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Abstract— We consider in this paper packets which arrive according Ki
to a Poisson process into a finite queue. A group of consecutive packets A A AP )

I ) R A

forms a frame (or a message) and one then considers not only the quality /TS

of service of a single packet but also that of the whole message. In order to @ @ @ @ @I& ooo @
improve required quality of service, either on the frame loss probabilities ~— <>

or on the delay, discarding mechanisms have to be used. We analyze in H H Ho7M\ M H

this paper the performance of the Early Message Discard (EMD) policy |

at the buffer, which consists of (1) rejecting an entire message if upon the A \ \ | \ A

arrival of the first packet of the message, the buffer occupancy exceeds a a g q e 4

threshold K, and (2) if a packet is lost, then all subsequent arrivals that
belong to the same message are discarded.

Index Terms— EMD policy, packet model, queue-length distribution, @ @ @ 000 @
goodput. <> ‘ < >
H H H H H H H

I. INTRODUCTION

Quite often quality of service have to be studied with respect to n[(_.)lt
only a single packet, but to a whole message or a frame. For examplg
in ATM a transport layer protocol (AAL) is responsible for grouping

packets into a frame, and a lost packet implies the corruption of they, section 11 we describe our queueing model and present our main

whole frame. Selective Message Discarding (and EMD in particulgggits on the z-transform of the queue-length distribution and then the
on which we focus here) have been proposed to achieve the twin gagl3)icit expressions for the steady-state probabilities. In Section 11l

of increased goodput and reduced network congestion by discardiid present an approach for obtaining the explicit expression for the
the packets which do not belong to (or have potentials of not belonglggodput ratio using algebraic techniques.

to) good messages (a message is good if it is entirely received at the
destination). Rejecting entire messages could also serve to guarantee
an acceptable average delay bound for accepted messages. The goal . . i
of this paper is to presepkplicit expressionfor the queue-length dis- 1 1€ Packet model is the same as the one proposed in [10]. We first
tribution and the goodput (defined as in [10] as the ratio between tofigscribe the model in _brlef. _In terms of packe_t the network element is
packets comprising good messages exiting the network node and@{é/M/1/N queue with arrival raté and service ratg and the load

total arriving packets at the input). Our starting point is the Markoviafy = -+ A message length (in terms of packets) is considered to be
model proposed in [10]: a Poisson process of packet arrivals, geonfifometrically distributed with parametgr Under the EMD policy, a
rically distributed frame size, and exponentially distributed serviddreshold level (K'isaninteger) < i < N)isfixed. Ifamessage
times of packets. In [10], recursive procedures have been propoSEY!S t0 arrive when the buffer occupancy is at or ablvpackets,

for the computation of the performance measures, but explicit expr&2€n all the packets of that message are discarded. Also, if a packet
sions have not been obtained. Our analytical results on closed fdPf|onding to an accepted message is discarded due to buffer overflow
expressions for performance metrics (in particular the queue-lend@en @l the subsequent packets belonging to the same message are also
distribution and the goodput) may be quite useful in dimensioning tiScarded. To model the policy, two modes for working of the network
buffer size that should be used for a given goodput, in the study of tgMent are defined: trmal modein which packets are admitted,
sensitivity of the goodput to different parameters for e.g., the mess&g¥! thediscarding modein which arriving packets are discarded. The
length, the buffer size, the load and most importantly in finding _ate transition diagram for EMI? policy under this model is shown in
estimate of the optimal discarding threshold etc. Figure (1). LetP;;(0 < < N,j = 0,1) be the steady-state prob-

In a previous work [5], we analyzed the Partial Message Discaftfility Of having: packets in the system and the system is in mpde
(PMD) policy in which only if some packet of a message is lost, su§l = 0 for normal,j = 1 for discarding). We now define the trans-
sequent packets are rejected (but entire messages are not discaf@gg, functions4; (=) = >izo =P, Bi(z) = Diimwr 7 P
in contrast with EMD). As the packet level analysis turns to be quif@“d i(2) = A4;(2) + Bj(=) for j = 0, 1.
complex and involved, we studied in [3], [4], [5], [6] some fluid ap-
proximations. Some other references on numerical studies of PMp PGF and distribution of the number of packets in the queue
and EMD policies are [8], [7]. Proposition 1: The probability generating functionsd;(z) and

Bj(z) for j = 0, 1 are given by,
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. 1. Transition structure under the EMD policy

II. PACKET MODEL

{Parijat.Dube,Eitan.Altmagr@sophia.inria.fr. Ao(2) = [(qp +1— 2" (Poo(l—2z"")
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+Po,1(1— z_l)qu] D,

+ (1+qp)” 79 )
(L=04ag) ' =A+qgp)™"))’

Ar(x) = P0,1(1—z_1)+PK,1(qp+1)zK ‘
' (gp+1—271) Pii = Pra((l4+qp) % —1)
K+1 _ N+1 _ K SN—it1 — ON—i
Bo (Z) _ PK,o’r’pZ P]i,o’r’pz_ — PKJrl,()Z +PN,0 (P N +2‘ N )
(p+1—rpz—z1) s ]
Bi(2) = [PK,1(271 +rpz—p—1) — Pxt1,09p +Px 0 (p 4 2ol ;p KﬂJrz)
+Pyopz" T ((p+1-2"")(1—q) —Prito (1 + Sk—i — TP5K+171')
—rpz) +Propg(p+1—2"")] 2 Ds ’ 6
where, Andfor K +1 <i< N,
— P 6 2 —1 - —i
D, = ((p+1—pz—z_1)(qp+1—z_1)) ! Pio = 7]\{0;{“ , Pi1= Pr.olebn 5+1 Sw—:)
Dy = (p+1—rpz—z_1)(1—z_1)71 whereé; = 6.
ap(1— p) KN Proof: Refer to Appendix B.
Pko = — D Pra=p <1 - 67_> Pko Having obtained the explicit expressions for the stationary distribution
KN of the queue-length we next proceed to obtain the expression for the
Poi = T 1 = < B 57;fKI;N1> Pro goodput ratio (as defined in Section I).
7 ?f{ [I. GOODPUT RATIO
Py = Prop ™ (1 — ;’p&(w) [(1 — -9 Let W be the random variable that represents the length (number
L=p K=N-1 (ap+1=p) of packets) of an arriving message. Létbe the random variable
5 ¥ representing the success of a messages 1 for a good message,
Pt q(1 4+ gp)%—1 and) = 0 for a message which has one or more dropped packets.
KeN—1 Theng can be expressed as (see [10])
p (W) (Wa — Whi)rpPxko
N,o = N1 0o N
—N— n—1 _ —_ — —_—
Y anq(l—q) ZP(V—HW—n,Q—z)P(Q—z)
PK+1,0 = mPK,O n=1 1=
D - p K L rpSK N (1—p)(1—2q) Denote the condit_ional probabiliti_@ﬂ,i = PV = 1|W =n,Q =
= |\, - Srn_1 (ap+1—p) 7). In [10], recursions for evaluating these probabilities and h&hce
were given. We will present here an explicit expressiongoiTo do
2 pX(1—p) n 1 this we will use the multidimensional generating function for prob-
P q(1 +gp)* 1 q(1+gp)* 1 abilities S,,; which was obtained in a different context in [1] and
in [9]. We define the two-dimensional generating functionSaf;
<1_7’5K7—N>> —(1=p)(1—q)rp® for1 < n < ocand0 < i < N, asS(z,y), i.e., S(z,y) =
OK-N-1 > o Sn,ix"” Ly, We will next reproduce the Proposition we
(Wi W)X N1 (W — W) developed |n [5] for the case 6fartial Message Discard(PMDpol-
5 icy. APMD is an EMD withK > N. ~
K=N-1 Proposition 2: The probability generating functiosi(x, y) can be
2 . roK-N expressed aS(z,y) = ZfV:o ci(z)y* where for0 < i < N -1,
+p (1 —p+ Kpq) (1_ 5K—N—1> ci(x) is equal to
: O — - -G —@
(=1 + p+ Kqp*)2L2E=N 14+ K (Al — Asyy T — Agy) +1)>
OK—N-1 4 .
—p*(1+q+ Kap) +Ky (Biy? "+ Bayy )
2 40\ andcy (z) = 0 with,
with 3 » (p+1)i((p+1) irp)? ands, = WY — WY for anyy. (=)

Proof: Refer to Appendlx A.

1+px/(1+p) —4pz
2

Corollary 1: The transition probabilities are given by, 12 =
For1 <:< K, Ks = —ap
P — p 1—p~(K+1=9 _ bk41-i K. = zp(yl —y2)
7,0 K,0 1— 1 5 4= N+i, _ N\ _  N+l,
P vp (i —p) =y (Y2 —p)
Priio ((bx_i 1—p ED Pno Ar = 1/(1—y1)(1 —y2))
+ - — + ONf1-i
P ré 1—p 6 Ax = /(1 =y)(y1 — y2))
Pk.aq 1 — p~ (E+1-9) As = /(1 —y2)(y2 —y1))
(I+ap) \ (L= p=1)(p~" = (1 +qp)7") Bi==B: = (n—w)"
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For the EMD policy, the conditional probabiliti€s, ; are same as i Px.1qp Py op~ B+
that for the PMD policy for < K. If the head of the message arrives B Z AT DA +qp—p)  1-pt
when the system occupancy is at or above the threshold the message as ~ *=!

awholg_is rejected: Thus fo_r the EMD policy \%ggefine the transition K-l a PK,lp(l — )1 +qp) K K-1 L
probability generating function a8(z,y) = Y. ci(z)y’, where ci(1+g Ttap—p - Z ¢l
ci(x) is given by Proposition (2). And the expression fBoodput =1 =1
ratio can be expressed (like in Proposition (3) in [5], within the orpyf(+2 — Proyd (yi(1+p) —1) _ Prci1,0u1
summation replaced bi — 1) as, ) 6
= P
—z K, Orpyl
G = ¢ Z( zeilx > P(Q=1) <__1+y”p>] Z [ 5
z=(1—gq) i=1
i _Proys (12(L+p) — 1) 3
= #lo-o| = (S a@re=1 ’ ?
= (] q dm T - PK+1 OyK 1
i=0 2=(1-q) ——2 [ — —1+yerp
6 rp
K—
Z (1-q)P(Q=1) (1) Observe that the last expression contains terms of the form
izo Efi_ll cia’ (with e = 1,974, 95, p, (1 + gp)). We now obtain

these terms from the expression &ifrom Proposition 2. For any,
where stationary probabilitieB(Q = i) = P;,0 + P;,1 are known E'Ii_ll cia' is equal to
from Corollary 1. =

_ K-1
(K = 1)(1 + KzA) 2 — )

A. Exact expression f@ o1

In this section we aim to derive an exact expressiondofor KB  KaAouN - 1) v1 (1 - (H) )
EMD policy. From (1) we find that we need an expression for WBiy’ = Ks Aoy 1-=

K-1 . K-1 .
Ei:o ci(z)P(Q = 1). Observe thaEi:0 ci(z)P(Q = 1) = ., LK1
co(@)P(Q = 0) + X ei(x)P(Q = 7). We haveP(Q = 0) = KuBae — Kod Nl—( (5%) )
Po,o + Po,1 with Py o andPo,l g|ven by Corollary 1. We next find a +(KaB2ys — KaAsys' ') 1_ =

general expression faP(Q = ) for: = 1to K — 1. From Corol-

lary 1, by addingP;.o and P.., for i = 1 to K — 1 we can express Thus after some rearrangements we can express the expression for

K-1 . 3
P(Q = i) as, Yo, ciP(Q=i)from(3)as
) (I( — 1)(1 + [(3141) [I(5 — Kg— K9 — F}
p—p HHTD oy Fo] + (KuBiyY — Kadoy™ 1) [Fy — F
Pxo 1_7/)_1—?51(—14-2 + ) 4+ (KaBiy1y — KsAsy, ) [Fz — Fn
—Fy — F5 + Fs] + (K4Bzy§] — KsAsyév_l)
+Pnyo [6N+1_i(1;p)_6N_i] [F7 — F12 — Fg — Fo + Fio)
(K- where,
i |: ks /jl p P(l_PK_l) 1 1-(1 K1
p—1 (I=pH)(1+qgp—0p) Ks = ?A}, Ko = ranioCdan) ) pe,
—(K—1)
+%p(l - q)] Fy = Er(y1)E2(y1), Iy = E1(y2) E2(y2)
w=r Fy=Ei(y1/p)K7,  Fa=FEi(y1/(1+qp))Ks
Or—i [ 1
+Pr 41,0 { I; (E - 1> + %6K+1—i Fs = Ev(yi)Ex2(y1), Fs = E1(y1y2) E2(y2)
. Fr=Ei(y2/p) Kz, Fs = Ei(y2/(1+qp))Ks
+2 If ] 2 Fy = E1(y1y2) E2(y1), Fio = E1(y3) Ea(y2)
g Fu = Ei(py1), Fiz = E1(py2)
We will now find an expression foy ;- " ¢; P(Q = i) %. From (2) with, £, (y) = M) andE»(y) is equal to
and Proposition 2 we write after some algebra (see [2] for details), Y
S E eP(Q=1i)as Prorpy™™®  Pyoy™(y(1+p) —1)
6 6
K-1 K-1 K
Z o Prop— Prg — Pryro | p* Pry1,0 Z o p—i +PK+1’0y <i —1+ yrp>
—~ L—p~t l—p & i J e
31t should be noted thaﬂl, Ag, A3, B1, B2, K3 andFi,z' =1,2,...,12.
2\We shall not explicitly show: in parentheses for functios are all functions ofc.
plicitly p
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and, +Pragp "t + Poa(1—p)g=0 (14)

K; = = pi};,glp_:;p ) PKl,Of p(iJrD PK,OTPW{jJrl — Py orpWi T = Pry1,oWi =0 (15)
PreorpWoE T — P orpWo t = Preyp1 oWs' =0 (16)
K, = Prar(l—g(+q0)" . L " N
T+qp—p with W > as defined in Proposition 1. We also have  (Pio +
o - o1 — pK_l)PK+1,o P;1) = 1 which is same as
(1-p)? Ao(1) + Bo(1) + Ar(1) + Ba(1) = 1 17)

Having obtained an expression @i—ll ¢iP(Q = i), one can di- Since,Ao(.z) andBi(z) have the form. of/0 atz = 1 we shall take,
rectly obtain the expression fgt from (1) (however, we also need Ao(1) = lim.—1 Ao(z) andBi(1) = lim.—, Bi(z). Thus, we have
derivative of )17 ¢; P(Q = i) with respect tor which is easy to the following equation from (17)

btain).
obtain) ap(1—p) =

ap(Poo + Po) — p°(1 + ¢ + Kqp) Pr.o

sy 1 _ 2
We provided explicit expressions for the stationary distribution of =1+ o+ Kap?) 7(1 P)(1=q)p"Pro
the queue-length and the goodput for the EMD policy. An interesting Pri10+p(1 — p+ Kpq) P (18)

extension will be to study the asymptotic behavior of EMD policy,l.hus the six UNKNOWN®s.o. Po 1. Pxco. P P 1 andPy o can
’ 0,0, 40,1, ,0, +1,0, ,1 ,0

either from t_he generatlng fun_ctlons or fro_m the explicit EXPressions, . ied by solving the six equations, (12), (13), (14), (15), (16)
and to obtain simpler approximations valid for asymptotic regimes

(large buffer, heavy traffic etc). and (18) in six unknowns.

IV. CONCLUSION

APPENDIXB
APPENDIXA We have,
We have the following set of equations from [10] (witk= 1 — q).
Qo(z) = Ao(2)+ Bo(z)
pPoo = Pip 4) (Po,o(l —h - PK,OPZK+1 + PK+1,OZK)
qpPoi = P (5 = (p+1—pz—271)
(p+DPio = pPicro+ Pitro (PK,1C]PZK + Po,i(1 - Z_I)CIPZ)
+qpPi—1 for1 <i< K 6) (prl-pz—2O(gp+1—21)
(p+1)Po = rpPi—10+ Piyip0 Pr.orpzK+1 — Py orpzV ! — Prig02%
for K+1<i<N-1 ) (p+1—rpz—2z1)
(p+1)Pyor = pPrn-10 ®) Grouping the terms with the same constants of the #pgwe ex-
Pnyi = pPnpo (9)  press the expression f@o(z) in the following format,
(qp —+ l)Pi,1 = Pi+1,1 1<:1<K-1 (10)
P1 = Piyi1+qpPio Qo(z) = Lo’ol + Proz™t? (%
’ P 1 (z—p7")p (z=1(z—p7")
( —
<i< (11) 1 > Prc 1025+
Taking z-transformsof (6), (7), (8) and (10) and from (4) (5) and (9) (z = Wh)(z = W2) P
after some algebra we get;(z) and B;(z) as in Proposition 1 in 1 1
terms OfP0,0, Po,l, IDK,O7 131(4-1,07 PK,1 andPN,o. Next observe that (’I’(Z — W1)(Z — Wz) - (Z — 1)(2 — p1)>
all the transform functions\;(z), B;(z), 7 = 0, 1, are polynomial N «
in z (V is finite) and hence analytic. Thus the numerator of the right Pyyoz"" _(Praz Py
hand side of the expressions fag (z), B, (z) vanishes at the zeros of (z =Whi)(z — W) (z—1) ’
the denominator of the right hand side. Thus, substituting the zeros of 52

the denominator in the numerator and equating it to 0 in the expres (L+ap)(z—p ")z — (1 +4qp))

sions forA;(z), B;(z) we get the following set of five independent

equations: Applying partial fraction approach to the last equation and after some
rearrangements (see [2] for details) we @a{(z) equal to,

go(—Pk,0p+ Px+1,0) + Pxkigp = 0

K+2 K+2 _  —(K+2)
Pra+ Pxyio0 = pPro (12) Pro {(1 ! -7 <Z T L_z p_1 > -
K-1  _ P T S
Po,1gp(1+ gqp) = Pka (13) 1 LK+2 _ K42 JE+2 _ K42
1 _ 2
(@p+1—p) (Poo(1—p) = Prop ™ + Prcs1,00” *) (W1 —Ws) ( z=W z =W )}
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T‘p(W1 — Wz) z — W1 B z — W2

(Wi — W) JEHL 1 K+ p—(K+1)
T (e )]
Pro LN+ _ W1N+2 LN+2 W21V+2
(W1 — Wa) ( =W =W >
Pr1q K42
(1 +ap) <(1 —p (1= (1+gp)")(z—1)
_ (5+2 —p‘(“j)l) N
L=p= (' =1 +aqp)” )(z—p7")
2 (14 gp) HY >
(1= +gp) )p™ = (1+ap) )z—(1+gp)7")
~ Poq <z2 2
(I4+gp)(p ' =(L+gp) )y \z—p!
2= (1+qp)2>
z—(144qp) "

Pgi10 { (zK“ — Wi GEH W2K+1>

z—1 z—pt

+

We can now find the inverse transform@$ (=) and obtain the steady-
state probabilitied; o for 0 < 7 < K. This can be easily done as the
last equality contains terms of the forf=2". Thus, we by the
inverse z-transform of last equation, we get the expressiorPfgr
as in Corollary 1. The expression fét ; is obtained by finding the
inverse z-transform af (z) along similar lines. We are not providing
here the details which can be found in [2].
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