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A Mixed Optimum in Symmetric Distributed
Computer Systems

Hisao Kameda, Eitan Altman, and Odile Pourtallier

Abstract—Consider the situation where, in a single network or system,
several different types of atomic and nonatomic users coexist and have at-
tained their own optima unilaterally. We call the combination of the optima
a “mixed optimum.” For a distributed system with identical nodes each hav-
ing identical arrivals, we obtain the analytic expression of the unique mixed
optimum, where mutual job forwarding among nodes may occur for some
atomic users, resulting in paradoxical performance degradation.

Index Terms—Braess paradox, distributed decision, load balancing,
Nash equilibrium, Wardrop equilibrium.

I. INTRODUCTION

Along with the ongoing research on road traffic equilibria, there has
been a new interest in understanding competitive situations in telecom-
munications like the Internet as well as in parallel and distributed
computing systems such as grids [1].

A. Various Distributed Decisions

We may have various separate objectives for distributed optimization
of performance for different atomic or nonatomic players1 in a system,
depending on the degree of the distribution of decisions. We describe
each of them below in more details.

1) Completely Distributed Decision Scheme: Each of infinitely many
nonatomic jobs (or of nonatomic users to whom a job belongs) opti-
mizes its own cost. A situation is considered optimal from the point
of view of that user (for a given behavior of the rest of the decision

Manuscript received October 18, 2006; revised May 18, 2007 and October
15, 2007. Recommended by Associate Editor Y. Paschalidis. The work of
H. Kameda was supported in part by the University of Tsukuba Research Projects
and in part by the Grant-in-Aid for Scientific Research of the Japan Society for
the Promotion of Science. The work of E. Altman was supported in part by the
EuroFgi European contract.

H. Kameda is with the Graduate School of Systems and Information Engi-
neering, University of Tsukuba, Tsukuba Science City, Ibaraki 305-8573, Japan
(e-mail: kameda@cs.tsukuba.ac.jp).

E. Altman and O. Pourtallier are with INRIA Sophia Antipo-
lis, 06902 Sophia Antipolis, France (e-mail: eitan.altman@sophia.inria.fr;
odile.pourtallier@sophia.inria.fr).

Digital Object Identifier 10.1109/TAC.2008.917653
1A player or a decision maker is called, respectively, atomic or nonatomic

if and only if its decisions have a nonnegligible or negligible impact on the
performance of any other players.

makers) if it cannot expect any further benefit by changing its own de-
cision. In the literature, the corresponding solution concept is referred
to as an individual optimum, Wardrop equilibrium, or user optimum
(see, e.g., Patriksson [2]). In this note, we call it individual optimum.

2) Intermediately Distributed Decision Scheme: Infinitely many jobs
are classified into a finite number (N (>1)) of classes or groups, each
of which has its own atomic decision maker and is regarded as one
player or user. Each decision maker (or atomic player) optimizes non-
cooperatively its own cost.

We call it the class optimum.
Under quite general conditions, we know that (2) approaches (1) as

N tends to infinity [3].
We note, however, that most papers have investigated the cases where

each system or network employs only one of these various schemes (see,
e.g., [4]).

B. Mixed Optimum

On the other hand, there may be situations where, in a single network
or system, several different types of atomic and nonatomic users com-
peting for resources coexist. For example, the Internet can be modeled
as being used at the same time by innumerable private users, each of
whom would like to optimize only its own performance, and, by en-
terprizes, each of which would like to optimize only its own total cost.
The usual road networks can be modeled as being used both by innu-
merable single owner drivers, each aiming at optimizing only his/her
own travel time, and by truck and/or bus companies, each wishing to
optimize their own total cost. Thus, a combination of several types of
optima exists. We call the combination a mixed optimum. In this note,
we study such a situation where atomic and nonatomic users coexist in
a single system.

C. Description of the System Investigated

We consider a distributed computing system, such as a grid, com-
posed of a network of servers or nodes on a local or wide-area net-
work [1]. In particular, we consider a system where the nodes consist
of the same kind of equipment (e.g., servers with the same character-
istics) like a grid consisting of identical computers. We further assume
that, in the system, each node has an identical arrival process. We refer
to such a system as a system of symmetric nodes.

Note, in passing, that the analysis of nonsymmetric networks with an
intermediately distributed decision scheme looks very difficult, and, to
the best of the authors’ knowledge, the results have been obtained only
for a model of two-node distributed systems with linear link costs [5].
In [5] and [6], numerically, nonsymmetric cases have been examined
analytically and numerically, and it was observed that the deterioration
of the performance due to adding the connection to the system is the
largest in the case of symmetric networks. This may, therefore, suggest
that the symmetric topology that we study has some of the worst case
features. Note that these results for nonsymmetric networks have been
obtained for a single optimization and not for the mixed optimization.

D. Previous Work

The existence of a mixed optimum or, equivalently, a mixed equilib-
rium for general networks has already been shown, and its uniqueness
for some special networks that do not include the network considered
in this note has been shown [7]. We note, however, that the preliminary
conference version [8] of this note has been the first work on a mixed
optimum in the context of computer networks. Harker [9] and Richman
and Shimkin [10] discuss mixed optima in contexts different from this
note.

0018-9286/$25.00 © 2008 IEEE
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E. Summary of the Results

In this note, we use the term “mixed optimum” in place of “mixed
equilibrium.” We obtain an analytic expression and uniqueness for a
mixed optimum in a system of symmetric nodes. In spite of coexistence
of different types of users, the results obtained in this combined system
show that the behavior of each type of users, and thus, each different
optimum appears to be mutually independent as though there were
little interferences among one another. In this combined system with a
mixed optimum, we also observe a paradoxical behavior in which there
is mutual job forwarding among nodes, resulting in performance degra-
dation, just as we have observed in a separate system with all atomic
users seeking some particular type of class optimization [4]. We see, in
this symmetric node model, however, that such paradoxical behavior
may occur only with the atomic users seeking class optimization of a
particular type, and that the nonatomic or atomic users seeking individ-
ual optimization or class optimization of other types are not subject to
such a paradox nor are influenced by the paradoxes of other job types.

II. MODEL AND ASSUMPTIONS

Section II-A characterizes the system of symmetrical nodes inves-
tigated in this note. Section II-B lists the set of optimization policies,
one of which each of the classes coexisting in the system may employ,
and defines the mixed optimum. Later, Section III characterizes the
mixed optimum of the investigated system where all classes achieve
their objectives coincidently. The Appendix presents the proof of the
existence and uniqueness of the mixed optimum.

A. Description of a System of Symmetric Nodes Where Different Types
of Users Coexist

1) Job Classes: We consider a system with m nodes (computers or
servers) connected with a communication means such as a grid [1]. The
jobs that arrive at each node i, i = 1, 2, . . . , m, are classified into n
types numbered k = 1, 2, . . . , n. Consequently, we have mn different
job classes Rik . We call such a class local class, or simply class. We
also consider what we call global class Jk that consists in the collection
of local classes Rik , i.e., Jk =

⋃
i
Rik . Jk , thus, consists of all jobs

of type k. For local class Rik , all the jobs arrive at the same node i,
whereas the arrivals of the jobs of global class Jk are equally distributed
over all nodes i.

2) Job Load-Balancing Ratios: Out of type-k jobs arriving at
node i, the ratio xij k of jobs is forwarded upon arrival through
the communication means to another node j ( �= i) to be pro-
cessed there. The remaining ratio xiik = 1 −

∑
j ( �= i) xij k is pro-

cessed at node i. We have 0 ≤ xij k ≤ 1, for all i, j, k. A set
of values of xik (i = 1, 2, . . . , m, k = 1, 2, . . . , n) are chosen to
achieve optimization, where xik = (xi1k , . . . , xim k ) is an m-vector
and called “local-class Rik strategy.” We define a global-class Jk

strategy as the mm-vector xk = (x1k ,x2k , . . . ,xm k ). We will also
denote by x the vector of strategies concerning all job classes,
called strategy profile, i.e., the mmn-vector, x = (x11 ,x12 , . . . ,x1n ,
x21 , . . . ,x2n , . . . ,xm 1 , . . . ,xm n ), or x = (x1 ,x2 , . . . ,xn ). We de-
note the set of x’s that satisfy the constraints (i.e.,

∑
l
xilk = 1, xij k ≥

0, for all i, j, k) by C. Note that C is a compact set.
3) Nodes and Job-Forwarding Networks: We assume that the av-

erage processing (service) time (without queueing delays) of a type-k
job at any node is 1/µk , and is, in particular, node independent, which
is like a grid consisting of identical computers. We further assume that
jobs of type k arrive at each node with node-independent rate φk . We
denote φk /µk by ρk and ρ =

∑
k

ρk . We denote the total arrival rate
to the node by φ (=

∑
k

φk ), and without the loss of generality, we as-

Fig. 1 Model of a system of symmetric nodes for m = 3 for job type k. The
symbol near each arrow denotes the rate of type-k jobs that flow through the

arrow. β
(k )
i = (φk /µk )

∑
k
(x1 ik + x2 ik + x3 ik ), i = 1, 2, 3.

sume a time scale such that φ = 1. Then, the rate φk xij k of type-k jobs
that arrive at node i is forwarded through the communication means to
node j, while the rate φk xiik of local-class Rik jobs is processed at
the arrival node i.

For a strategy profile x, the utilization factor βi of node i is

βi = βi (x) =
∑
j,k

ρk xj ik . (1)

The contribution β
(k )
i on the utilization factor of node i by the type-k

jobs is

β
(k )
i = β

(k )
i (x) = ρk

∑
j

xj ik (2)

and clearly βi = β
(1)
i + β

(2)
i + · · ·+ β

(n )
i (see Fig. 1).

Assumption Π1: The expected processing (including queuing) time
of a type-k job that is processed at node i (or the cost function at node
i) is a positive, strictly increasing, strictly convex, and continuously
differentiable function of βi , denoted by µ−1

k D(βi ) for all i, k.
Assumption Π2: The mean communication delay (including queuing

delay) or the cost for forwarding type-k jobs arriving at node i to node j
(i �= j), denoted by Gijk (x), is a positive, nondecreasing, convex, and
continuously differentiable function of x. Giik (x) = 0. Furthermore,
each job is forwarded at most once.

In particular, we assume the following: The entire system employs
as Gijk (x), for all i, j(i �= j), k one of the following functions corre-
sponding to the type of the communication means [out of Types G-I,
G-II(a), and G-II(b)] of the entire system, where ωk are constants,
σk = φk /ωk , and G(x) is a nondecreasing, convex, and differentiable
function of x with G(0) = 1.

Type G-I: Gijk (x) = ω−1
k G(σk xij k )

(one dedicated line for each combination of a pair of origin and desti-
nation nodes, and a local class: i.e., m(m − 1)n lines in total)

Type G-II(a): Gijk (x) = ω−1
k G(

∑
p ,q �= p

σk xpq k )
(one bus line for each global class: i.e., n bus lines in total)
Type G-II(b):Gijk (x) = ω−1

k G(
∑

p ,q ( �= p ) ,k σk xpq k )
(a common bus line for the entire system: i.e., 1 bus line}).

4) Expected Job Response Times: We refer to the length of time
between the instant when a job arrives at a node, and the instant when
it leaves one of the nodes after all processing and communication, if
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any, are over, as the response time for the job. The expected response
time of a local-class Rik job that arrives at node i, Tik (x), is expressed
as

Tik (x) =
∑

j

xij k Tij k (x) (3)

where

Tiik (x) = µ−1
k D(βi (x)) (4)

Tij k (x) = µ−1
k D(βj (x)) + Gijk (x), for j �= i. (5)

Using the fact that all nodes have the same arrival process, the expected
response time of a global-class Jk job is

Tk (x) =
1
m

∑
i

Tik (x). (6)

The overall expected response time of a job that arrives at the system
is

T (x) =
∑

k

φk Tk (x) =
1
m

∑
i ,k

φk Tik (x). (7)

B. Types of User Policies That Coexist Within the System

Kameda and Pourtallier [4] have examined several separated sys-
tems, each of which employs only one strategy; those systems are
mutually independent. Unlike in [4], we consider an entirely differ-
ent situation where, within a single system, there are several decision
makers that use one of different strategies discussed in Sections II-B1,
II-B2, and II-B3 later for their types of jobs. That is, several types of
jobs with different types of optimization decisions coexist in the same
system. We denote by �x such a strategy profile, whereby all type-k jobs
achieve their own distinct performance optimization within the same
system coincidentally. We call such an optimization scenario �x a mixed
optimum.

Definition 1: Following standard game-theoretic notation, we define
(�x−(k ) ;xk ) and (�x−(ik ) ;xik ), respectively, to be the mmn-vectors of
strategies in which the elements corresponding to �xk and �xik , respec-
tively, have been replaced by xk and xik , whereas all the other elements
are the same as the remaining mm(n − 1) and m(mn − 1) elements
of �x, respectively.

We denote �βi = βi (�x), which shows the utilization factor of node i
in the mixed optimum �x.

We describe each of the distinct strategies coexisting in the same
system in the following.

1) Individual optimization strategy for type-k jobs xA
k (nonatomic

users): The individual optimization strategy for type-k jobs (where
nonatomic users seek individual optimization) is denoted by xA

k .
For type-k jobs seeking individual optimization, the strategy of type-

k jobs, given the strategies of the other classes, is then presented by
such xA

k as satisfies the following conditions for all i

Tik (�x−(k ) ;xA
k ) = min

j
{Tij k (�x−(k ) ;xA

k )} and (�x−(k ) ;xA
k ) ∈ C

(8)
where, for (�x−(k ) ;xA

k ), see Definition 1.
In the individual optimization strategy for type-k jobs, we consider

that each job of type k chooses the node to be processed in order
to obtain its minimal cost, i.e., the minimal expected response time
for itself, given the decisions on other jobs. Thus, for global-class Jk

(consisting of local-class Rik for all i), there exist infinitely many
decision makers. The resulting optimal ratio of jobs of local class Rik

that choose the node j to be processed is denoted by xA
ij k . Thus, for

type-k jobs, nonatomic users seek individual optimization that results

in the individually optimal strategy profile of type-k jobs denoted by
xA

k . The relation (8) means the following: if nonatomic users seek the
individual optimum for type-k jobs, the cost of paths used by type-k
jobs are identical, are given by Tik (�x−(k ) ;xA

k ) and are not larger than
the cost of paths that are not used by type-k jobs.

2) Local-class optimization strategy for type-k jobs xB I
k (some

atomic user in the system): The local-class optimal strategy for de-
cision maker (ik), or equivalently, local-class job Rik is denoted by
the m-vector xB I

ik = (xB I
i1k , xB I

i2k , . . . , xB I
im k ). We assume that the lo-

cal classes Rik for all i with the identical k are subject to local-
class optimization strategy coincidentally, and then, an optimal strat-
egy profile for type-k jobs, that we denote by xB I

k , is the mm-vector
(xB I

1k ,xB I
2k , . . . ,xB I

m k ).
For type-k jobs seeking local-class optimization, the strategy of

type-k jobs, given the strategies of the other classes, is presented by
such xB I

k as satisfies the following for all i

Tik (�x−(ik ) ;xB I
ik ) = min Tik (�x−(ik ) ;xik )

with respect to xik such that (�x−(ik ) ;xik ) ∈ C (9)

where for (�x−(ik ) ;xB I
ik ) and (�x−(ik ) ;xik ), see Definition 1.

In the local-class optimization strategy for type-k jobs, each local
class Rik has its own nonatomic decision maker (ik). The amount
of forwarding for local-class Rik jobs is chosen by the corresponding
decision maker (ik) in order to obtain the minimal cost, i.e., the ex-
pected response time averaged over all the local-class Rik jobs, given
the decisions on other job classes.

3) Global-class optimization strategy xB I I
k (some other atomic

user): The global-class optimal strategy for decision maker k is de-
noted by an mm-vector

xB I I
k = (xB I I

1k ,xB I I
2k , . . . ,xB I I

m k ).

For type-k jobs seeking global-class optimization, the strategy of type-
k jobs, given the strategies of the other classes, is presented by such
xB I I

k as satisfies the following

Tk (�x−(k ) ;xB I I
k ) = min Tk (�x−(k ) ;xk )

with respect to xk such that (�x−(k ) ;xk ) ∈ C (10)

where for (�x−(k ) ;xB I I
k ) and (�x−(k ) ;xk ), see Definition 1.

In the global-class optimization strategy for type-k jobs, jobs of
local classes Rik for all i are united into one global class Jk that
has a single atomic decision maker (k). Each decision maker (k) of
global class Jk chooses the amount of job forwarding for the m local
classes, R1k , R2k , . . . , Rm k in order to obtain the minimal cost, i.e.,
the expected response time averaged over all the global class Jk jobs,
given the decisions on other job types.

1) Mixed Optimization �x: Now, we recall the definition of the mixed
optimum given in the Introduction. That is, a strategy profile �x is called
a mixed optimum if, for all k, its kth component is one of different
optima for type-k jobs given �x−(k ) . In other words, if type-k jobs seek
individual optimization, then �xk = xA

k , where xA
k is given in (8), if

type-k jobs seek local-class optimization, then �xk = xB I
k , where xB I

k

is given in (9), and if type-k jobs seek global-class optimization then
�xk = xB I I

k , where xB I I
k is given in eq. (10).

We denote the numbers of job types seeking the individual optimiza-
tion, the local-class optimization, and the global-class optimization by
nA , nB−I , and nB−I I , respectively. Then, nA + nB−I + nB−I I = n.
We denote Γk = ρ2

k σ−1
k .
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III. SOLUTION AND ITS UNIQUENESS OF A MIXED OPTIMUM

Now, we have the main result. Based on the earlier characterizations
given in Section II, we show that the solution �x for all job types is
unique and given as follows. We define

gB I
ij k (x) =

∂

∂xij k

{
φk

∑
p �= i

xipk Gipk (x)

}
. (11)

A. Unique Mixed Optimum �x for the System Investigated

1) The solution xA
k for type k with individual optimization is unique

and given as follows:

xA
ij k = 0 and xA

iik = 1, for all i, j( �= i).

The mean response time for type k with individual optimization is

Tk (�x) = Tik (�x) = µ−1
k D(ρ), for all i.

2) The solution xB I
k for type-k jobs with local-class optimization is

unique and is given as follows: If the entire system employs Types G-I
or G-II(a) communication means:

a) for local class Rik such that ρ2
k D′(ρ) ≤ gB I

k (0) = σk , i.e.,
Γk D′(ρ) ≤ 1

xB I
ij k = 0 and xB I

iik = 1, for all i, j( �= i).

The mean response time for local class Rik jobs with local-class
optimization, such that Γk D′(ρ) ≤ 1, is given by (13);

b) for local class Rik such that ρ2
k D′(ρ) > gB I

k (0) = σk , i.e.,
Γk D′(ρ) > 1

xB I
ij k = xB I

k , for all i, j( �= i) (15)

where xB I
k is the unique solution of

ρ2
k (1 −mxB I

k )D′(ρ) = gB I
k (xB I

k ) = σk [G(m(m − 1)σk xB I
k )

+ σk (m − 1)xB I
k G′(m(m − 1)σk xB I

k )]. (16)

The mean response time for local-class Rik jobs with local-class
optimization, such that Γk D′(ρ) > 1, is, for all i

Tk (�x) = Tik (�x) = µ−1
k D(ρ) + (m − 1)xB I

k Gk (�x). (17)

If the entire system employs Type G-II(b) communication means:
The solution is given as follows:

xB I
ij k = xB I

k , for all i, j( �= i) (18)

where xB I
k is given as in the following. We first change the numbering of

k, such that Γ1 ≥ Γ2 ≥ · · · ≥ Γk ≥ · · · ≥ Γn ′ , where n′ is the number
of job types that seek the local-class optimization, i.e., n′ = nB−I . The
following three situations can occur: We can find K such that

ΓK D′(ρ) > 1 and ΓK +1D
′(ρ) ≤ 1 (19)

or Γn ′D
′(ρ) > 1 (i.e., K = n′) (20)

or Γ1D
′(ρ) ≤ 1. (21)

When (21) holds, we have a unique solution of xB I
k = 0 for all k ≤ n′.

When (19) or (20) holds, we can find a unique solution as follows. Let
us define the function Fk (X) as

Fk (X) =

{
k∑

l=1

σl [ΓlD
′(ρ)−G(X)]

mΓk D′(ρ) + (m − 1)σlG
′(X)

}
− X

m(m − 1)
.

(22)

We obtain the largest k = kB I ≤ K and X = XB I
k B I (> 0) that satisfies

Fk B I (XB I
k B I ) = 0 and σk B I [Γk B I D′(ρ)−G(XB I

k B I )] > 0. Then, by
using

σk [Γk D′(ρ)−G(XB I
k B I )]

= σk xB I
k [mΓk D′(ρ) + (m − 1)σk G′(XB I

k B I )] (23)

for all k, for k = 1, 2, . . . , kB I , we can obtain the unique set of values
such that xB I

k > 0, k = 1, 2, . . . , kB I , and that xB I
k B I +1 = xB I

k B I +2 =
· · · = xB I

n ′ = 0 that satisfies the previous relation, which is a unique
solution.

The mean response time for local class Rik jobs with local-class
optimization is given by (17), for all i.

3) The solution xB I I
k for type-k jobs with global-class optimization

is unique and is given as follows:

xB I I
ij k = 0 and xB I I

iik = 1, for all i, j( �= i). (24)

The mean response time for type-k jobs with global-class optimization
is given by (13).

The aforementioned can be confirmed as follows.
Theorem 3.1: Consider a system of symmetric nodes with several

coexisting types of jobs where each type optimizes according to one of
the strategies 1), 2), or 3) discussed earlier. Then, for the system, there
exists a unique mixed optimum �x, which is given before.

Proof: See the appendix.
Remark 3.1: In the earlier mixed-optimum solution �x, we see that

although various types of players or classes exist together in a single
system considered, the behavior of each class or player in the (unique)
mixed optimum�x appears to be independent of one another. We also see
that Braess-like paradoxical performance degradation occurs only for
the type of jobs seeking local-class optimization, and whether or not the
Braess-like paradox occurs depends on the system load ρ (=

∑
k

ρk )
and the value of Γk (= ρ2

k /υk = φk ωk /µ2
k ) for each local-class Rik ,

where φk is the arrival rate, µ−1
k is the processing time requirement,

and ω−1
k is the communication time requirement for local-class Rik .

The types of jobs seeking individual or global-class optimization are
not influenced by such performance degradation.

We discuss next the possible implications of our results in the context
of road traffic.

Remark 3.2: In road traffic, some of the drivers choose routes so
as to minimize their individual delay (individual optimization), while
others are drivers of companies that provide drivers with directions
on how to choose routes to minimize the average delay of their drivers
(local-class optimization). A surprising implication of our results is that
the performance of independent drivers may dominate that of drivers
employed by companies where a company is assumed to decide on
the route to be taken by each of the cars that belongs to it. We call
such drivers “company drivers.” Indeed, consider a road network with
three nodes: two origins (i, j( �= i) = 1, 2) and one common destination
d, as a very simple example of the networks we have studied. Some
drivers arrive at a node i and take a direct route to d. The remaining
drivers arrive at node i and reach node d through an alternate route
ijd. Assume that there are local companies Rik , each of which gives
directions to its drivers. It can be seen from our results that at the unique
mixed optimum, the decisions of such companies may be inefficient
since they may involve mutual forwarding between nodes 1 and 2. We
conclude that this situation may discourage company drivers and that
companies should take into consideration the possible negative impact
of their directions to optimize the average delay of their drivers only.
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IV. CONCLUDING REMARKS

In this note, we have examined a model consisting of identical nodes
with identical arrivals to all nodes where forwarding of jobs to the
other nodes through communication means with nonzero delays may
clearly lead to performance degradation. We have considered mixed
optimization where each of the coexisting job types seeks a distinct
level of distributed optimization. We have computed explicitly a mixed
optimum. We have established the uniqueness of a mixed optimum. We
have observed a paradoxical behavior in which in a mixed optimum
there is mutual job forwarding among nodes.

It has been quite hard to extend the proofs to allow more general
assumptions. It has been also difficult for us to analyze asymmetric
models. These are future open problems.

APPENDIX A: A PROOF OF THEOREM 3.1

We show that, under the assumption that there exists a mixed opti-
mum, a unique solution �x is given as shown in the following lemmas
1, 2, 3, and 4. On the other hand, we can see that solution �x given by
these lemmas and mentioned in this theorem satisfies the definition of
a mixed optimum. We, therefore, see that a mixed optimum exists and
is uniquely given as the �x mentioned before.

Lemma 1: Consider a network with several types of jobs, where
each type optimizes according to either one of the strategies 1), 2), or
3). If there exists a mixed optimum in the network, then, in the mixed
optimum �x, we must have �βi = ρ, for all i.

Proof: This can be shown by augmenting the part (1) of the proof
given on pp. 419–421 of [4], see [8].

Lemma 2: If there exists a mixed optimum for the network, then,
in the mixed optimum �x, the solution xA

k for type k with individual
optimization is unique and given by (12). The mean response time is
given by (13).

Proof: We define

tA
ij k (x) = φk Tij k (x). (25)

For all i, j, we have

tA
ij k (�x−(k ) ;xA

k ) =αA
ik , xA

ij k > 0

tA
ij k (�x−(k ) ;xA

k ) ≥αA
ik , xA

ij k = 0∑
j ′

xA
ij ′k = 1 (26)

where αA
ik = minj ′ {φk D(βj ′(�x−(k ) ;xA

k ))}.
If there exists a mixed optimum for the network, then, in the mixed

optimum �x, the solution xA
k for type k with individual optimization

exists. Then, the set of relations (26) must hold, and it is satisfied if and
only if xA

ij k = 0 for all i, j( �= i).
Lemma 3: If there exists a mixed optimum for the network, then, in

the mixed optimum �x, the solution xB I
k for type-k jobs with local-class

optimization is unique and is given as follows.
If the entire system employs Types G-I or G-II(a) communication

means:
1) for local class Rik such that ρ2

k D′(ρ) ≤ gB I
k (0) = σk , i.e.,

Γk D′(ρ) ≤ 1, xB I
k is given by (14). The mean response time is given

by (13);

2) for local class Rik such that ρ2
k D′(ρ) > gB I

k (0) = σk , i.e.,
Γk D′(ρ) > 1, the solution xB I

k is given by (15). The mean response
time is given by (17).

If the entire system employs Type G-II(b) communication means:
The solution xB I

k is given by (18). The mean response time is given
by (17).

Proof: 1) By Lemma 1, we have shown that �βj = �βj ′ for every pair
of (j, j ′), and consequently, �βi = ρ for all i.

2) The rest of the proof can be shown by the logic similar to that in
parts (2) and (3) of the proof starting on p. 418 of [4], where n in part
(3) is to be replaced by nB−I and, where, for any variable, say, y, in
part (2), ỹ is to be replaced by yB I .

Lemma 4: If there exists a mixed optimum for the network, then, in
the mixed optimum �x, the solution xB I I

k for type-k jobs with global-
class optimization is unique and is given by (24). The mean response
time is given by (13).

Proof: 1) By Lemma 1, we have shown that �βj = �βj ′ for every pair
of (j, j ′), and consequently, �βi = ρ for all i.

2) The rest of the proof can be shown by the logic similar to that in
parts (2) and (3) of the proof starting on p. 424 of [4], where, for any
variable, say, y, in part (2), y̌ is to be replaced by yB I I .
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