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Abstract—In many cases, a mobile user has the option of to tessellate a region into independent cells as shown in
connecting to one of several IEEE 802.11 access points (APs)Figure 1. Another possible scenario is when the same region
each using an independent channel. User throughput in each a5 myltiple independent access points, perhaps proviged b
AP is determined by the number of other users as well as the . . . . -
frame size and physical rate being used. We consider the scenariocompe?Ing service prQVIders. In either case, users mlgW& ha
where users couldmultinome, i.e., split their traffic amongst all  the option of connecting to one of several access pointsibase
the available APs, based on the throughput they obtain and on where they are located. For instance, in Figure 1, users
the price charged. Thus, they are involved in a non-cooperative in region A might be able to associate to cellR Q and

game against each other. We convert the problem into a fluid S, whereas users in regioB, might have no choice but to
model and show that under a pricing scheme, which we call the aésociate to celf ’

cost price mechanism, the total system throughput is maximized,
i.e., the system suffers no loss of efficiency due to selfish
dynamics. We also study the case where the Internet Service P Q
Provider (ISP) could charge prices greater than that of the cost

price mechanism. We show that even in this case multihoming

outperforms unihoming, both in terms of throughput as well as

profit to the ISP.
I. INTRODUCTION 0

The IEEE 802.11x protocol is currently the standard for
wireless LANs (WLANS), with no fundamental difference be-
tween the different flavors. It has been deployed ubiquijous e
in airports, coffee shops and homes. Very often there is a
choice of access points (APs) to which a mobile user could
connect to. Users scan the wireless channel in order to fand th R S T
AP which shows the highest signal strength and associate to
it. They then transmit at different rates (often called th&€YP Fig. 1. Division of a geographical region into non-inteifigr cells using three
rate) based on the signal strength indicated. The a|goritﬁl?ﬂependent channels_, indicated by shading. Users could beposition to

. . ._connect to access pomts in one or more cells.

that selects the PHY rate chooses a higher rate if the S|gnar]
strength is good and progressively cuts down the rate aslsign
strength decays. The rationale behind such rate seledion iUsers could connect to all the APs available to them,
that the lower data rates use more redundant encoding aviich would provide diversity from the fact that different
also keeps the transmit power level bounded. But this alsells may be loaded differently. They could then divide thei
means that for a frame transmission of the same size, sotradfic among the different APs in order to maximize their
users occupy the channel longer than others. It has also bawtividual throughput. Such traffic splitting in the Intetn
observed [1] that all the connections in a single cell rexzeiamong different Internet Service Providers (ISPs) is dalle
the same throughput, leading to inefficient use of the channeultihoming[2] and we follow the same terminology for the
In such a scenario, the question arises as to whether it migiLAN case. We call the case where users can associate to
be better for a user to split his or her traffic among the visibbnly a single AP asinihoming Of course, in our case all the
APs. APs might be owned by the same ISP. We assume that users

Suppose we have a geographical region divided into cellse aware of the throughput that they would obtain if they
as shown in Figure 1. Each cell would have an access poijined one of the APs (they would have to run an estimation
Transmissions in each cell would be independent of othiol using a test sequence of packets or the AP could provide
cells by using separate channels. For example 802.11 b dhe current system state). This would tell them the potentia
g have three independent channels and we may use theemefit if they sent traffic to that AP. The AP itself might



charge a price for sending packets through it. So the payafiiltiple routes is present in [12], [13]. The first studies a
that the user obtains would be the difference of the two. Whulti-path TCP version, which would split traffic among the
also assume that users do not have the freedom to chodskerent routes, as a feedback system with delays and finds
frame sizes or PHY rates as they wish — they are decided ity required gain for stability. The second studies a génera
the operating system. class of decentralized algorithms that would optimallyitspl

Users are selfish and would like to maximize their payoffétaffic.

Thus, they compete with each other in a non-cooperative gameSelfish routing and mutihoming bring issues of system
efficiency with them. A completely centralized scheme could
Related Work in theory, optimize the system throughput. However, thislki

There has recently been much interest in understandiofgcontrol is usually not feasible. By providing a choice for
the behavior of wireless LANs. Since they make use thhe users, one increases the anarchy of the system. Then the
distributed coordination function (DCF) with an RTS-CTS§juestion immediately arises as to how much efficiency loss
handshake, they cannot directly be modelled in the samecurs due to this anarchy and whether it can be bounded.
manner as traditional ethernet systems. One intriguingtipre  Analytical studies of this sort are available in [14], [15]
has been that of why users using different PHY rates ahd provide bounds on the worst case efficiency. In [16]
obtain the same throughput. This question was studied usimgasurement traces on the Internet are used to study tletseffe
a simulation and experiments in [1], and the inefficiencyf selfish routing.
of the equilibria was studied in [3]. Bianchi [4] used fixed In most studies of traffic using selfish routing, one would
point analysis in order to provide an analytical frameworlke to think of users, not as integral values, but as real num
for 802.11 WLANSs. The results were extended in [5], tders. The reason for this is usually because the number of use
provide expressions for the throughput of users with disjgar is large (for example, in modelling highways or backbone
frame sizes and PHY rates. Our work relies heavily on thaternet fibers). A concept that has been applied succéssful
expressions obtained in the above. The analytical work h@sobtain quantitative results is that of the Wardrop efuiilim
been further extended in [6] and a simulation based verificat [17]. An comprehensive study of traffic models using the
provided. concept of infinitesimal users is present in [18].

Another area that has received attention is that of how userdnternet pricing is a topic of considerable interest today.
should associate to APs in a WLAN. In [7] a study is mad€learly, any scheme however efficient cannot be implemented
on fairness issues and how the load should be balanced usingess it is worthwhile for the ISPs to do so. One example
fractional association in a cooperative scenario. Uspaliers of differentiated pricing to provide different perceived®is
have no particular incentive to cooperate with each othdr aRaris Metro Pricing (PMP) [19], which is also studied in [20]
would be interested in maximizing their individual payoffsSome examples of literature that deals with pricing stiateg
In [8], the case of non-cooperative users who decide on thad competition on the Internet are [21]-[23].
optimal frame size and PHY rate to be used in order to Our study builds upon and extends the above work. We
maximize their individual throughputs is studied. The sse study multihoming in an entirely new arena — that of WLANs
all assumed to be in a single cell and compete for throughpuiwith its own array of attendant issues. Particular to 802.1
within that cell. Another paper on non-cooperative assmia is the fact that the throughput of the system is not fixed, but
is [9], which provides a simulation study of the benefit oflepends on the distribution of user types. Another intargst
associating to the AP that would provide the best estimatétt is that (assuming that frame sizes are fixed), the throug
link rate. Some results on cooperative association of usersput of all the users, regardless of their PHY rates is the same
different APs are provided in [10]. Our contributions are detailed in the following subsection

Multihoming is a recent idea that has been proposed to make .
use of path diversity in the Internet. The idea is that sindd&in Results
different ISPs use different policy based routing mechasis  We consider the expressions for the many users regime
it is very possible that a user would get a higher bandwidtibtained in [5], and use it to construct a fluid model of
by subscribing to multiple ISPs simultaneously and splifti user masses which can multihome to different APs. We allow
traffic among them. Another concept which achieves the samgers to use mixed strategies, i.e., they choose alteesativ
at a finer resolution is that of source routing, wherein ther usprobabilistically. The deterministic equivalent of thituation
chooses the routes by himself, rather than choosing ISPsisAthat user masses would split among the alternatives, with
comparative study of overlay source routing and multih@nirthe mass being proportional to the probability of choosing
is carried out in [2]. One question which crops up whethat particular option. Thus, the ratio in which the masses
multihoming is allowed is that of how users ought to split upre divided amongst the different APs gives the probagditi
their traffic among the different ISPs. A dynamic programgninof associating with them. For example, if 3 units of a class
algorithm based on how much different ISPs charge is studiefl users are associated to one AP and 1 unit to another
in [11], where it is assumed that the ISPs have sufficieAP, it would mean that the strategy that the class of users
capacity to handle the traffic at an acceptable throughput falay is [%i]. This provides a framework in which selfish
the users. Analytical work on the stability of a system usingiovement of user masses can be studied deterministicadly. W



thus transform the problem to that opapulation gamewhich  We briefly discuss price selection in Section X and conclude
is designed for the study of such non-cooperative systemswith pointers to extensions in Section XI.
In the WLAN scenario, intuitively it seems clear that since
. : e [l. BASIC IDEAS ONPOPULATION GAMES
different users send at different PHY rates, their “occupan
of the channel is different. We formalize the idea of occigyan ~ We first introduce the game theoretic concepts that are
and propose a pricing mechanism in which users are chargtsgd in this paper. A good reference on game theory is [27],
based on their channel occupancy. We call this “cost prié@d much of the discussion below may be found in [26].
charging”. The difference of the throughput and the price Population gameF', with @ non-atomic populations of
charged gives the payoff to the users. We study the gam@yers is defined by a mass and a strategy set for each
under the assumption that at a given time users would try RgPulation and a payoff function for each strategy. By a non-
take that action which is most profitable. Descriptions of twatomic population, we mean that the contribution of each
such dynamics exist in game theoretical literature — rapic Mmember of the population is infinitesimal. We denote the et o
dynamics [24] and Brown-von Neumann-Nash dynamics [25)0Pulations byQ = {1, ..., @}, where@ > 1. The population
Using the theory of Lyapunov functions and potential gameshas mass,. The set of strategies for populatigris denoted
[26], we show that the system is asymptotically stable, ite Sg = {1,.... 5¢}. These strategies can be thought of as the
division of masses among the APs would converge for bo@¢tions that members af could possibly take. A particular
types of dynamics. We show that the payoffs at equilibrium $frategy distribution is the way the populatigpartitions itself
each cell in use by a particular class of users are all eqiwa. Tinto the different actions available, i.e., a strategyrdstion
solution so obtained would be a Wardrop equilibrium [17]. for q is vector of the formy, = {y;.y7,..y;"}, where
We next turn to characterizing the nature of the equilibriuni:;gil v, = dq. The set of strategy distributions of a population
We would like to know hqw much_ effic_iency I(_)ss is suffereq ¢ Q, is denoted byy, = {y, € Riq . Zf:ql Y = d,}. We
due to decentralized, selfish multihoming. This would tell udenote the vector of strategy distributions being used iy th
the price of anarchy for the 802.11 WLAN system. We showntire population by = {y1, 2, ..., Yo}, wherey; € ;. The
that there is no loss of efficiency due to selfish multihomingectory can be thought of as the state of the system. Let the
i.e., anarchy is obtained at no cosThis is interesting since space of all strategy distributions Be
it essentially says that multihoming in WLANSs is ideal for The marginal payoff function (per unit mass) obtained from
decentralized control. Charging users the cost price af thetrategyi € S, by users of clasg, when the state of the
occupancy causes them to split their masses optimally.  system isy is denoted byFi(y) € R and is assumed to
Finally, we deal with the economics of multihoming -be continuous and differentiable. Note that the payoffs to a
whether or not it makes sense economically for an ISP $trategy in populatiog can depend on the strategy distribution
permit multihoming in its APs. We show that when an ISRithin populationq itself. The total payoff to users of class
charges differentiated prices above the cost price chargegiis then given byzfz"'1 F;(y)y}'], where we assume linearity
the different APs, multihoming achieves at least the sanfier exposition. Players may be cooperative or non-coojverat
profit as unihoming. So the ISP suffers no loss by allowinign behavior.
its customers to multihome. We further show that even in the A commonly used concept in non-cooperative games is
case of differentiated pricing, the throughput of the systs that of the Nash equilibrium. A particular stageis a Nash
a whole is at least that of unihoming, thus building a strorgquilibrium if no unilateral deviation can allow the dewiato

case for multihomed IEEE 802.11 wireless LANSs. strictly gain. Whereas the Nash equilibrium is the right aptc
for the case of atomic players, in the context of infinitegima
Organization of the Paper players, a more appropriate idea is the Wardrop equilibrium

. ) . _[17]. Consider any strategy distribution, = [y;,...,yf"’].
The paper is organized as follows. In Section Il we discUSsiere would be some elements which are non-zero and others
the game theoretic concepts used. We then discuss theedqujihich are zero. We call the strategies corresponding to the

background on 802.11 WLANSs in Section Ill. The sectiop,n_zero elements as tistrategies used by populatian
presents the expressions derived in [5] that are relevathito

work. In Section IV, we specify the model of the WLANDefinition 1 A statey is a Wardrop equilibrium if for any
with multiple classes of users and present its fluid equitale Populationg € Q, all strategies being used by the members of
We then proceed in Section V, to study the dynamics of tiieyield the same marginal payoff to each membey,afhereas
system in a noncooperative scenario. The idea here is to sHo& marginal payoff that would be obtained by memberg of
that the system is stable using Lyapunov techniques. We nisxtower for all strategies not used by populatign

study the efficiency of such an equilibrium in Section VI and Let S, C S, be the set of all strategies used by population
show that the Wardrop equilibrium is efficient. We study the in a strategy distributioy. A Wardrop equilibriumy is then
economic impact of multihoming in Section VII. We showcharacterized by the following relation:

in Section VIII that allowing users to mutihome does not hurt s(e s’ (e 5 /

profits and in Section IX that even under differentiatedipgc Fj(y) > F; (y) Vse$;ands’ € S,

multihoming outperforms unihoming in terms of throughput. ]



One question which is important in identifying suchmass of a less successful one. It is called the replicator
Wardrop equilibria is that of the population dynamics thaquation after the tenet “like begets like”.
would lead to Wardrop equilibria. If a each populatign ~ Another commonly used model is calleBrown-von
follows some dynamics, then would the stationary points Béeumann-Nash (BNNJlynamics [25], which is somewhat
Wardrop equilibria? We present a result from [26], which imore complex. Let,
useful in this regard. We first need the following definition:

S(I
Definition 2 The dynamicsy = V (y) are said to bgositively v5 =max { F¥ — i nyIF; (y),0 )
correlated (PC) if dq =
Q Sk denote the excess payoff to strategyelative to the average
YD Fiy)Vily) > 0 wheneverV/(y) # 0 payoff in its population. Then BNN dynamics are described
k=11i=1 by
[ |
Then the result states thift V(y) satisfies PC, all Wardrop R S 5e .
equilibria of F' are the stationary points of = V(y). Yg = daq — Yq Z%" @)
Potential gamesare a means of understanding the way =1

a population of players behave. The theory behind them A interpretation of the BNN dynamics is that during any
very similar to the theory of Lyapunov functions in controkhort time interval, all players in a population are equally
systems. The idea is to identify a scalar function which igkely to switch strategies, and do so at a rate proportional
used to represent the potential of the system. Users wopld to the sum of the excess payoffs in the population. Those
to maximize their payoffs at each time instant, thus raisingho switch choose strategies with above average payoffs,
the potential of the system. Using such a function it may lehoosing each with probability proportional to the strateg
possible to show that a system of players, each following hégcess payoff. The reason for considering BNN dynamics is
or her own selfish dynamics, actually converges to a Wardrtdmt unlike replicator dynamics, it has the property of non-
equilibrium. complacency in that it allows extinct strategies to resiefa

Definition 3 We call F' a potential game ifi a C** function so that its stationary points are always Wardrop equilifzé].

T :Y — R such thataT( )=Fi(y)forallyey, ieS§,
andq € Q. u IIl. BACKGROUND ONIEEE 802.11 WLANs

The definition says that the rate of change of potential with We provide the relevant background on expressions relating

mass of a population is the payoff obtained per unit mass tiy the throughput of an IEEE 802.11 cell.

that population at a particular state. We then immediataieh

that if ¥ is a potential game ar¥ (y) is PC, then the potential The single cell

function 7 is a Lyapunov function for the systegn= V (y). We begin by recalling uplink throughput expressions for a

This means that all the stationary pointsyof= V(y) would single cell obtained in [5], [8]. We use this throughput as a

be asymptotically stable, i.e., the system state would eg@®/ measure of the payoff derived from associating to a pasgicul

to either a Wardrop equilibrium or a boundary point of the séP. The expressions are for the MAC layer. Let thererbe

Y. active users in &ingle celllEEE 802.11 WLAN contending
We introduce two expressions, commonly used to model transmit data. Each user uses the Distributed Coordimati

population dynamics. The first of these is callBéplicator Function (DCF) protocol with an RTS/CTS frame exchange

Dynamics[24]. The rate of increase af; /y; of the strategy before any data-ack frame exchange and has an equal prob-

s is a measure of its evolutionary success. Following thebility of the channel being allocated to it. It is assumed

basic tenet of Darwinism, we may express this success as &t every user has infinitely many packets backlogged in its

difference in f|tnessFS( ) of the strategys and the average transmission buffer. In other words, the transmissionéyudf

f|tnesszl L yq ( ) /d of the population;. Then we obtain €ach user isaturatedn the sense that there are always packets

to transmit when a user gets a chance to do so. It is also

yi = fitness ofs - average fitness assumed that all the users use the s&mek-offparameters.

Y Let 8 denote the long run average attempt rate per user per slot
Then the dynamics used to describe changes in the mas$lof § < 1) in back-off tim‘?l (Conditions for the existence of
populationg playing strategys is given by a unique suchp are given in [6].) We assume ttdecoupling

approximationmade by Bianchi in [4] which says that from
the point of view of the given user, the attempts by the other

v = | Fo( qu : (1)

q i=1 1If we plot transmission attempts as a function of "real” timeg ainencut
. . oyt from the plot the channel activity periods (during which adlers freeze
The above expression thus says that a population WOltWéir back-off), then the new horizontal axis is called thack-off time”, see
increase the mass of a successful strategy and decreases#agon I1.A of [5].



users in successive slots are i.i.d. binomial random viasabwhere

with parametern — 1)8. B p+T. .
Call the cells. Let the MAC frame size of user be L, k= Y (L) + T, - T (7)
bits and let the PHY rate used by this user be denoted’by AV

bits per slot. LetT,, be defined as the transmission overhead
in slots related to a frame transmission, which comprises of
the SIFS/DIFS, etc and 16%. be defined as the fixed overhead IV. SYSTEM MODEL

for an RTS collisioh_in s_Iots. Then it follows from [5] thateh | ot there bes independent APs, which use different chan-
throughput of user is given by nels and so do not interfere with each other. We define a class
0(i,n) = g of users as the set of all users that havesaccess to the same
Be—PL, APs and common values ¢f,,C},C2,...,C;"]. Here S, is
: ,  the number of APs available to users of clasg, is the frame
1 +nfe—ns (To T+ %2?21 é) + (1 —e )T, size, an(ﬂ; is the PHY rate that a user of clagsvould have
where 8 = §(n)

. . f . tn) is obtained if it connected to theth AP. The class is used to model the
) ,("e' p IS a unc.tlon ofn) is obtained as fact that users in the same geographical location would face
the solution of a fixed point _equatlon that does not depend Similar set of circumstances. For instance, in Figure 1suse
Li's or 7’s. As is the case in [EEE 802.11, for all users thaf, region A would belong to a different class than users in
use an RTS/CTS frame exchange before the data-ack fra]rg&on B. Let Q be the number of such classes. Thus, all
transmission, we assume throughout our discussion that j ' '

users in a clasg would have an identical set of options open
T, >T. to them. Let the users be capable of multihoming. Then their

_ o o _ strategies consist of probability vectors of associatmgach
To find the limit asn — oo, we identify here the asymptotic Ap available to them.

aggregate throughput as— oo An appealing feature of the
asymptotic case is that we have explicit expression forz.  Fluid Model
) We wish to study the effects of the movement of masses of

Asymptotic throughput individuals of each class on their individual payoffs in aete

Let p be the exponential back-off multiplier, i.e. &, is ministic fashion. In order to do this we would like to conside
the mean back-off duration (in slots) at th¢h attempt for users as infinitesimally divisible, i.e., consider a fluiddab
a frame thenb, = p*by. According to the IEEE 802.11 Since all the expressions are in terms of integral quastities
specificationsp = 2. Each user uses one of tlg distinct scale the system by letting — oo. We then have a model,
available values of the parametets; (C?) with (L;,C?) € wherein users can distribute their masses amongst theatiffe
{(L1,CY); .., (Lq, C3)}. We derive the corresponding as-available APs. As before, a particular strategy distrimutis
ymptotic throughput. Assume that there arg users using the way the population partitions itself among the différen
parametergL,, Cs). Denote bya,(n) = my/n the fraction APs available. As mentioned in the introduction, the ratio i
of the users usingL,, C;) among all users in the cell. Thenwhich the masses are divided amongst the different APs gives

the throughput of all users usird.,, Cy) is given by the probabilities of associating with them. Thus, we conver
a probability model with integral players, into a deterratiu
7(aq(n)) = ) fiuid model.
mgfBe "L, Let there bei, users of clasg. Of these, assume a fraction

1+ nBe—ns (To —T. + 2?:1 %) +(1—e )T, is connected to AR. The total number of users connected
’ to AP s is then given by
It is assumed thaty,(n) converges to a limity,. Note that 0
the attempt rate = S(n) and the collision probability are ne — Zd "
not functions ofL; nor of C¢. As in [5], taking the limit as a

=1
k — oo andn — oo, it can be observed that ] d
We define
lim nB(n) 1 In (p ) (5) o A dgrg  dqry
’ q s s’
n—oo p— 1 n Z,LQ_l dzxi

where 3(n) is obtained as the solution of a fixed poinwhich is understood to be zero if the denominator is zero.
equation corresponding to users (see Theorem VII.2 in [5]). We wish to take the limit ag® becomes large simultaneously
Combining (4) and (5) we get as — oo the following for all s as a common parametergoes to infinity. We thus
expression for the aggregate throughput of all users usiegnsider the following scaling:

(Lq,C';): dy = nciq.

= ——0 ali (6) n can be interpreted as the sum of all demand, e+
K+ o Z?Zl d,. Asn — oo, the we get from (6) that the throughput




received by the total mass of users of clas®nnected to AP the ISP’s perspective, the cost of a unit mass of users of clas

sis qis
quqxz Q
S (S Z@Qzl Uilz; s £ o) y 12
Tq (X ) = (djlj [y ) (8) Cq (y) q (y) ; T; (Y) ( )
o . . :
K+ 2?21 ﬁ In effect, the cost is proportionally fair — the more you gogu
. . _ the more you must pay.
The termd,z; gives the mass of users of clagsn the cell ~ Now, a user would like to get as many frames of data in

s. For ease of notation, we defing = a?qxg. Thus, the total the time that he or she spends in the system. Clearly, users
mass of users of clasgis just > ¢, ?/fz = Jq_ Also define would like to maximize their individual throughputs for the
ws 2 L° Under this notation, the throughpper unit mass Price paid so the population would split up in such a way that

isqgiveﬁg By this selfish objective is achieved. The payoff function peit u
. mass for users of clagsin cell s is
T;(y°) £ : : ) Fi(y) 2 T3 (y) — C3(y). 13
q K 2?21 y; + ZjQzl yjssz q (y) q (y) q (y) ( )

. . . The above expression tells a user the value of associating to
In the above expressiod,, is the frame size in bits for users

) : ) . rticular AP. The v is th r rofile of all
of type ¢q. The denominator is the total time in seconds thiﬁ;a ticula e vectoy Is the strategy profile of &

i . e users, which may also be considered as the state of the
the user has to spend in the system in order to successf%

. . . . tem. The strategy of users of a particular clads the
transmit these., bits. The ratio thus yields the throughput in 1 9 squ P . 2 .
: vector [y,, y7, ..., yq*]. Users would vary their strategies with
bits per second. a’74q

time based on the state of the system in a manner that would
Costs and Payoffs give them the maximum payoff.

We now consider the costs and payoffs in the system, Whi%]We illustrate the fact that the price being charged is altual

. . ; e “cost-price”. By this we mean that the total revenue
will all be measured in units of throughput. The total system . . . o . .
T obtained in a cell is identical to the total throughput in ted
throughput is given by

(revenue is measured in the units of throughput). Consluer t
s Q s Q total revenue generated in a cell, obtained from (12), wksch
T(y) 2 Y @) =D > T (). (10) given by

k=1 i=1 k=11i=1

Q Q Q

We consider this total to be the cost borne by the ISP. W Ciy)y! = 5% s s

) "~ Ty = ¥) )77 (¥)yi
assume that the ISP would like to maximize the systeni— =1 ! ; ’
throughput, but would like to recover the cost, i.e., it is 0 0
individually rational Now, all the users in a cell should not _ 5 ( )255( Yy
be charged the same amount even if their throughput happens = —
to be the same. The reason for this discriminatory pricing 0 0 o
is for the following reason. Given a time interval (even if _ ZT‘?(Y)Z (k +wg)y;
the throughput is identical), there are some users takig on o ! = 52?21 Y5+ Z?:l yiws
a small time share and others who take a large time share. 0
The time share that a user occupies depends on the PHY rate _ ZT{;(y)
and the frame size that he or she uses — clearly, one has to o e

charge more for those who occupy a larger time share. This, = . .
“occupancy factor” per unit mass is given by w?uch is the total throughput in the cell. We have used the

definition of occupancy (11) in the above derivation. Since

s/oy A K 4wy the revenue is the same as the throughput in the cell, we have
6,(y) = o) o . (112) o : .
szzl Y+ ijl yiws assumed that service is provided to just try and break even.
) ) The objective is to maximize the total system throughput.
The occupancy of all users of a clag cell s is 65(y)yg- It |tis clear that there is an inherent tussle between the users

gives the ratio of time occupied by users of clags the total who are interested only in their individual payoffs and the
amount of time used by all users. Thus, a lower occupanglpbal objective of trying to maximize efficiency of the syst.
means that a class is being more efficient. Hence classed Whifie price of allowing users to multihome is the cost that is

have a greater value of occupancy ought to be charged mggine by the system. We will study this problem in detail in
than those with a lower one. Since we measure payoffs e next two sections.

throughput units, we need to convert occupancy to throughpu

In terms of throughput, the cost of supporting users of class V- THE NON-COOPERATIVEMULTIHOMING PROBLEM

in cell s, in terms of the effect on throughput is the occupancy As mentioned in the previous section, users behave selfishly
times the total throughput of all users in the cell. Thuspfro with each user trying to maximize his or her individual pdyof



Ng

by multihoming. Thus we have a system where populations Proof: Define F, = di Doy yq ( ). Then we have
partition themselves among the different actions avadlabl !
them. Hence the scenario fits into the paradigm of population
games with@ populations of users. We denote the non-
cooperative gamé’. We would like to know how this system

of competing users evolves in time. Would it converge to
any particular state? In order to answer this question, we —
need to assume something about the dynamics of the users.
As explained in section Il, we model user behavior using
dynamics of replicator or BNN type. We first show that the =
dynamics are PC, which would mean that the stationary points
are either Wardrop equilibria or boundary values of the)&et

We then identify a potential function using which we show  _
that the gamé is a potential game.

Q Sk

Sk
>3 R V) = 3 ) R G
1

=11i= k=11i=1
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dk ZFk ZZ/ka Z

Jj=1

S
S

Sk Sk .
S FWv - Fe >
i=1 j=1

iﬂi(y)vi - ivﬁFk
(Z% Fk ))
d, (i (7,1)2> > 0.

=1

S
S

System Dynamics

As described earlier, there are two standard expressions,
which can be used to model the system dynamics. We will
show below that both of them are positively correlated. We
also show that a combination of the two is PC.

First consider replicator dynamics, repeated here for €onv
nience. Hence the proof. u

So far we considered a class to be population of users with
) 1 . the same set of available APs and values of frame size and
Yg=V) =yg | F;(y) — i Z%Fé(}’) : (14) PHY rates. We may include the dynamics being followed by
7=l a class of users to be part of the class, i.e., a gjaissnow
Theorem 1:The system with replicator dynamics is posidefined as the population of users with the same available

= Ee Itde Do fe I

b
I

1

Sq

tively correlated. APs, values of frame size and PHY rates and which follow
Proof: the same dynamics. This only means that the number of classes
0 s o s @ has now increased. Now, it is straightforward to prove the
Z Z Fi(y)V; Z Fi(y 5yk following corollary.
k k:
k=1i=1 k=1i=1 Corollary The system is PC as long as each class follows
From (14), we have either replicator or BNN dynamics.
Q Sy Proof: The proof is simple. We have
= Fi(y)¥i. L F(y Q s -
1;1; di ; T (y(t) _ 3 ~ IT(y(t)) 9y
2 ot

oyl 0ot

Q@ Sk yi y‘ k=1i=1
:de f (Z “EFi(y ) Define
; k
i= -

%

Now, smcez Ye — 1, by Jensen’s inequality we have BY)= z_;
that the term in pafrentheses above is non-negative. Thus -
summation is also non-negative, and the proof follows.m

We now move on to the more complex BNN dynamics.
repeat the dynamics here for convenience.

Wleen from the proofs of Theorem’s 1 and 2, we immediately
ave(,(y) > 0 for all k£ € {1,...Q}, from which the proof
ollows. ]

We have thus shown that under two standard models of
selfish dynamics (or a combination thereof), the system is

Yy = max qu j (15) positively correlated. We now find a potential function to
dq = show that the system state (i.e., the user strategies)llgctua
and converges to the stationary points of the dynamics.
R Sq Potential Function
Yg = daVq = Yq Z%?' (16) We find a potential function , which can be used to convert
i=1 the population game to the potential game framework. We

Theorem 2:The system with BNN dynamics is positivelyshow below that the total system throughput is a potential
correlated. function for the game.



Theorem 3:The function For both the replicator (14) as well as the BNN dynamics

s Q (16) , we have thag; = 0, implies that either
T(y)=>_> wTky). 17)
. k=11=1 Fqs (y) _ Z
wherey] = 0 if AP j is not available to user is a potential dg i35
function for the gamer. or
Proof: We have g = 0, (18)
aT (y) s @ — Where we usey to denote a stationary point: The above
Jus Z Z T ( relations mean that users of clagg/ould get identical payoffs
Ya 1 k=1i= in all APs that they use at equilibrium. The potential payoff
3 Q yh L, all the APs not in use would be lower than this value. Thus,
= Z Z by definition the stationary points are Wardrop equilibne a

k
e J 1 y] + ZJ 1 yﬂ J there is no incentive to deviate.

— L; Now consider the stationary point again. We def}ﬁ,e—
ZJ 1 yj + Z] 1 yj dAL Zl “, §.F(§). Then the stationary point conditions look
(K +ws )Zz 1ysLs like Khun-Tucker first order conditions of an optimization
problem. Let us identify the Lagrange dual function asdeda
( ZJ Y5 Z] L Yfw ) with the above expressions. It is seen that the minimization
problem

= T;(y)—d,(y )ZTf(Y) s Q Q Si
, i=1 rnm max Z Z ka Z ny - dz , (19)
= F(y), i=1 =1

q k=1 =1

which means thaf (y) satisfies the definition of a potential

function. yields (18) as the Khun-Tucker first order conditions with=

. L . A Vi€ {1,2,...,Q} We then have the following theorem:
The potential function is non-negative, and the strate@csp Theorem 4:The equilibrium of the non-cooperative game

Y is a compact set. However, it is not a concave funcuor%. is identical to the solution of the constrained optimizatio
Hence, the potential function could have non-unique maxmpoblem
qui-

We illustrate the fact that non-uniqueness of Wardrop e
libria are reflected in non-unique maxima of the potential
function in the following example. maX

Z Zyka ) (20)

k=11i=1

Example subject to the constraints
Consider the simple case where there is only one class of S
users. From (13), we have that the payoff to a unit mass ~ G s
of users isT;(y) — T;(y) = 0 in all cells s. This means ;yi =di Viedl,2,.. Q (21)

that all strategy vectorg yield equal payoffs, i.e., any state
is a Wardrop equilibrium. The potential function is merel;andy =0 if AP j is not available to users of class

Zk L E k regardless ofy. Thus, in this case the potential Proof: From the above discussion we have that the non-
function is maximum for all states of the system, which igooperative gamé’ converges to the solution of the Lagrange

consistent with the above. m dual problem (19). Call the solution obtained Aéy). Also,

Thus, we have shown in this section that the system st@@l the solution to the primal problem (20) d@5y*). Now,
converges to the stationary points of the dynamics. the expression in (20) is not concave and there could exist
multiple maxima. There could also be a duality gap between

VI. THE PRICE OF ANARCHY the primal and dual problem, i.eZ/(§) > 7 (y*). But it is

Consider the dynamics of the previous section. We woufthysically impossible for the system to converge to a state
like to know what the stationary points of the system amghose throughput is greater than the maximum possible, i.e.
and what it means for the system throughput. Essentially W&gy) = 7 (y*) [ ]
would like to know what effect selfish multihoming has orAs mentioned earlier, the set of stationary points contties
the efficiency of the system. In most work on selfish routinget of Wardrop equilibria and in the case of BNN dynamics,
(such as [14], [15]), it is found that the Wardrop equilibmu they are the same. In the case of replicator dynamics, the
is inefficient, i.e., system performance suffers in some waystem state might either converge to a Wardrop equilibrium
because of users being allowed to take selfish decisions. Tt get stuck at a boundary point.
inefficiency is referred to athe price of anarchyWe show  The result which we have just seen has interesting con-
below that with multihoming, the system is efficient. sequences. We have just shown that multihoming users with



dissimilar selfish dynamics being charged the cost price of
their occupancy actuallpptimize the system throughpuh

the language of the above literature, the result statestlleat
price of anarchy using the pricing mechanism suggested is
zero — anarchy is free!

The fundamental difference between our model and the
work on selfish routing is that of multihoming — the fact
that users do not need to choose a single AP, butsgih
traffic. The result that multihoming is efficient is somewhat
reminiscent of a result in [12], which states that the siighbil
region of the Internet is increased by allowing multi-path
routing with traffic splitting at source using a suitable TCP
version. In effect we say that “a little choice (selfish rog)i o es 1 as 2 25 3 as 4 45 s
may be bad but a lot of choice (multihoming) is good”. It
would be interesting to see if multihoming would performFig. 3. lllustrating the convergence of the throughput aérasof class2.
efficiently on the Internet as a whole.

0.2

0191

Throughput for class 2

018

Simulation

We perform a simple experiment using Simulink to verif)(/jenOted byd,. Clearly, even if prices were fixed, in practice

. . : : - one would expect a variation of user masses over the course
that selfish multihoming does indeed maximize the syste . :
a day as they move around. However, we can think of this

throughput. In our simulation we assume that users use- repc)h

. : . as the average that we can expect. The actual mass of users
cator dynamics. Consider the scenario where there are two .

.11 the system would depend on the prices charged. Let the
classes of users. Both users have the same two APs availab| 7 : . i
scription price per unit mass charged in AR all users

. . : ; S
to them. Their values of frame size are identical and eqya B o S .
to unity. However, the values of + L/C are different — Y5 denoted byP*. In addition to the subscription price, we

s assume that users are also charged the cost price of traffic
class1 users have parametefs, 1.5], while class 2 users described in the previous sections. We re-iterate thatriée
have parameterfl, 5] in the two APs. Under this scenario P X P

: : A

the throughput is maximized if all users of classise AP1 are in units O.f throughput. The vectdt = P!, P%, ..., P?]

, While all users of clasg use AP2. The throughput would would determine )

then be0.5 in AP 1 and0.2 in AP 2. We illustrate that the ¢ the total mass of users in the system, and .

throughputs do indeed converge to these values in Figutgs 2— * the way this mass gets partitioned between the different
APs by multihoming.

To determine the total mass of users of each class, we need
to make some assumptions about user demand. We assume that
each clasg is associated with a threshold valig. Users of
sk classq would connect to an AR if P* < A,. Once users
connect to an AP, the throughput they obtain is determined by
(9). The payoff per unit mass is then

1 F(y) 2 T;(y) - Ci(y) — P°. (22)

0.52

Throughput for class 1

The ISP would like to maximize the profit regardless of the
actual throughput of the system. The profit that the ISP makes

045 ] is the difference between the total revenue and the costfwhi
we have assumed is equal to the actual throughput). Hence,
o s 1 18 2 25 3 35 4 45 5 the profit function of the ISP is merely
. ) S Q
Fig. 2. lllustrating the convergence of the throughput afrasof classl. . ;
pmulti(P) = Z P’ Z 2957 (23)
j=1 =1

VIl. ECONOMICS OFMULTIHOMING wherey? = 0 if users of class do not connect to AR.

We have assumed so far that the ISP is a disinterested playefhe pricing scheme is somewhat similar to Paris Metro
and that the sole objective is to maximize the throughput Bficing (PMP) [19]. In PMP a network is partitioned into
the system. However, this need not be the case in reality. Weveral logically separate classes, with each having a fixed
now consider a market model under which an ISP can charfgaction of the entire network. The fractions handle traffic
more than the cost price for subscription. We make assumptigsing the same protocols and give no formal QoS guarantee
that the potential mass of users in each classa fixed value to users. However, users in each fraction are charged eiffer



prices. The idea is that the higher priced fraction woulddss | and we are done. |
loaded, thus leading to a higher perceived QoS. Like PMP, dlhe result essentially says that there is no reason why an ISP
users in a cell are given no QoS guarantee. If multiple AR&ould not allow users to multihome to its different APs. Any
are present in the same cell (perhaps owned by differen) ISR ofit achievable when it allows unihoming can be met or
one could have “upper class” and “lower class” APs, whicéxceeded by allowing multihoming.
could charge different prices. However unlike PMP, ouripgc IX. EFFECT ONTHROUGHPUT
scheme charges based on occupancy as well. '

We showed in the previous section that multihoming along We now turn to the question of what effect multihoming has
with a simple pricing mechanism maximizes the syste® the throughput of a system given a price vedtoFrom the
throughput. We would like to know here whether the idea Eiscussion of this paper so far, we would expect the throughp

economically feasible. If an ISP sets a price ved®ofor the t0 be higher and here we show that this is indeed the case.
APs in a region, would multihoming We again have a game among the users. We would like to

« reduce or increase profit? know what the equilibrium of the system would look like. As
in the previous sections we identify a potential functiom fo

« always increase system throughput? th ; A Citint tential
We now compare the profits obtained by the ISP and thee system S(_) as 1o convert it into a potential game.
Theorem 6:The function

throughput with and without multihoming and thus answer s o
the question “What is the economic price of multihoming?”.

3

VIIl. EFFECT ONPROFIT k=1i=1

To answer the question regarding ISP profit, we have {ghere ;/ = 0 if either AP j is not available to usef or
compare the profit when mutihoming is an option and whep; - A, is a potential function for the game.

it is not. So we need to know what users would do in the prgof: The proof is identical to that of Theorem 3 and
absence of multihoming. We make the assumption that usef$mitted. u
would connect only to (available) APs that display the lawes As before we assume that when multihoming is an option,
price. We denote this lowest price available to users ofs_cla@le population behavior is described by replicator dynamic
i by Prin(i)- Then we have that the mass of users of classsNN dynamics or a combination of both. This would ensure
connekctlng to /-\P/Z, under a given pricing vectdP is such that the stationary point of the system would be a Wardrop
that y;7 = 0 if P¥ # Py Under our assumption thatequilibrium (or a boundary value). Then we have the follayin
the class as a whole follows the same dynamics, they woykborem:

actually pick one of the APs displaying the lowest price. §hu  Theorem 7:The equilibrium of the non-cooperative game

the profit function under unihoming is F is the solution of the constrained optimization problem
A Q 7 5 Q
i=1 Y \k=1i=1
whered; = 0 if Pring) > M. subject to the constraints
We are now ready to compare the two. We have the s
following theorem: I —d Vi
. y; =d; Vie{l,2,...,Q 27)
Theorem 5:For the same price vectdP, ppui(P) > ]z:; ¢ J
puni(P)

Proof: The proof is straightforward once we realize tha@nd y; = 0 if AP j is not available to users of clagsor

under a given price vector, the total user mass in the systeprﬁ > A;.
is the same. Thus, we have Proof: Again, the proof is identical to Theorem 4. ®
We now assume that the users are not allowed to multihome.
pi qu As mentioned earlier, they choose one of the APs displaying
¢ the lowest price. Let the AP that users of clgsselect bey,.

=t Then the equivalent of;,.;; is given as

M

pmulti(P) =

<
Il
i

Prin) y! A LA k (rk k
— Tumi 2 Y yf (TH(y) - PY), (28)
=1

k=11

M
Mo

<
Il
-
-
Il

Il
Me

S
Prin(i) YVl where as usual,
j=1

s
Il
_

Yo =) 0 otherwise

I
Me
|

i Clearly 7,,u1ti > Tuni- We then have the following theorem
= puni(P) on the throughputs in the two cases.

Il
_



Theorem 8:Given a price vectoP, the system throughput Xl. CONCLUSION

when multihoming is permitted is at least that of when it is

not.

Proof: Denote the equilibrium state when multihomin

by ¥ and the state when unihoming lgy. We haveZ,,,;+; >
,Tuni

k=11i=1
S Q
> > ut (") = PY)
s o k=11i=1
= Z Z ngzk (y) - pmulti(P)
k=11i=1 s o
> D W) = puni(P)
s o k=1 zfAlg o
= YD HTHE) 2 DD TRy,
k=1i=1 k=1 1i=1

since from Theorem 5 we havg,.i+i(P) > pun:(P) (and
they are non-negative). Hence the proof. [ ]

Thus multihoming would do at least as well as unihoming i

terms of throughput as well.

X. OPTIMIZING THE PROFIT

We have just seen that given any price vector, multihoming

In this paper we have sought to make a convincing case
for ISPs to allow multihoming in IEEE 802.11 WLANSs. We
%onstructed a fluid model of user populations in a WLAN
and understood how their throughputs varied with movement
of user masses. We showed that users charged by a simple
mechanism, using selfish dynamics would actually maximize
the system throughput when allowed the option of multihom-
ing. We thus established that under the multihoming scenari
anarchy comes at zero price. We also studied the economics of
multihoming as seen by the ISP and showed that the is no loss
of profit or throughput when users are allowed to multihome.

In the future we would like to study the interaction of
different ISPs, who might each a different wireless LAN in
the same region. Their interaction with each other and its
effects on user throughputs would be of interest. We would
also like to understand if results similar to what we have
shown in WLANS applies to the Internet as a whole, i.e., can
multihoming achieve efficiency on the Internet?
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