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Time-Averaging of High-Speed Data Transfer Protocols

Richard Marquez, Eitan Altman, and Solazver Solé-Álvarez

Abstract—We propose two modeling approaches of additive-in-
crease/multiplicative-decrease (AIMD) congestion control mechanisms.
The first separates the increase and decrease parts whereas the second
describes the rate evolution of the congestion window as a continuous
process governed by a differential equation. We relate these approaches
and show that the second (fluid-flow) model results from deterministic
time averaging of the first (discontinuous) model. A generalized class
of nonlinear protocols, which includes Floyd’s HighSpeed TCP, is then
proposed and analyzed. Our findings are validated by simulation.

Index Terms—Averaging, discontinuous differential equations,
high-speed transfer data protocols, modeling, transmission control
protocol.

I. INTRODUCTION

The transmission control protocol (TCP), during congestion
avoidance phase, regulates its congestion window by an additive-in-
crease/multiplicative-decrease (AIMD) mechanism [1]. Increase and
decrease TCP parameters are represented, respectively, by constants
a and b. Usually, a = 1; b = 1=2 [2], [3]. Mathematical modeling of
TCP and, especially, fluid-flow modeling has received considerable
attention in last few years; see, e.g., [4].

Many argue that TCP performance is poor for fast long-distance
networks and have proposed different high speed protocols (HSTCP,
STCP, XCP, etc.). For instance, HighSpeed TCP (HSTCP) [5] and
Scalable TCP (STCP) [6] consider increase/decrease parameters a(w)
and b(w)which depend on window sizew. A large class of generalized
AIMD models, which includes TCP, HSTCP, and STCP as particular
cases, is proposed in this note. We consider two modeling approaches:
1) A discontinuous modeling approach, which separates the increase
and decrease parts; it uses smooth increase of the rate with sharp
smoothed decrease at loss instants; see, e.g., [7], [8] for different ap-
proaches on discontinuous models. 2) A fluid-flow continuous model
describing the window evolution as a continuous process governed by
a differential equation [4], [9].

Studying a single TCP flow, we represent increase and decrease TCP
behaviors by two continuous differential equations and combine them
through a discontinuous binary feedback signal u into a single discon-
tinuous model. We assume that the impact of the rest of the network
can be modeled as periodic packet losses. We show that a continuous
(fluid-flow) model can then be obtained by deterministic time aver-
aging. We give conditions for the existence of a unique solution process
to which the congestion window size converges.

This note is organized as follows. In Section II, we briefly review
time averaging of differential equations with periodic right-hand side.
Section III proposes a discontinuous model to represent the behavior
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of a single TCP flow. This model is extended to generalized conges-
tion control mechanisms, that include TCP, HSTCP, and STCP. Section
IV uses periodic in time packet losses to derive generalized fluid-flow
models. The proposed (discontinuous and averaged) models are imple-
mented in MATLAB and compared to ns-2 traces [10]. We conclude
with some final remarks. A preliminary version of this work was pre-
sented in [11].

II. CLASSICAL TIME AVERAGING

Deterministic time-averaging has been utilized frequently to obtain
simpler models which retain the important properties of a system. For
instance, this approach is standard for pulse-modulated systems [12].
The following results and definitions are taken from [13], [14].

Let x = x� be an equilibrium point for the nonlinear system _x =
f(x), i.e., f(x�) � 0, where f : D �! Rn is continuously differen-
tiable andD is a neighborhood of x�. Let the Jacobian matrix of f(x)
at x = x� be A = (@f=@x)(x) jx=x . Then, 1) x� is asymptotically
stable if the real part <(zi) < 0 for all eigenvalues zi of matrixA, and
2) x� is unstable if <(zi) > 0 for one or more zi of A, see [13, Th.
4.7]. An equilibrium point is called hyperbolic if <(zi) 6= 0. Asymp-
totic stability means the solution x(t) converges to x� as time t tends
to1. A periodic solution (or orbit) corresponds to a solution x(t) of
_x = f(x), such that x(t + T ) = x(t) for a constant 0 < T < 1.
Roughly speaking, a periodic solution is asymptotically stable if every
solution tends to it.

Let x; y; x0 belong to an open subsetD � , let t 2 + = [0;1),
and let the parameter � vary in the range (0; �0] with �0 � 1. Let
f : + �D ! be a piecewise continuous function.1 Consider the
problem of finding the solution x(t) of

dx

dt
= �f(t; x); x(0) = x0 (1)

If f(t; x) is a T -periodic function in its first argument, we let the av-
eraged system be

dy

dt
= �f0(y); y(0) = x0 (2)

where f0(y) = T�1
T

0
f(t; y)dt. The slow motion of the peri-

odic solution x(t) of (1) corresponds to the solution y(t) of (2).
When f(t; x) = f(x), i.e., independent of t, we have moreover
y = �x = T�1

T

0
x(t)dt, see [13]. The periodic or oscillatory com-

ponent of x(t) around this slow motion constitutes the fast behavior.
Theorem 1 [13, p. 430]: There exists a positive �0 such that, for all

0 < � � �0, 1) x(t) � y(t) = O(�) as � ! 0 on the time scale 1=�,
and 2) if x� is a hyperbolically (respectively, asymptotically) stable
equilibrium point for f0, then x(t)�y(t) = O(�) as �! 0 for all t 2
+, and (1) possesses a unique periodic orbit (periodic solution) which

is hyperbolically (respectively, asymptotically) stable and belongs to an
O(�) neighborhood of x�.

This theorem provides a relation between slow and fast behaviors
of (1). Roughly speaking, if the eigenvalues of the Jacobian matrix of
f0(y) around the equilibrium point of the averaged (2) all have negative
real parts, the corresponding periodic solution �(t; �) of (1) is then
asymptotically stable for � sufficiently small; moreover, �(t; �) lies in
anO(�) neighborhood of x�. If one of the eigenvalues has positive real
part, �(t; �) is unstable.

1Here, the classical “smooth” assumption is replaced by a “piecewise contin-
uous” assumption [15, App. C].
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III. DISCONTINUOUS GENERALIZED TCP MODELS

A. Discontinuous TCP Model

Consider a single TCP source. A round-trip time RTT is the interval
between the time instant a packet is sent and the moment its acknowl-
edgment (ACK) is received. The basic congestion avoidance algorithm
[2], which defines the behavior of congestion window cwnd, can be
described as follows: If there is no congestion, cwnd is increased by
an amount a every time a full window is acknowledged (i.e., at every
RTT). This phase is known as additive increase

ACK: cwnd[n+ 1] = cwnd[n] + a: (3)

Dividing (3) by RTT, we obtain the rate of change of the congestion
window size, as follows:

cwnd[n + 1]� cwnd[n]

RTT
=

a

RTT
�

d

dt
cwnd:

Replacing cwnd by the continuous variable w yields the differential
equation for the cwnd increase dynamics [4], [7]

dw

dt
=

a

RTT
: (4)

After a congestion is detected, i.e., by duplicate ACKs or marked
packets, cwnd is reduced by a factor (1� b); 0 < 1� b < 1. We have
multiplicative decrease

Drop: cwnd[n + 1] = (1� b)� cwnd[n]: (5)

We assume that the time T between reduction of the window are
much larger than RTT. This is indeed the case if packet losses are sep-
arated by a time much larger than RTT. When using a NewReno or
SACK implementation [16] of TCP, this assumption still holds even
in the case of several losses within the same RTT; we call these loss
events. This assumption is then equivalent to having the time between
loss events much larger than RTT. This is the basis of the following
(smooth) modeling approach of TCP decreasing behavior in the pres-
ence of packet losses. Instead of considering downward jumps at loss
instants, we prefer to smooth the jumps over the RTT interval. This re-
flects the fact that, in practice, the throughput does not decrease imme-
diately. This is also in line with modeling of the decrease part in other
congestion control protocols as in [17].2 Thus, we propose to replace
(5) by

dw

dt
= �

k

RTT
w (6)

which holds valid during a time interval of length RTT. The solution
w(t) to (6) is given by w(t) = w0 exp(�kt=RTT) where w0 =
w(0) > 1. Starting with a window size w0, the congestion window
decreases after an RTT to w(t = RTT) = (1� b)w0, see (5). This is,
(1� b)w0 = w0 exp(�k) which results in the value k = � ln(1� b)
(“ln” stands for the natural logarithm). Equation (6) then becomes

dw

dt
= ln(1� b)

w

RTT
: (7)

Later, for the study of HSTCP, we use the approximation� ln(1�b) �
2b=(2� b); 0 � b � 0:5.

Let u denote a congestion indication signal, taking values in the
set f0; 1g. This variable represents the binary feedback of [1], where

2Nonetheless, our approach relies on the basic reasonable assumption
RTT� T (where T is the interval of time between two consecutive reduction
of the window), providing a reliable approximation to instantaneous jumps.

u = 0 represents the noncongestion (increase load) phase, and u = 1
indicates the decrease part due to packet losses. By using u, (4) and (7)
lead to a differential equation with discontinuous right-hand side, see
[18], which we call discontinuous TCP model

RTT
dw

dt
= a� (a� ln(1� b)w)u; w(0) = w0 � 1: (8)

In order to demonstrate existence, uniqueness of solutions, or even
averaging results of discontinuous model (8), it is enough to point out
that signal u corresponds to a piecewise continuous function; see, e.g.,
[15, App. C]. Let tk 2 ; k = 1; 2; . . ., be the time instants at which
a packet loss events occur, such that 0 � t1 < t1 + RTT � t2 <
t2 + RTT � t3 . . .. Signal u can be written as a train of pulses

u(t) =
1; if tk � t < tk +RTT

0; otherwise:
(9)

B. A Class of Generalized Models

A discontinuous generalized TCP (GTCP) model results then

RTT
dw

dt
= g(w)� (g(w) + wh(w))u (10)

wherew is the congestion window size, and u is given as before by (9);
g(w) and h(w) are appropriate smooth functions defining, respectively,
increase and decrease behaviors. In the case of TCP, it is clear we obtain
g(w) = a and h(w) = � ln(1� b).

C. HighSpeed TCP

HSTCP is described as follows [5]. If window size cwnd is smaller
than a given valueW , i.e., cwnd �W , the increase/decrease parameter
functions are a(cwnd) = a = 1; b(cwnd) = b = 1=2, as in standard
TCP. For cwnd > W , parameters �(cwnd), which is reminiscent of the
per-packet drop rate p; a(cwnd); b(cwnd) are

�(cwnd) = e
[ln(P )�ln(P )]

cwnd
+ln(P )

b(cwnd) = (B � b)
ln(cwnd)� ln(W )

ln(W1)� ln(W )
+ b

a(cwnd) = cwnd
2�(cwnd)

2b(cwnd)

2� b(cwnd)
: (11)

Default values: B = 0:1;W = 31; P = 3=(2W 2); P1 =
10�7;W1 = 83000. We assume b(cwnd) remains constant (=B),
for cwnd > W1. In practice parameter b is lower bounded, i.e.,
0 < 0:09 � b � 0:5, see [5]. The discontinuous HighSpeed TCP
model is then given by (10)

RTT
dw

dt
= wh(w)(w�(w)� (w�(w) + 1)u) (12)

where cwnd has been replaced by w, parameters a(w); b(w) are de-
fined by (11), and h(w) and g(w) = a(w) are given by

h(w) =
2b(w)

2� b(w)
and g(w) = w2�(w)h(w): (13)

D. Scalable TCP

In STCP, congestion window increases nonlinearly inmuch the same
way as slow start [2] does. LetC be the link capacity (in packets/s). For
the increasing part, the initial value of the congestion window is given
by (1� b)C�RTT packets. In the decrease behavior, after T �RTT
seconds, we haveC�RTT packets. In order tomodel the increase part,
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we have C �RTT = (1� b)C �RTTexp((k=RTT)(T �RTT)),
cf. (6). Thus k = � ln(1 � b)(RTT=T �RTT). The discontinuous
STCP model results then

RTT
dw

dt
= g(w)� g(w) + w

RTT ln(1� b)

T � RTT
u (14)

where g(w) = ln(1 � b)w. Note that this model depends explicitly
on T . This is related to the fact that this protocol possesses a “fixed
recovering time,” one of the announced features of STCP. See [6] for
details. We will see this generates a kind of unfairness when periodic
losses are considered, see paragraph IV.D.

IV. FLUID-FLOW (AVERAGED) MODELS

Throughout this section, we assume the following.

1) Constant T (between successive window reductions).
2) Fixed round trip time RTTmuch smaller that T , i.e.,RTT�

T , such that the quotient RTT=T is constant.

Remark 1: In practice T is often random (e.g., when TCP oper-
ates over wireless channels). We prefer to approximate it by a constant,
e.g., the expected inter-loss time. If random independent interloss times
are replaced by their expectation, then the steady state throughput de-
creases; see [19, eq. (9)]. Therefore, the model we study can be used as
a lower bound for TCP throughput. This is a standard approximation;
see, e.g., [20]. Our model gives a relation between the throughput and
T which is valid even when T is unknown. Yet there are many cases
where the distribution of T does not depend on the protocol of the an-
alyzed connection. This is the case in TCP over wireless channels and
in wide area networks where huge number of other connections may
share a common bottleneck link. In that case, T may be estimated in-
dependently and used to obtain the throughput.

Assumption 1 leads to the following control function u = u(t):

u(t) =
1; if tk � t < tk +RTT

0; if tk +RTT � t < tk+1 = tk + T
(15)

where tk; k = 1; 2; . . ., represents a time instant at which a packet loss
occurs. A period T has a length T = tk+1 � tk . Function u(t) is then
T -periodic, i.e., u(t+ T ) = u(t) for all t.

Time-average congestion window �w is defined by �w =
T�1

T

0
w(�)d�. We use �w to denote the average of w over a

period T ; averaged control � is given by � = T�1
T

0
u(�)d�. Note

� corresponds to a sort of packet-loss time rate. Expression (15) yields
a constant �, independent of time scaling, given by � = RTT=T .

A. Averaged TCP Model

The averaging method of (1) can also be applied to system given by
(8) and (15). Changing the time variable t to t = �s, we have

RTT
dw

ds
= �[a� (a� ln(1� b)w(s))u(s)] (16)

where u(s) =
1 if sk � s < sk + RTT

�

0 if sk + RTT

�
� s < sk+1 = sk + T

�

and sk = tk=�. Input u(s) is periodic in s of period T=�. A reasonable
choice of � is � = �RTT; 0 < � < 1. As in (1) and (2), we associate
with (16) the autonomous averaged system

RTT
d �w

ds
= �[a � (a� ln(1� b) �w)�] (17)

Fig. 1. ns-2 behavior (solid line) coincides with the discontinuous model
(dashed line). Averaged model behavior is plotted with a thick solid line. The
average computed from ns trace is plotted with x’s.

where u(s) has been replaced by its average �. Note that � must be
limited to 0 � � = RTT=T < 1.

Theorem 1 justifies approximating the solutions w(t) of
the controlled system (16) by the solutions �w(t) of the aver-
aged system (17). System (17) has a unique equilibrium point
�w� = �(a=ln(1� b))((1=�) � 1) > 1 which is asymptotically
stable. Since (17) is linear, it directly follows that �w� is globally
stable, as long as � ln(1 � b)� < 0, which holds in practice. By
Theorem 1, the periodic discontinuous system (16) possesses then an
asymptotically stable periodic solution of period T=�. Going back to
the original time coordinates, (17) yields the averaged TCP model

RTT
d �w

dt
= [a � (a� ln(1� b) �w)�]: (18)

In Fig. 1, we compare a ns-2 trace, the averaging of this simula-
tion over periods of T , and the behaviors of (8) and (18), obtained
in MATLAB. We consider w(0) = �w(0) = 25 packets, T = 20 s,
RTT = 0:5 s. The averaged model (18) seems to be a good approxi-
mation of the ns trace averaged over each period T .

Let us recall some results of [3]. Let S be the average sending rate
in packets per RTT. The total number of packets between losses is
n = S � T=RTT. As drop rate p is defined by n = 1=p, i.e., pS =
RTT=T = �, then � = �wp. Approximating S � �w, and � ln(1 �
b) � 2b=(2�b),we obtainRTT(d �w=dt) = a�(a+(2b=2� b) �w) �wp
where p is a new control. Equilibrium point ( �w�; p�( �w�)) yields

p� =
a

a+ 2b

2�b
�w� �w�

: (19)

When �w� is large, (2b �w�=2� b)� a, (19) translates into

p� =
a(2� b)

2b

1

( �w�)2
(20)

i.e., the ubiquitous TCP response function [3].

B. Main Result

Previous discussion yields our averaged (fluid-flow) GTCP model

RTT
d �w

dt
= �( �w; �) = g( �w)� (g( �w) + �wh( �w))� (21)
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where congestion signal u has been replaced by the packet-loss time
rate �. At steady-state, i.e., �( �w�; �) = 0, i.e.,

� =
g( �w�)

g( �w�) + �w�h( �w�)
= �( �w�)

where � : (1;1) ! (0; 1). Equilibrium point �w� is unique if �( �w�)
is invertible. A (locally) asymptotically stable �w� of averaged system
(21) exists if the Jacobian of � satisfies (@�=@ �w)( �w�; �) < 0.

We obtain then the following.
Lemma 1: The T -periodic discontinuous GTCP model, (10) and

(15), possesses a unique hyperbolic periodic orbit on W � (1;1)
if, for all w = w(t) > 1; t � 0; �w� 2 W , functions g and h satisfy.

1) g(w) > 0; 2) h(w) > 0; 3) the invertible function ��1 : (0; 1)!
W exists; and 4)�h(w)g(w)�w[g(x)(@h=@w)�h(x)(@g=@w)] <
0. The largest intervalW given byW � (1;1).

Proof: Straightforward by applying Theorem 1. Replace x� by
w�; x by w; y by �w; x0 by w0.3

C. Fluid-Flow HSTCP Model

The averaged model of HSTCP4 is given by, see (12)

RTT
dw

dt
= a( �w)� a( �w)��

2b( �w)

2� b( �w)
�w�

= wh(w)(w�(w)� (w�(w) + 1)�): (23)

The following proposition is not at all obvious for nonlinear exten-
sions of AIMD algorithms.5

Corollary 1: The T -periodic HSTCP model, defined by (12) and
(15), possesses a unique hyperbolic periodic orbit for initial conditions
w(0) = w0 > W satisfying b(w0) > 0.

Proof: Conditions 1)–4) of Lemma 1 apply for initial condition
w0 > W . Function b(w) is strictly decreasing on W < w < W1.
In this case, there exist a unique equilibrium point �w� 2 W . Param-
eters (11) implies g( �w) > 0;h( �w) > 0, for W < �w < �W . Thus,
�w��( �w�)� ( �w��( �w�)+1)� = 0. Function ��1, forW < �w� < �W

�w� = k1
1� �

�

k

= ��1(�) (24)

where k1 = exp((ln(P1) ln(W )
� ln(P ) ln(W1)=ln(W1)� ln(W ) + ln(P1)� ln(P )))
and k2 = log((W P =WP ))(W=W1), i.e.,
k1 ' :401 � 10�4; k2 ' 4:476 86.

D. Scalable TCP

The averaged model of (14) corresponds to the trivial one
RTT(d �w=dt) = 0. This trivial averaged model means STCP pos-
sesses an infinite number of equilibrium points: In an environment
under time-periodic packet losses, two identical STCP sources can

3Conditions 1)–4) of Lemma 1 are similar to those implied by sliding regimes
of variable structure systems, cf. [18]: there exist two kinds of system trajecto-
ries approaching a (hypothetic) sliding surface, those approaching from below
(increase behavior) and the other from above (decrease behavior).

4Note the similarities of this model to that of [21] (setting � = �wp)

RTT
dw

dt
= a( �w)�

a(w)b(w)

2
�� b( �w) �w�: (22)

For large values of �w, (23) and (22) are similar, b( �w) � 2b( �w)=(2� b( �w)).
5Several limiting regimes may occur when a and b depend onw (in particular

when a increases as a function of w); see, e.g., [22, Rem. 2].

share unequally the available bandwidth. For further modeling of this
unfairness, see [23].

E. Link Sharing

1) TCP Link Sharing: Consider n TCP flows, ( �wi;RTTi), for i =
1; . . . ; n, sharing a common bottleneck link. In steady state, the sum
of averaged throughputs is given by

�w�1
RTT1

+ � � �+
�w�n

RTTn
(packets=s):

Replacing the expressions for equilibrium points and �i = RTTi=Ti,
it yields

�
a

ln(1� b)

T1 � RTT1

RTT2
1

+ � � �+
Tn � RTTn

RTT2
n

:

The fraction of link utilization by connection 1 is then given by

%L1 =

T �RTT

RTT

T �RTT

RTT
+ � � �+ T �RTT

RTT

:

Assume Ti = T for all the flows. As T � RTTi, we obtain

%L1 =
1=RTT2

1

1=RTT2
1 + � � �+ 1=RTT2

n

(25)

i.e., the percentage of the bandwidth shared by a connection is inversely
proportional to the square (power 2) of the round trip time of each
connection, a well known result.

2) HSTCP Link Sharing: A similar result can be obtained for the
bandwidth shared by n HSTCP flows ( �wi;RTTi), for i = 1; . . . ; n:
Taking into account (24), we obtain for �w > W

%L1 =
1=RTTk +1

1

1=RTTk +1
1 + � � �+ 1=RTTk +1

n

:

As indicated before k2 + 1 = 5:47686 > 2 (for TCP, value is 2). We
see therefore that HSTCP with the previous parameters is more unfair
than standard TCP with respect to throughput as function of the RTT.

V. CONCLUSION

We have defined discontinuous and fluid-flow (averaged) models
for a class of GTCPs protocols. Assuming constant RTT and time T
between successive window reductions, we showed that fluid-flow
models result in fact from the classical, deterministic principle of aver-
aging of the discontinuous models. We have demonstrated uniqueness
and stability of time periodic (packet-loss) behaviors for GTCPs and,
particularly, for TCP and HighSpeed TCP. Several lines of research
will be pursued including averaged modeling of other types of proto-
cols and algorithms, and conditions of uniqueness and stability.
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Adaptive Variable Structure Control of a Class of Nonlinear
Systems With Unknown Prandtl–Ishlinskii Hysteresis

Chun-Yi Su, Qingqing Wang, Xinkai Chen, and Subhash Rakheja

Abstract—Control of nonlinear systems preceded by unknown hysteresis
nonlinearities is a challenging task and has received increasing attention in
recent years due to growing industrial demands involving varied applica-
tions. In the literature, many mathematical models have been proposed to
describe the hysteresis nonlinearities. The challenge addressed here is how
to fuse those hysteresis models with available robust control techniques to
have the basic requirement of stability of the system. The purpose of the
note is to show such a possibility by using the Prandtl–Ishlinskii (PI) hys-
teresis model. An adaptive variable structure control approach, serving as
an illustration, is fused with the PI model without necessarily constructing a
hysteresis inverse. The global stability of the system and tracking a desired
trajectory to a certain precision are achieved. Simulation results attained
for a nonlinear system are presented to illustrate and further validate the
effectiveness of the proposed approach.

Index Terms—Adaptive control, cascade systems, hysteresis, nonlinear
systems, Prandtl–Ishlinskii (PI) hysteresis model, robust control.

I. INTRODUCTION

The hysteresis phenomenon occurs in all the smart material-based
actuators, such as piezoceramics and shape memory alloys [1]. When
a nonlinear plant is preceded by the hysteresis nonlinearity, the system
usually exhibits undesirable inaccuracies or oscillations and even insta-
bility [14] due to the nondifferentiable and nonmemoryless character
of the hysteresis. The development of control techniques to mitigate the
effects of hystereses has been studied for decades and has recently reat-
tracted significant attention, as can be seen in [10] and the references
therein. Much of this renewed interest is a direct consequence of the
importance of hysteresis in numerous current applications. Interest in
studying dynamic systems with actuator hysteresis is also motivated by
the fact that they are nonlinear systems with nonsmooth nonlinearities
for which traditional control methods are insufficient and thus require
development of alternate effective approaches [15]. Development of a
general frame for control of a system in the presence of unknown hys-
teresis nonlinearities is a quite challenging task.

To address such a challenge, the thorough characterization of these
nonlinearities forms the foremost task. Appropriate hysteresis models
may then be applied to describe the nonsmooth nonlinearities for
their potential usage in formulating the control algorithms. Hysteresis
models can be roughly classified into physics based models and purely
phenomenological models. Physics-based models are built on first
principles of physics. Phenomenological models, on the other hand,
are used to produce behaviors similar to those of the physical systems
without necessarily providing physical insight into the problems [19].
The basic idea consists of the modeling of the real complex hysteresis
nonlinearities by the weighted aggregate effect of all possible so-called
elementary hysteresis operators. Elementary hysteresis operators are
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