp§( 1 1 ))( 4ps )“‘1
[ lv@ = ((1—,0)4 1-ps \(1—p)?  (1+ ps— ps)? 1+ p)? — 4ps

JAT P dpa(n— 1)
« YA+ P —dpstn — D (1+o(%)). (38)

r—1/2)
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Finaly, from Egs. (31), (37) and (38), we get

7RK’0K n-1 _ 1 n-1 1 1-p)
20— l2 V@ =1 s ] (1_2 + 2p(l_pg)w(z))

__( 4 psps (1 . p-1 ))( 4ps )”‘1
— \pe=D3 pd—ps) \p—1 (14 ps— ps)? (14 p)2 — 4ps

L V(A+p)? — 4psn 2
(1— ps)/m

To obtain I5ps(> 1, n), we proceed in the similar way. We shall identify the singularities of ¥y(2).
From Eq. (32) we have

o(2) — wn(zy b5 2psps | psL=p) <1+\/1— 4ps (z—l))

PS(>0,n) =

14+0(2).

1-z 1-ps (1-272 (1—p)?

Ps 1 2 2 2 4 B
C1-psl—z <(p3 D7+ ps — ((ps = 1) P)\/ 1— )2( ))
_ 2ps 2psps  ps(1—p)

T Tz T A2 ( ZC‘(@ (Z_l)))
- Ps 1 2 N2 B j
1— pel—z (2/03 ((ps — 1) /OS)X:cJ ((1 5 (2 1)) )

2ps(1—p) 4 ps+p—1_ psps\ 1 2psps
(1—2)2 *\ 1-p 1—ps)l—2z 1—0p

+¥1(2) =

+ U (2) + ¥1(2),

where

4 .
Wa(2) = ps(1— p)Zc,( ”)Z) z-1~?

ps(L—p)(L+ ps—ps) =~ [ 4ps IENEY
+ — ;C‘<(1 )2>( 1) (39)

W,(z) isanalytic at z = 1 and hasthe same singularities as y»(2).
Itis, also, easy to check that

2 1+ ) !
V@) = 170 (1= p8) + (205 = 0§ (Lt ps = p) g 2 Z (aramr)
— 5 S ] S S

j— 4ps _
z—ps) 7t —31+p—p-2§ c(—) z—ps) 2. 40
x ( 5) Ps( s 5) = i 1 . pg)z ( 0s) ( )
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Yy (z) isanalytic at z = ps and has the same singularities as 1 (). In addition, it haspolesat z = 1.
Forp=1
2ps/Ps 2ps/Ps B 2ps(1+ ps)
1-2%2  (1-2Y2 1-z
When ziscloseto 1 ¥1(z) = O (V1 - 2).
We obtain the corresponding equation in Eg. (34) by using the same properties as those used for
getting Eq. (33). The expression for p > 1 is obtained in similar way as we obtained it for P3(> 0, n),
which establishesthe proof. [

Yo(2) = — 2ps + ¥1(2).

Next, we examine the asymptotics of the loss probabilities for small p. For large p the probabilities
arecloseto 1, thus, this last caseis of no interest since systems are not supposed to work with such loss
probabilities.

Proposition 6. For n > 1,0 < j < n, we havefor small p
PS> j.n) = p"pl(n— j + O(ps)).

Proof. For p small enough, we have P§(> j,n) = ,okpsj (n—j +0O(p)), as p — 0. Thefunction O(1)
here depends on p and z and it is uniformly bounded in the disk |z] < h (h > 0isasmall constant) as
o — 0.

Thisimplies
dK+1 Dy
= O(p), _ = = O(p).
Bk —dny -1 + O(p) ok — s Ps + O(p)

By substituting thisinto Eqg. (8), since Rx = 1, we can write

Py J,m = ppl (2717 ( T 0<p>) = pl(n—j +O(p)).

(We used the fact that if the function O(1) = O(z, p) is uniformly bounded in the small disk |z] < h as
p — 0, al its coefficients[Z"]O(z, p) are aso bounded as p — 0.)
In particular PS(> 0, n) = p*(n + O(ps)), PS(> 1,n) = pX+1ps(n — 1+ O(p)). O

5. When isit better to add redundancy

In this section we compare the loss probabilities of a whole group of n consecutive packets, which
we call a block, with and without j additional redundant packets. The group of packets that includes
the original block plus the additional redundant packets (if these are added) is called a frame. We still
assume that the process of arrivals of packetsis Poisson. If the number of packets of aframe (containing
J + n packets) that reach the destination is at least n then all the packets that have not reached the
destination can be reconstructed. If not, all the packets of the frame are considered to be lost. In this
section we restrict ourselvestothecaseof j =0and j = 1.

Without loss of generality, we may rescale time so that the service rateis one: 1 = 1. We assume that
the rate at which frames arrive is the same for the two casesand is given by X = psx + psx = X' + X”.
We distinguish two cases:
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(1) Adding redundancy for all sources. Hence, the rate at which packetsarriveisi = p = (n + 1)x.
(2) Adding redundancy only for source s; the workload isthen A = p = nx 4+ x” and ps stays the
same.
Theframeislost, in both last cases, if and only if more than one packet islost out of n+ 1 consecutive
ones coming from sources.
We are thusinterested in the difference

P3.(>0,n) — P(?1+1)x
5(>0,n) —

If A > Othen the redundancy decreases the loss probahilities of frames.

(> 1,n+1) if all sourcesadd redundancy,
(> 1,n+1) ifonlysources addsredundancy.

nx+x”

Proposition 7. For any n and K, adding redundancy resultsin a decrease of the loss probabilities for all
x small enough (light traffic regime).

Proof. We consider case 1. Case 2 follows similarly. From Proposition 6 we have PS5, (> 0,n) =
nx)X(n 4+ O(nx”)) and
Phinx(> L.n+1) = ((n+ Dx)“ps(n + O(nx")).
The proof now follows by noting that

>1Ln+1)  ng1\K
(n+1)x _ |II‘%< + ) N+ Dpx=0<1 U (41)
X—

lim
x|—>0 > (> 0,n)

6. Numerical examples

We have shown that adding redundancy is profitable in light traffic. A natural question is how small
should the traffic bein order for this conclusion to hold in practice.

Below, wefix p, ps and obtain aset of n and K for which redundancy will lead to better performance
and for which the loss probability of frames s of a given order (e.g.: 10~8). We shall restrict to afamily
of n and K that are inter-related by n = »nK, where n is a constant to be determined, and we shall
consider n > 1. In fact, the approximations turn out to be quite accurate even for moderate values of n
and K.

InFig. 1, wedisplay the values of P7(> 0, n) and its approximations (from Proposition 5):

» Rep® 1 Ps
AO(>O’n)_(1—,0§) <( —p)n+ps(1 P_l—p§>>’

K
(1_ )(1 p)n

inthecase K = 10,n < 10, p = 0.4 and ps = 0.6.
In Fig. 2, we make the same comparison for P§(> 1,n) and

Bo(> 0, n) =

RK,OKPS

A1(> 1, n) 4 m

-1 ~
((1_p)n+,0+/03 B Psps>’

1-p 1— ps



504 O. Ait-Héllal et al. / Performance Evaluation 36-37 (1999) 485-518

0.0005 .
0.00045 Y
0.0004 |
0.00035 | - -
0.0003 B -
0.00025 |- B .
0.0002 @ =
0.00015 |- @ -

0.0001 ] I I 1 ] ] ] ] n
2 3 4 5 6 7 8 9 10

Fig. 1. P3(> 0, n) and its approximations p = 0.4, ps = 0.6 and K = 10.

0.00014 ,

T
By

0.00012

T
o]
©
1

0.0001
O

8e-05 - o ¢ =

6e-05 |- oo % -

4005 @O ¢ -

2-05 ]
4

0 ! ! ! I 1 1 ! n
2 3 4 5 6 7 8 9 10

Fig. 2. PS(> 1, n) and its approximations p = 0.4, ps = 0.6 and K = 10.

Rk PK Ps
Bi(>1n 2 ——""(1—p)n.
1( ) 1 pg)z( P)
These approximations are obtained from Proposition 5 (o < 1), by taking the two first and the first
term, respectively, in the asymptotic expansion (in n) of P=.

6.1. Adding redundancy for all sources

We wish to determine x* for which P(Sn+1)x(> 1,n+1) — x*P5(> 0,n) = 0. We shdl provide a
heuristic approach to obtain the interval [0, x*] for which we should use redundancy, and confirm this

by numerical examples. From Eq. (41), we havefor large K

| ( n )K: 1 n (1_ 1>K: n exp(—1/n)
psn+D \n+1/) = pypKn+1 nK/) —n+l paK
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3e-08

2.5e-08

2e-08

1.5e-08

1le-08

de-09

0
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Fig. 3. P5(> j,n+|), j = 0, Lasfunction of ps for p =0.6,n =19 and K = 39.

Since pi = psx*nK, we have

Pt = T exp(~1/n) = eXp(~L/). 42)

More generally, for p; = (n/(n+ j))p* adding j packetsleadsto better performance. This heuristic
is quite optimistic and we obtain this experimental result: We fix p = 0.6 and for ps €]0, pi] where
p: = exp(—1/n), adding one redundant packet decreases the loss probabilities of frames and for the
same values of ps, for p = (n/(n + j))0.6, adding j packets leads to better performance than adding
0,..., ] — 1packets.

Example 1. Let p = 0.6, ps = 0.1, we wish to determine n and K for which the loss probability is of
order 1078 and redundancy leads to better performance. It follows from Eq. (42) that > 0.36. From
Proposition 5, we have

1-06 0.6X
1-06K+11-054

The exact calculation for A(p) = PS.(> 0,n) and S(p) = Poipx(> 1.n+ 1) yields that for
n = 14, A(0.6) = 1.10 x 1078 and S(0.6) = 2.09 x 108, For n = 19, S(0.6) = 1.42 x 108 and
A(0.6) = 1.48 x 10~8. We haveto take 5 greater than the value n = 0.36 obtained above.

If we choosen = 0.5weobtain K = 40 and n = 20; A(0.6) = 9.39x 102 and S(0.6) = 8.59x10~°.
In Fig. 3, we display the probability with and without redundancy as a function of ps for p = 0.6,
K = 39 and n = 19. We note that for the sources whose proportion in the overall arrival stream does not
exceed 10% (ps < 0.1), redundancy decreases their loss probabilities, but not for the others. We note
also, that the loss probability without redundancy decreasesin ps contrary to the loss probability with
redundancy which increasesin ps.

In Fig. 4 we show the loss probabilities as function of the number of redundant packets for
o =(19/(19+ 4))0.6 = 0.5, ps = 0.1, n = 19, K = 39. Weremark that adding four packets decreases
the loss probabilities more than adding one up to three, but when we exceed four packets the loss
probabilities beginsto increase. It means that adding more redundant packets doesn’t necessary result in

PSs(> 0,n) = (1-0.6)0.36K =108 = K =39, n= K = 14.04
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x10~12
16 T T T T T

15 -
14 Posjypn(>n+7) — A
13 |
12 |-
11
10 |-
9 |-

ot O N @
I

1 I 1 ] 1 j
0 1 2 3 4 5 6
(> j,n+ j) asfunctionof j for p = 0.5 ps=0.1,n=19and K = 39.

Flg 4. P (n+1>p/n

a decrease of the loss probabilities. In fact, the adequate number of redundant packets which we should
add in order to decrease, as much as possible, the loss probabilities strongly depends on the workload
and the size of frames.

6.2. Adding redundancy only for source s

We are interested by the case when redundancy is added only for the source s. We assume that the
rate at which frames arrive is the same with and without redundancy. When one redundant packet is
added for source s, we have A = p = nx + psX. We proceed similarly as above, we get for large K

ps = EXP(—Ps/n). (43)

Example 2. Let p = 0.8 and ps = 0.1, we wish to determine n and K for which the loss probability is
of order 10~° and redundancy leads to better performance. From Eq. (43) we have n = 0.04 and from
Proposition 5 we have

1-08 08K
S ~ ~ -9 ~ . ~
P0.8(> 0O,n = 1—0,8K+11 072(1—08)004K =107 = K =90, n=nK =4
Exact calculation for A(p) £ PS,(> 0,n) and S(p) = Poxtox (> 1,n + 1) yields that for n = 4

and K = 90, S(0.8) = 267><10 9 and A(p) = 1.28 x 1077 and for n = 7, K = 90 we have
S(0.8) = 1.86 x 1072 and A(p) = 2.12 x 1072, thus for n > 7, S(p) < A(p). We display in Fig. 5
the loss probabilities as function of the number of redundant packets for n = 8, K = 90, p = 0.8
and ps = 0.1. We note that the larger size of frames leads to better performance in the presence of
redundancy. For the same example, by taking n = 14, we reduce the loss probabilities of frames by an
order of 10 when we add 4 redundant packets only for source s (Fig. 6). Note that this improvement has
anegative effect on the other sources.

For the example above, if we consider only two sources s and §, we have ps = 0 9 and P08 =
2. 114>< 10~°. Whenwe add 4 redundant packetsfor s theworkload becomesp = 0. 8+ 50.08 = 0.8228,
ps = 120.1 = 0.1285and ps = 1—0.1285 = 0.8715. For thesevalues, weobtain P§ g, = 2.305x 1078,
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x107%9
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2.8 |- BliGiimp, (> Bin+7) —
2.6
2.4
2.2

2
1.8
1.6

14 1 1 I I 1 1 1 j
0 1 2 3 4 ) 6 7 8

Fig. 5. P, (jmp (> §-N+ J) asfunction of j for p = 0.8, ps = 0.1, n =8and K = 90.

x10~%
4.5 T T T T

3.: ) B (imye, (> Gym + ) —:
3 - -
25 | -
2 -
15 |
Lk
0.5 F

0 1 I 1 1
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Fig. 6. P

S (i/mpe (> 1N+ ) asfunction of j for p = 0.8, ps = 0.1, n = 14 and K = 90.

Finally, we seethat the redundancy in source s has an effect of increasing the loss probability for the other
source (by the same order of magnitude asthe decrease in the loss probabilities of s).

7. Eliminating frame losses

In this section we show that there exists a way of adding redundancy that yields arbitrarily small
frame loss probabilitiesaslong as p < 1. We compute the amount of redundancy that hasto be added.

Suppose first, there is only one source of packets. We consider a redundancy rate of rate j/ni.e. we
wish to add an amount of | redundant packets per group of n information packets.

However, instead of fixing n and studying the impact of the additional redundant packets, we fix
here the rate j/n, and study the effect of using larger blocks. In other words, we are interested in the
impact of grouping kn information packets together with kj redundant packets into a single frame, for
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large k. We shall show that for any p < 1, there exist rates j/n such that the frame loss probability is
exponentialy small in k. Hence, all the kn packetsin aframe are reconstructed with a sufficiently large
probahility, which tendsto 1 ask — oco. We further compute the required rates.

We further show that beginning from some initial large k, one can group consecutively k, (k + 1),
(k+ 2), ... groups of n packets together with additional kj, (k + 1)j, (k 4+ 2)], ... redundant packets
respectively. Then with alarge probability all the transmitted frame will be reconstructed.

Fixing the rate of redundancy to j/n results in the rate of arrivals of packetsof p(n + j)/n. Let us
turn to the rigorous statements.

Lemma 8. (1) Supposethat

(p(n+ j)/mK j
<

> e+ j)/n)
=0
Then there existsa constant hg = hp(p, n, j) > Osuchthat for all k > 0
P (< Kj,k(n+ j)) > 1 — exp(—hok). (45)
Moreover for some constanth = h(p, n, j) > 0Oandall k > 0
P (ﬂ{< k+Dj. k+hHn+ j)}) > 1— exp(—hk). (46)
1=0

(2) Suppose now that the inequality inverse to Eqg. (44) holds. Then there exists a constant h; =
h1(p, n, j) > Osuchthat for all k > 0.

P (< Kj, k(n + j)) < exp(=h1k). 47)

Remark 9. The relation in Eqg. (44) has the following interpretation. The left-hand side is the loss
probability of an M/M/1 queue whose load, p(n + j)/n, corresponds to that obtained by adding j
redundant packets for every group of n. The right-hand side is the maximal 10ss recovery rate that can
be obtained due to the redundancy: as long as the rate of lossesislessthan j/(n + j) we may expect for
large enough blocksthat all lossesin the block can be recovered with high probability.

Remark 10. We shall estimate hy appearing in Eq. (45) at the end of the section for K = 1.

Proof. Let us consider k(n + j) consecutive arrivals of packets. Let n; be anumber of the packetsin the
buffer just before the i th arrival of a packet and let & = 1{n; = K}. Thismeansthat & = 1 whenever
the ith packet is lost and & = O otherwise. Then &y + & + - - - + &kn+j) IS the number of lost packets
among k(n + j) consecutive arriving packets and

Bitbt oAb (o0 + /K

kin+ ) (48)

K
Y b+ j)/n)

=0
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in probability ask — oo with exponential rate (see below). In fact, the sequence n; forms an irreducible
aperiodic finite Markov chain on the state space {0, 1, ..., K}. The fraction in the left-hand side of
Eq. (48) is the empirical measure of the time spent by this chain at the state K. It is well-known that
it converges in probability to a stationary probability of the state K, which isin the right-hand side of
Eq. (48). Assumethat Eq. (44) holds. Then we can choose e > 0 such that

(p(n+ j)/mK j
+ &< —.
n—+ |

K
> e+ j)/n)

1=0
Then for somehg > 0 (whichisafunctionof ¢) andal k > 0

P(<ki,kn+ ) =P (E+&+ - +&nrj < ki)

Sitbt-+hor) _ (4 /K

> P -
kin+ )

K
Y i+ jy/n)’
> 1 — exp(—hok). =0 (49)
Thelast inequality follows from standard Large deviation arguments, see e.g. section 3.1in [7]. Thus
Eq. (45) is proved. Theinequality Eq. (47) is derived by the same way from the convergence Eq. (48).
To get EQ. (46) we note that the convergence in Eq. (48) does not depend on an initial distribution,
thenforall > 0

-1

P <{< k+Dj, k+hn+ ﬂ{< k+i)j, (k+i)(n+ j)}) > 1 —exp(—ho(k +1)).
i:O

Thenfor someh > Oandal k > 0

P (ﬂ{< (k+Dj, (k+1n+ j)}) > [ 11 — exp(—ho(k +1))] = 1 — exp(—hk).
1=0 =0
This establishesthe proof. [

In the following lemma we show the way to find j for given K > 0, p < 1 and n such that the
proposed strategy isvalid, i.e. theinequality Eq. (44) isfulfilled.

Lemmall. Letusfix K > Oand p > 0.

If p > 1, theinequality EQ. (44) does not hold for any pair of integers j > Oandn > 0.

If p < 1, then for all sufficiently large n, we can find an integer j > 0 such that Eq. (44) holds.
Moreover, the minimal j with this property is such that:

j/n<@-p)/p, FK>p/(L=p); j/n>A-p)/p, ifK<p/(1-p).

Proof. Denoteby « := j/n. Then, except when p(1 + ) = 1, EQ. (44) can be written as

(pL+a)  (pA+a) -1 o

pA+a)k -1  “1ta (50)
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Thisineguality holdsfor no« > 0 under the assumption p > 1. If p < 1, then Eq. (50) implies

PN A+ ) > a/(1-p), P A+ ) <a/(1-p),
and (51)
p(l4+a) > 1, p(l+a) <1

Let us introduce the function f(a) = pX(1 + a)¥™t — a/(1 — p), which equals zero when
a=1/p—1=(1- p)/p. Thesystems(51) mean that

fl@) <0 ifa<@—=p)/p; fl@)>0 ifa>A-p)/p. (52)

e Assumethat K > p/(1— p). Thisamountsto say that f’ ((1 — p)/p) > 0. Then in the neighborhood
of « = (1 — p)/p, we have Eqg. (52). The elementary analysis of f(«) shows that there exists
ag < (L — p)/p, such that f(ag) = 0, f(x) > 0 0n [0; ag), f(a) < 0on (xg; (1 — p)/p) and
f(x) > 00n((1— p)/p; o0). Toget Eq. (44), wetake o € (ap; 00), or equivalently j € (Nag; 00).

e Suppose now that K < p/(1 — p), i.e. in other words ' ((1 — p)/p) < 0. Then Eq. (52) does not
hold in the neighborhood of « = (1 — p)/p neither on [0; (1 — p)/p]. However, there exists some
ap > (1—p)/p suchthat f (o) > 0on [ap; 0o). So, to abtain Eq. (44), we take the minimal integer |
on [Nag; 00).

Note that for p > 1 the suggested strategy doesnot fitat all. [

To complete our investigation, we will also specify the estimation (45) from Lemma 8 in the case
K = 1. The sequence n; forms a Markov chain £ on the state space {0, 1} with the matrix of transition
probabilities:

1 p(N+j)/n
1+pn+j)/n 1+p+j)/n
1 p(n+j)/n

1+pn+j)/n 1+pM+j)/n
Let &1, &o, ... be a sequence of i.i.d. random variables distributed as the time to return to the state
1 starting from it by the chain £. Indeed, E¢; = (1 4+ p(n+ j)/M(p(n+ j)/n)~L. Let dlso & be a
random variable distributed as the time to reach the state 1 at the stationary regime. Then, foral § > 0
suchthat E exp(8gj) < oo, i =0, 1, andal n, j and k by Chernof inequality we have:
PKi,(n+ Dk =P(Go+s1+-+& <kih+ )
< Eexp(820) (Eexps(¢1 — (n+ j)/j)
= E exp(8%0) exp ([log(E expss1) — (n+ j)/j] jK). (53)
It is easy to verify that
p(N+j)/n p(N+j)/nexps
- , Eexp(ss) = - .
T+ p(n+ 1)/n— exps PO = T T 1)/n— exps
Let usassumethat Eq. (44) holds, i.e.
i p+j)/n
n+j 1+pn+j)/n

E exp(6¢o) =

(54)
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Then thefunction f (§) = —log(E exp§&1) +8(n+ j)/j isincreasing on [0, §p] and is decreasing on
[80, IN(L+ p(n+ j)/m)], (f(0) = 0), whereso =In(p +n/(n+ j)).
The estimation (53) with § = §p implies

P (> kj, (n+ J)k) < Eexp(8o%0) exp (—] f (80)k)
for dl k > 0, where

p(N+ /N n+ |
1+p(n+j)/n j

n-+j n-+j n
f(ao)=—|n<p :J>+ -}_Jln<p+n+j>.

The constant | f (8g) is aLarge deviation constant.

Let us now proceed with the case of many sources of packets. Suppose, we are interested in
decreasing the losses of frames or of packetsissued only from one source s. Hence, we add j redundant
packets from n, originated from s, thus the total rate is ps(n + j)/n + ps. Let as usua ps = s/,
ps = As/1L = (L — Ag)/ 1. The strategy, that we use, isthe same asin the previous case: kn, (k+ 1)n, ...
packets from the source s are grouped together with the redundancy of kj, (k + 1)j, ... respectively.
In the case of one source, only for p < 1, there is a suitable j to render the strategy profitable. In the
case of many sources, to find such a j, therestriction ps < 1 remains necessary. However, the inequality
0 = ps+ ps > lisaccepted.

E exp(doso0) =

’

Lemma 12. (1) Suppose that

(ps(N+ J)/n+ ps) j
<

) 55
K _ LS (>
Y (psn+ })/n+ ps)
1=0
Then thereexistshg > 0 such that for all k > 0
P (< kj,k(n+ j)) = 1 — exp(—hok). (56)
Moreover for someh > Oandall k > 0
P (ﬂ{< kj, k(n + j)}) > 1 — exp(—hk). (57)
1=0

(2) Suppose that the inequality inverse to Eq. (55) holds. Then for some h; > 0 and all k
P (< kj,k(n+ )) = exp(—h:K).

The proof is completely analogousto the proof of Lemma 8.

Lemma 13. Assumethat ps > 0, ps > 0, K and n arefixed. There existsan integer | satisfying EqQ. (55)
if and only if ps < 1.
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Proof. The proof is carried out as the proof of Lemma 11. Without going into details, we will point out
the way to find the minimal integer j satisfying Eq. (55).
Denote by « := j/n, then the inequality Eq. (55) is equivalent to the following:

(ps(L+ @) + ps) (ps(L + ) + ps — 1) _
(ps(L+a) + ps)¥ Tt -1 14+a’

except when ps(1+ o) + ps = 1. It holdsfornoa > 0if pg > 1.
e Assumethat p = ps + ps > 1, ps < 1. Then, to get Eq. (58), we should take « satisfying the system

(58)

o

1+a + _K> 3
(os( ) + ps) A—pJa+1—p

s
1—ps
There existsminimal a such that the system holds on («g; c0),i.€e. j € (Nag; 00).
e Assumethat p = 1. Then we haveto take « satisfying theinequality (1 + aps)® > 1/(1 — ps).
o Assumenow that p < 1. There are two cases.
If K > ps/(1— p) then thereisthe minimal ag < (1 — ps)/ps — 1 = (1 — p)/ps such that on the
segment («o; (1 — p)/ps) theinequality

o >

o

1—-pga+1—0p

holds. Wetake | € (nag; (1 — p)/ps).

If K < ps/(1— p) thenthere existsthe minimal op > (1 — p)/ps such that the inequality
o

1-ps)a+1-0p

holds on (xg; 00). Wetake | € (nag; 00). O

(ps(1+ @) + ps)¥ <

(ps(L+ @) + ps)* >

8. General arrivalsand servicetimes

We relax in this section the probahilistic assumptions on the distributions of the arrival and service
processes: we consider a stationary ergodic sequence{on}, n € Z (whereZ = {...,—-2,-1,0,1,2,...})
of servicetimes, and a stationary ergodic sequence {tp}, n € Z, of interarrival times of packets.

We consider afinite queue with capacity K > 1. Define p = Eoy/E1;.

8.1. Basicidea

We present in this subsection the general idea behind the elimination of losses. Assume that the
process {1, on} is dready the one observed after we included the redundancy of rate j: for each
information packet we added j redundant ones. We denoteby A(j + 1) the input arrival rate of packets.
Assume that this process feeds a finite FIFO queue, and that the joint process of arrivals and queue
length is stationary ergodic.

We call aframe a sequence of (j + 1)k consecutive packets, where k is some parameter. We assume
that all packets from the frame can be recovered if there are no more than j k losses within the frame.
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Assume that the following reasonable property is satisfied: as | — oo, the output rate (the expected
number of departures per time unit) from the queue approaches 1 := 1/Er;. Fix ¢ > 0 such that
p+¢e < landlet j be such that the output rate from the queue is greater than (1 — ¢). Then the
proportion p; of lost packets satisfies

__input rate — output rate

Pi input rate
G+Dr—n@d—e | p+8—1< j
(J+Da J+1 (J+Dp j+1

Dueto the stationarity and ergodicity assumptions, for any § > 0, the number of losseswithin aframe
islessthankj (p; + &) with probability that approaches 1 ask — oo.

Thus with probability arbitrarily close to one, the actual number of losses per frame will be smaller
than kj by choosing j and k sufficiently large, and all lossesin the frame can be recovered.

8.2. Actual redundancy scheme

We restrict here to the case where the service times are i.i.d. and are independent of the interarrival
timesand K = 1.

We shall assume throughout that o < 1 before adding redundancy. Under this assumption, we show
that by adding appropriately redundant packets, one can obtain loss probabilities as small as desired. We
assume that the sequence of interarrival times {zy}, n € Z of the original information packets (before we
add redundancy) is stationary ergodic.

For some integer k that will be determined later, we call the group of packets number nk + 1, nk +
2,...,(n+ Dk the nth block of information packets. We shall add jk redundant packets to the each
block. The (j + 1)k packets which include the original block aswell asthe additional redundant packets
are called aframe. We assume that the service times of the redundant packets added to a block have the
same distribution as o1; o, will in fact denote the service time of the nth packet actually served, whether
it isan information packet or aredundant one.

Aslong as the number of lossesin aframe islessthan or equal to jk, all the frame (and in particular,
the original information packets) can be retrieved at the destination. Define

_Enu+Eo
Co2j 4

and consider the following transport protocol:

(1) Blocking phase: Wait till awhole block of k information packetsis generated at the source; aslong
asthe whole block is not generated, we do not transmit any packet of the block.

(2) Framing phase: once all k packets have arrived, we compute the extra j k redundant packets.

(3) Transmission phase: Once the whole frame has been generated, all packets of the frame are put in
a transmission buffer. Packets are transmitted from this buffer at a constant rate 1/r, i.e. the time
between transmission of two consecutive packetsisr .

The above protocol requires buffering capability at the source of at least one frame. To make our
protocol realistic we haveto assumethat
e The capacity of the transmission buffer at the sourceisfinite.
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This implies that losses may occur also due to buffer overflow at the source, and not only at the
buffer inside the network. We shall show that the above protocol can render the total loss probabilities
arbitrarily small.

Note that congestion at the source occurs typically at periods during which interarrival times are
short. In order to minimize the buffer requirements at the source we shall thus assume that

o we deliberately drop the nth frame at the sourceif and only if Zle Tnk+i < Kr(j +1). Inthat case,
the framing and transmission phase for frame n are not performed.

In case that the computation required in the framing phase takes a negligible amount of time, this
assumption on dropping at the source implies that the total buffering required at the sourceis exactly of
one frame and is thus minimal.

We shall assume that the above protocol has been used for at least one frame before packet 1 is
transmitted, and that before it was used, the system was empty.

Theorem 14. With p < 1, the above protocol results in frame loss probabilities that can be made
arbitrarily small by an appropriate choice of k and j.

Proof. Consider an arbitrary frame, say frame 1, and let T be the time at which the first packet of that
frame arrives to the buffer inside the network. Define

k k
[215<Zai+n>jkr), Qzé<Zri<(j+1)kr>,
i=1

i=1

where 7 is the residual service time in the buffer inside the network at T (the packet that arrives at the
network buffer might find there another packet from some previousframe that is still getting service; the
remaining servicetime of that packet is called n, and it is considered to be zero if there is no such packet
attimeT).

Let ¢ > O be an arbitrary small number. One can choose j and k such that P(£2;) < ¢ and
P(£2,) < e. That this choiceispossiblefollowssincep < 1, since P — as.

K k
1 ) 1 .
i 2 =B £ <

k—o00

and sincefor all § > 0 P(n > k§) - 0ask — oo. Thisfact needs some additional explanation (note
that the distribution of » might depend on k and on the number of the frame that we consider). Let S
be the time at which the last successful packet transmission occurred from the buffer inside the network
beforetime T. Let A, denote the event that the number of packets that were blocked (and thus lost) in
the buffer inside the network during the time interval (S, T) was exactly n. n > 0. (Inthe casen = 0
the last packet of the previous frame is served.) Then P({n > ké} N Ap) < P(o1 > nr 4+ kg). Since
Eoq1 < o0,

o0
P(n>ks$) <Y P(oy>nr +ks) >0 ask — oo. (59)
n=0

On the event £2, (the complement of £25) the new frame is not dropped at the transmission buffer.
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On £21, the time T till the k first successful transmissions of packets occurs satisfies T < n +
YK Loi +kr < (j + Dkr. Thusthe number of packets successfully transmitted on the event 21 N 2,
among the first frame is at least k, so that the probability of a successful transmission of the whole first
frameisat least 1 — 2¢. (Indeed, no later than T+ n + r, the first successful transmission in the frame
begins, no later than T+ n + o1 + 2r, the 2nd successful transmission begins, etc.).

The same argument holds for any frame; since the bound in Eqg. (58) is uniform for all frames, this
establishesthe proof. [

9. Discussion

In this paper, we have shown the effect of adding redundancy to losses of packets and of frames due
to overflow in afinite queue. Explicit expressions for the loss probabilities of frames were obtained in
the case of severa traffic streams that are multiplexed at the input of a finite buffer. We have obtained
schemes of adding redundancy that may almost eliminate loss probabilities for any given buffer size as
long as the offered load of the traffic to which redundancy is added is lower than 1 (before adding the
redundancy). The priceto pay islong delays due to the need to consider redundancy of large blocks. The
analysis of the required delay and the tradeoff between losses and delay are the issue of future work.

Appendix A

We return to the asymptotic behavior of PS(> j,n) and show that the terms [z fo(2) and
[2"] f1(2) can be neglected asn — oo, n < K.

Proposition A.1. We have
PS(>0,n) = P3(> 0,n)(1+0(1)), asn— oo, n<K (A.1)
PS> 1,n) = P3(> 1 n)(14+0(1), asn— oo, n<K. (A.2)
Moreover o(1) is exponentially small in K (thereexists0 < 8 < 1: [o(1)| < gX).
Proof. Let usfirst prove Eq. (A.1). We have

s _ Kron-1; 1 X1 1_(X2/X1)K+1
Pr(>0.m = —Rep 2 T oK (2= ¥ (2 — %)

1 x (1 N Xo/XDK (Z— X%2) /(2 — X1) — XZ/Xl))

—zz—-X 1— (X2/X)*(z — X2)/(Z — X1)

= —Rkp"[2"Y] 1
Let us denote for shortness

1 X1
=[N
an-1=| ]z—lz—x1

9

(X2/XD)" (2= %2) /(2 — X1) — X2/%1)

_ -1
bh_1 = [2""] 1— (x2/x)K(Z— %2)/(Z— X1)
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1 X1 (X/X)" (2= %)/ (Z— X1) — X2/X1)
—z2z—-%x1 11— (X2/x)X(Z—x2)/(z—x1)

Ch-1= [Zn_l] 1

Then I5/§(> 0, n) = —Rk pXa,_1 and by Eq. (33) there are constants C;, C, > 0 such that
Ci1 < |lap] < Con < CyK. (A3)

Moreover, PS(> 0,n) = —Rk pX(@n—1 + Ca—1), Where cn_1 = Y j_g an—1-kb. Thus, it suffices to
show that for some0 < 8 < 1

el < lanl 8. (A.4)
By virtue of Eq. (A.3)

n-1

lCh-al < Ca(K — 1)) [bx. (A.5)
k:O

L et us now estimate by. The function

Oo(2) = (x2/%D)" (Z = x2)/(Z = x1) — X2/%1) _ XX z(x1 — %)
1— (x2/xD)X(Z—x2)/(z—x1) x1 (XK (2 — x1) — xK2(z — x2))

isanalyticinthedisk |z| < 1+ ¢ for sufficiently small ¢ > 0. In fact

e X1 % Oforall z, (o # 0);

o if z— X1 = 0,then x2(z — x2) #£ 0;

e the branching point of x1(z) and X»(2) is outside the unit disk. The branches x1(z) and x2(z) have
been chosen in such away that [x2(0)|/|x1(0)| < 1. The equality |X2(2)|/|X1(2)| = 1 takes place only
if Rez= 1+ (1 — p)?/4pps > 1. Thefunction |xo(2)|/|x1(2)| being continuous,

X2(2)

X1(2)

|z|<1+¢

Hence for sufficiently large K, XX (z — x1) — XX (z— xp) # Oforal z € {z: |z| < 1+ &}. In addition
for some Cz > 0, |go(2)| < C3y K. Thenfor someC4 > 0,

1 Jo(2)
— d
2mi /|z|:1+s Zk+l ‘

Therefore, taking into account Eg. (A.5), we havefor some0 < 5 < 1, o > ¥,

|| = <CayK@+e)7*

n-1
len-al < Ca(K — Dy"Ca ) (1487 < 1.
k=0

This estimation together with Eq. (A.3) implies Eq. (A.4) and thus Eq. (A.1) is proved. Let us now
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turntothecase j = 1.

1 X3 z(1—Xy) 1— (Xo/x) K+
—2z—-x1 z—X1 1—(X/x)X(Z—-x%2)/(z—x1)
1o (X2/X0) " (1 = X2) /(1 — X1)

1— (x2/x)X(z—x2)/(z— x1)

PS(> 1.n) = —Rep"[2""]5

_ 1 X1 z(1—Xyp)
— _ Kron-1 1 1
= —Rkp"[z ]1_22_)(1 e (14 0@ + %2),
where
xK (—xf X2(Z — X1)? + 2XK Tz — X2) (Z — X1) — XaxK (2 — x2)2>
01(2) = ” - 5 :
X1 (X (2 — X1) — X5 (2= X2))
K () KHL _ K1y q w2
gz(z) _ X2 (X2 X]_ )( XZ)(Z Xl)

x1(1 = x1) (XK (z — x1) — xK (2= x2))*

The functions g1(2) and g»(z) are analytic in the disk |z| < 1 + ¢ due to the same arguments as for
go(2). (The point z = 1, where x1(z) — 1 = 0 can not be a pole of g»(z) because of (z — x1)? in the
numerator.) Further, the proof of Eq. (A.2) is carried out along the same lines as of Eq. (A.1), so the
other detailsare skipped. [
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