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Queueing Analysis of Early Message Discard Policy
Parijat Dube1 Eitan Altman1;2

Abstract— We consider in this paper packets which arrive according
to a Poisson process into a finite queue. A group of consecutive packets
forms a frame (or a message) and one then considers not only the quality
of service of a single packet but also that of the whole message. In order to
improve required quality of service, either on the frame loss probabilities
or on the delay, discarding mechanisms have to be used. We analyze in
this paper the performance of the Early Message Discard (EMD) policy
at the buffer, which consists of (1) rejecting an entire message if upon the
arrival of the first packet of the message, the buffer occupancy exceeds a
threshold K, and (2) if a packet is lost, then all subsequent arrivals that
belong to the same message are discarded.

Index Terms— EMD policy, packet model, queue-length distribution,
goodput.

I. I NTRODUCTION

Quite often quality of service have to be studied with respect to not
only a single packet, but to a whole message or a frame. For example,
in ATM a transport layer protocol (AAL) is responsible for grouping
packets into a frame, and a lost packet implies the corruption of the
whole frame. Selective Message Discarding (and EMD in particular,
on which we focus here) have been proposed to achieve the twin goals
of increased goodput and reduced network congestion by discarding
the packets which do not belong to (or have potentials of not belonging
to) goodmessages (a message is good if it is entirely received at the
destination). Rejecting entire messages could also serve to guarantee
an acceptable average delay bound for accepted messages. The goal
of this paper is to presentexplicit expressionsfor the queue-length dis-
tribution and the goodput (defined as in [10] as the ratio between total
packets comprising good messages exiting the network node and the
total arriving packets at the input). Our starting point is the Markovian
model proposed in [10]: a Poisson process of packet arrivals, geomet-
rically distributed frame size, and exponentially distributed service
times of packets. In [10], recursive procedures have been proposed
for the computation of the performance measures, but explicit expres-
sions have not been obtained. Our analytical results on closed form
expressions for performance metrics (in particular the queue-length
distribution and the goodput) may be quite useful in dimensioning the
buffer size that should be used for a given goodput, in the study of the
sensitivity of the goodput to different parameters for e.g., the message
length, the buffer size, the load and most importantly in finding an
estimate of the optimal discarding threshold etc.

In a previous work [5], we analyzed the Partial Message Discard
(PMD) policy in which only if some packet of a message is lost, sub-
sequent packets are rejected (but entire messages are not discarded,
in contrast with EMD). As the packet level analysis turns to be quite
complex and involved, we studied in [3], [4], [5], [6] some fluid ap-
proximations. Some other references on numerical studies of PMD
and EMD policies are [8], [7].
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Fig. 1. Transition structure under the EMD policy

In Section II we describe our queueing model and present our main
results on the z-transform of the queue-length distribution and then the
explicit expressions for the steady-state probabilities. In Section III
we present an approach for obtaining the explicit expression for the
goodput ratio using algebraic techniques.

II. PACKET MODEL

The packet model is the same as the one proposed in [10]. We first
describe the model in brief. In terms of packet the network element is
aM=M=1=N queue with arrival rate� and service rate� and the load
� = �

�
. A message length (in terms of packets) is considered to be

geometrically distributed with parameterq. Under the EMD policy, a
threshold levelK (K is an integer,0 � K � N ) is fixed. If a message
starts to arrive when the buffer occupancy is at or aboveK packets,
then all the packets of that message are discarded. Also, if a packet
belonging to an accepted message is discarded due to buffer overflow
then all the subsequent packets belonging to the same message are also
discarded. To model the policy, two modes for working of the network
element are defined: thenormal mode, in which packets are admitted,
and thediscarding mode, in which arriving packets are discarded. The
state transition diagram for EMD policy under this model is shown in
Figure (1). LetPi;j(0 � i � N; j = 0; 1) be the steady-state prob-
ability of havingi packets in the system and the system is in modej
(j = 0 for normal;j = 1 for discarding). We now define the trans-
form functionsAj(z) =

PK

i=0
ziPi;j , Bj(z) =

PN

i=K+1
ziPi;j

andQj(z) = Aj(z) +Bj(z) for j = 0; 1.

A. PGF and distribution of the number of packets in the queue

Proposition 1: The probability generating functionsAj(z) and
Bj(z) for j = 0; 1 are given by,

A0(z) =
�
(q�+ 1� z�1)(P0;0(1� z�1)

�PK;0�z
K+1 + PK+1;0z

K) + PK;1q�z
K

0-7803-7400-2/02/$17.00 (C) 2002 IEEE



+P0;1(1� z�1)q�z
�
D1

A1(z) =
P0;1(1� z�1) + PK;1(q�+ 1)zK

(q�+ 1� z�1)

B0(z) =
PK;0r�z

K+1 � PN;0r�z
N+1 � PK+1;0z

K

(�+ 1� r�z � z�1)

B1(z) =
�
PK;1(z

�1 + r�z � �� 1)� PK+1;0q�

+PN;0�z
N�K((�+ 1� z�1)(1� q)

�r�z) +PK;0�q(�+ 1� z�1)
�
zKD2

where,

D1 =
�
(�+ 1� �z � z�1)(q�+ 1� z�1)

��1
D2 = (�+ 1� r�z � z�1)(1� z�1)

�1

PK;0 =
q�(1� �)

D
PK;1 = �

�
1�

rÆK�N
ÆK�N�1

�
PK;0

P0;1 =
1

q(1 + q�)K�1

�
1�

rÆK�N
ÆK�N�1

�
PK;0

P0;0 =
PK;0�

�K

1 � �

�
1�

r�ÆK�N
ÆK�N�1

��
(1� �)(1� q)

(q�+ 1� �)�
�2 +

�K

q(1 + q�)K�1

��

PN;0 =
(W1W2)

K�N�1(W2 �W1)r�PK;0

ÆK�N�1

PK+1;0 =
r�ÆK�N
ÆK�N�1

PK;0

D = q�

�
��K

1� �

�
1�

r�ÆK�N
ÆK�N�1

��
(1� �)(1� q)

(q�+ 1� �)�
�2 +

�K(1� �)

q(1 + q�)K�1

��
+

1

q(1 + q�)K�1�
1 �

rÆK�N
ÆK�N�1

��
� (1� �)(1� q)r�3�

(W1W2)
K�N�1(W2 �W1)

ÆK�N�1

�

+�2(1� �+K�q)

�
1�

rÆK�N
ÆK�N�1

�

+(�1 + �+Kq�2)
r�ÆK�N
ÆK�N�1

��2(1 + q +Kq�)

with W1;2 =
(�+1)�((�+1)2�4r�)

1
2

2r�
andÆy = W y

1 �W y
2 for anyy.

Proof: Refer to Appendix A.
Corollary 1: The transition probabilities are given by,

For1 � i � K,

Pi;0 = PK;0

�
1 � ��(K+1�i)

1� ��1
�
ÆK+1�i

Æ

�

+
PK+1;0

�

�
ÆK�i
rÆ

�
1� ��(K�i)

1� ��1

�
+
PN;0

Æ
ÆN+1�i

�
PK;1q

(1 + q�)

�
1� ��(K+1�i)

(1� ��1)(��1 � (1 + q�)�1)

+
(1 + q�)�(K+1�i)

(1� (1 + q�)�1)(��1 � (1 + q�)�1)

�
;

Pi;1 = PK;1((1 + q�)�K+i � 1)

+PN;0
(�ÆN�i+1 � ÆN�i)

Æ

+PK;0

�
�+

ÆK�i+1 � r�ÆK�i+2
Æ

�
�PK+1;0

�
1 +

ÆK�i � r�ÆK+1�i

Æ

�
:

And forK + 1 � i � N ,

Pi;0 =
PN;0ÆN+1�i

Æ
; Pi;1 =

PN;0(�ÆN�i+1�ÆN�i)

Æ

whereÆ1 = Æ.
Proof: Refer to Appendix B.
Having obtained the explicit expressions for the stationary distribution
of the queue-length we next proceed to obtain the expression for the
goodput ratio (as defined in Section I).

III. G OODPUT RATIO

LetW be the random variable that represents the length (number
of packets) of an arriving message. LetV be the random variable
representing the success of a message,V = 1 for a good message,
andV = 0 for a message which has one or more dropped packets.
ThenG can be expressed as (see [10])

q

1X
n=1

nq(1� q)n�1
NX
i=0

P (V = 1jW = n;Q = i)P (Q = i)

Denote the conditional probabilitiesSn;i
4
= P (V = 1jW = n;Q =

i). In [10], recursions for evaluating these probabilities and henceG
were given. We will present here an explicit expression forG. To do
this we will use the multidimensional generating function for prob-
abilities Sn;i which was obtained in a different context in [1] and
in [9]. We define the two-dimensional generating function ofSn;i
for 1 � n � 1 and 0 � i � N , as �S(x; y), i.e., �S(x; y) =P
1

n=1

PN

i=0
Sn;ix

n�1yi, We will next reproduce the Proposition we
developed in [5] for the case ofPartial Message Discard(PMD)pol-
icy. A PMD is an EMD withK > N .
Proposition 2: The probability generating function�S(x; y) can be

expressed as�S(x; y) =
PN

i=0
ci(x)y

i where for0 � i � N � 1,
ci(x) is equal to

1 +K3

�
A1 �A2y

N�(i+1)
1 �A3y

N�(i+1)
2

�
+K4

�
B1y

N�i
1 +B2y

N�i
2

�
1

andcN (x) = 0 with,

y1;2 =
1 + ��

p
(1 + �)2 � 4�x

2
K3 = �x�

K4 =
x�(yN1 � yN2 )

yN+1
2 (y1 � �)� yN+1

1 (y2 � �)

A1 = 1=((1 � y1)(1� y2))

A2 = 1=((1 � y1)(y1 � y2))

A3 = 1=((1 � y2)(y2 � y1))

B1 = �B2 = (y1 � y2)
�1
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For the EMD policy, the conditional probabilitiesSn;i are same as
that for the PMD policy fori < K. If the head of the message arrives
when the system occupancy is at or above the threshold the message as
a whole is rejected. Thus for the EMD policy we define the transition
probability generating function as�S(x; y) =

PK�1

i=0
ci(x)y

i, where
ci(x) is given by Proposition (2). And the expression forGoodput
ratio can be expressed (like in Proposition (3) in [5], withN in the
summation replaced byK � 1) as,

G = q2
K�1X
i=0

�
d(xci(x))

dx

�
x=(1�q)

P (Q = i)

= q2

2
4(1� q)

 
d

dx

 
K�1X
i=0

ci(x)P (Q = i)

!!
x=(1�q)

+

K�1X
i=0

ci(1� q)P (Q = i)

#
(1)

where stationary probabilitiesP (Q = i) = Pi;0 + Pi;1 are known
from Corollary 1.

A. Exact expression forG

In this section we aim to derive an exact expression forG for
EMD policy. From (1) we find that we need an expression forPK�1

i=0
ci(x)P (Q = i). Observe that

PK�1

i=0
ci(x)P (Q = i) =

c0(x)P (Q = 0) +
PK�1

i=1
ci(x)P (Q = i). We haveP (Q = 0) =

P0;0 + P0;1 with P0;0 andP0;1 given by Corollary 1. We next find a
general expression forP (Q = i) for i = 1 to K � 1. From Corol-
lary 1, by addingPi;0 andPi;1 for i = 1 to K � 1 we can express
P (Q = i) as,

PK;0

�
�� ��(K+1�i)

1� ��1
�
r�

Æ
ÆK�i+2

�

+PN;0

�
ÆN+1�i(1 + �)� ÆN�i

Æ

�

�PK;1

�
�

�� 1
�

��(K�i)q

(1� ��1)(1 + q�� �)

+
(1 + q�)�(K�i)

(1 + q�� �)
�(1� q)

�

+PK+1;0

�
ÆK�i
Æ

�
1

r�
� 1

�
+
r�

Æ
ÆK+1�i

+
�� �K�i

1� �

�
(2)

We will now find an expression for
PK�1

i=1
ciP (Q = i) 2. From (2)

and Proposition 2 we write after some algebra (see [2] for details),PK�1

i=1
ciP (Q = i) as

K�1X
i=1

ci

�
PK;0�� PK;1 � PK+1;0

1� ��1

�
�
�KPK+1;0

1� �

K�1X
i=1

ci�
�i

2We shall not explicitly showx in parentheses for functionci

�

K�1X
i=1

ci�
i

�
PK;1q�

�K

(1� ��1)(1 + q�� �)
�
PK;0�

�(K+1)

1� ��1

�

�

K�1X
i=1

ci(1 + q�)i
PK;1�(1� q)(1 + q�)�K

1 + q�� �
�

K�1X
i=1

ciy
�i
1

�
PK;0r�y

K+2
1 � PN;0y

N
1 (y1(1 + �)� 1)

Æ
�
PK+1;0y

K
1

Æ�
1

r�
� 1 + y1r�

��
+

K�1X
i=1

ciy
�i
2

�
PK;0r�y

K+2
2

Æ

�
PN;0y

N
2 (y2(1 + �)� 1)

Æ
(3)

�
PK+1;0y

K
2

Æ

�
1

r�
� 1 + y2r�

� �
Observe that the last expression contains terms of the formPK�1

i=1
cia

i (with a = 1; y�11 ; y�12 ; �; (1 + q�)). We now obtain
these terms from the expression forci from Proposition 2. For anya,PK�1

i=1
cia

i is equal to

(K � 1)(1 +K3A1)
a(1� aK�1)

1� a

+(K4B1y
N
1 �K3A2y

N�1
1 )

a
y1

�
1�
�
a
y1

�K�1�
1� a

y1

+(K4B2y
N
2 �K3A3y

N�1
2 )

a
y2

�
1�
�
a
y2

�K�1�
1� a

y2

Thus after some rearrangements we can express the expression forPK�1

i=1
ciP (Q = i) from (3) as3

(K � 1)(1 +K3A1) [K5 �K6 �K9 � F1

+F2] + (K4B1y
N
1 �K3A2y

N�1
1 ) [F3 � F11

�F4 � F5 + F6] + (K4B2y
N
2 �K3A3y

N�1
2 )

[F7 � F12 � F8 � F9 + F10]

where,

K5 =
�(1� �K�1)

1� �
K7; K6 = (1+q�)(1�(1+q�)K�1)

1�(1+q�)
K8

F1 = E1(y1)E2(y1); F2 = E1(y2)E2(y2)

F3 = E1(y1=�)K7; F4 = E1(y1=(1 + q�))K8

F5 = E1(y
2
1)E2(y1); F6 = E1(y1y2)E2(y2)

F7 = E1(y2=�)K7; F8 = E1(y2=(1 + q�))K8

F9 = E1(y1y2)E2(y1); F10 = E1(y
2
2)E2(y2)

F11 = E1(�y1); F12 = E1(�y2)

with,E1(y) =
y�1(1�y�K+1)

1�y�1
) andE2(y) is equal to

PK;0r�y
K+2

Æ
�
PN;0y

N(y(1 + �)� 1)

Æ

+
PK+1;0y

K

Æ

�
1

r�
� 1 + yr�

�
3It should be noted thatA1; A2; A3; B1; B2;K3 andFi; i = 1; 2; : : : ; 12:

are all functions ofx.
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and,

K7 =

�
PK;1�

�K

(1� ��1)(1 + q�� �)
�
PK;0�

�(K+1)

1� ��1

�

K8 =
PK;1�(1� q)(1 + q�)�K

1 + q�� �

K9 =
�(1� �K�1)PK+1;0

(1� �)2

Having obtained an expression for
PK�1

i=1
ciP (Q = i), one can di-

rectly obtain the expression forG from (1) (however, we also need
derivative of

PK�1

i=1
ciP (Q = i) with respect tox which is easy to

obtain).

IV. CONCLUSION

We provided explicit expressions for the stationary distribution of
the queue-length and the goodput for the EMD policy. An interesting
extension will be to study the asymptotic behavior of EMD policy,
either from the generating functions or from the explicit expressions
and to obtain simpler approximations valid for asymptotic regimes
(large buffer, heavy traffic etc).

APPENDIX A

We have the following set of equations from [10] (withr = 1� q).

�P0;0 = P1;0 (4)

q�P0;1 = P1;1 (5)

(�+ 1)Pi;0 = �Pi�1;0 + Pi+1;0

+q�Pi�1;1 for 1 � i � K (6)

(�+ 1)Pi;0 = r�Pi�1;0 + Pi+1;0

for K + 1 � i � N � 1 (7)

(�+ 1)PN;0r = �PN�1;0 (8)

PN;1 = �PN;0 (9)

(q�+ 1)Pi;1 = Pi+1;1 1 � i � K � 1 (10)

Pi;1 = Pi+1;1 + q�Pi;0

K � i � N � 1 (11)

Takingz-transformsof (6), (7), (8) and (10) and from (4) (5) and (9)
after some algebra we getAj(z) andBj(z) as in Proposition 1 in
terms ofP0;0; P0;1; PK;0; PK+1;0; PK;1 andPN;0. Next observe that
all the transform functionsAj(z); Bj(z), j = 0; 1, are polynomial
in z (N is finite) and hence analytic. Thus the numerator of the right
hand side of the expressions forAj(z); Bj(z) vanishes at the zeros of
the denominator of the right hand side. Thus, substituting the zeros of
the denominator in the numerator and equating it to 0 in the expres-
sions forAj(z); Bj(z) we get the following set of five independent
equations:

q�(�PK;0�+ PK+1;0) + PK;1q� = 0

PK;1 + PK+1;0 = �PK;0 (12)

P0;1q�(1 + q�)K�1 = PK;1 (13)

(q�+ 1� �)
�
P0;0(1� �)� PK;0�

�K + PK+1;0�
�K
�

+PK;1q�
�K+1 + P0;1(1 � �)q = 0 (14)

PK;0r�W
K+1
1 � PN;0r�W

N+1
1 � PK+1;0W

K
1 = 0 (15)

PK;0r�W
K+1
2 � PN;0r�W

N+1
2 � PK+1;0W

K
2 = 0 (16)

with W1;2 as defined in Proposition 1. We also have
PN

i=0
(Pi;0 +

Pi;1) = 1 which is same as

A0(1) +B0(1) +A1(1) +B1(1) = 1 (17)

Since,A0(z) andB1(z) have the form of0=0 at z = 1 we shall take,
A0(1) = limz!1A0(z) andB1(1) = limz!1B1(z). Thus, we have
the following equation from (17)

q�(1� �) =

q�(P0;0 + P0;1)� �2(1 + q +Kq�)PK;0

+(�1 + �+Kq�2)� (1� �)(1� q)�2PN;0

PK+1;0 + �(1� �+K�q)PK;1 (18)

Thus, the six unknownsP0;0; P0;1; PK;0; PK+1;0; PK;1 andPN;0 can
be obtained by solving the six equations, (12), (13), (14), (15), (16)
and (18) in six unknowns.

APPENDIX B

We have,

Q0(z) = A0(z) +B0(z)

=

�
P0;0(1� z�1)� PK;0�z

K+1 + PK+1;0z
K
�

(�+ 1 � �z � z�1)

+

�
PK;1q�z

K + P0;1(1� z�1)q�z
�

(�+ 1� �z � z�1)(q�+ 1� z�1)

+
PK;0r�z

K+1 � PN;0r�z
N+1 � PK+1;0z

K

(�+ 1 � r�z � z�1)

Grouping the terms with the same constants of the typePi;j we ex-
press the expression forQ0(z) in the following format,

Q0(z) =
�P0;0

(z � ��1)�
+ PK;0z

K+2

�
1

(z � 1)(z � ��1)

�1

(z �W1)(z �W2)

�
+
PK+1;0z

K+1

��
1

r(z �W1)(z �W2)
�

1

(z � 1)(z � ��1)

�

+
PN;0z

N+2

(z �W1)(z �W2)
�

�
PK;1z

K

(z � 1)
+ P0;1

�
z2

(1 + q�)(z � ��1)(z � (1 + q�))
(19)

Applying partial fraction approach to the last equation and after some
rearrangements (see [2] for details) we getQ0(z) equal to,

PK;0

�
1

(1� ��1)

�
zK+2 � 1

z � 1
�
zK+2 � ��(K+2)

z � ��1

�
�

1

(W1 �W2)

�
zK+2 �WK+2

1

z �W1
�
zK+2 �WK+2

2

z �W2

��
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+
PK+1;0

r�(W1 �W2)

��
zK+1 �WK+1

1

z �W1
�
zK+1 �WK+1

2

z �W2

�

�
r(W1 �W2)

(1� ��1)

�
zK+1 � 1

z � 1
�
zK+1 � ��(K+1)

z � ��1

��

+
PN;0

(W1 �W2)

�
zN+2 �WN+2

1

z �W1
�
zN+2 �WN+2

2

z �W2

�

�
PK;1q

(1 + q�)

�
zK+2 � 1

(1� ��1)(1� (1 + q�)�1)(z � 1)

�
(zK+2 � ��(K+2))

(1� ��1)(��1 � (1 + q�)�1)(z � ��1)
+

zK+2 � (1 + q�)�(K+2)

(1� (1 + q�)�1)(��1 � (1 + q�)�1)(z � (1 + q�)�1)

�

�
P0;1q

(1 + q�)(��1 � (1 + q�)�1)

�
z2 � ��2

z � ��1

�
z2 � (1 + q�)�2

z � (1 + q�)�1

�

We can now find the inverse transform ofQ0(z) and obtain the steady-
state probabilitiesPi;0 for 0 � i � K. This can be easily done as the
last equality contains terms of the formz

m
�am

z�a
. Thus, we by the

inverse z-transform of last equation, we get the expression forPi;0
as in Corollary 1. The expression forPi;1 is obtained by finding the
inverse z-transform ofQ1(z) along similar lines. We are not providing
here the details which can be found in [2].
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