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Abstract For over a decade, the Nash Bargaining
Solution (NBS) concept from cooperative game the-
ory has been used in networks as a concept that al-
lows sharing resources fairly. Due to its many appeal-
ing properties, it has recently been used for assigning
bandwidth in a general topology network between ap-
plications that have linear utilities. In this paper, we
use this concept for the bandwidth allocation between
applications with general concave utilities and focus
on the case of quadratic utility.
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1 Introduction

Fair bandwidth assignment has been one of the im-
portant challenging areas of research and develop-
ment in networks supporting elastic traffic. Indeed,
Max-min fairness has been adopted by the ATM fo-
rum for the Available Bit Rate (ABR) service of ATM
[1]. Although the max-min fairness has some opti-
mality properties in the sense of Pareto, it has been
argued that it favors too much long connections and
does not make efficient use of available bandwidth.
In contrast, the concept of proportional fairness (of
the throughput assignment) has been proposed by
Kelly [10, 6], and gives rise to a more efficient solu-
tion in terms of network resources by providing more
resources to shorter connections. An assignment is
proportionally fair if any change in the distribution
of the assigned rates would result in the sum of the
proportional changes to be non-positive.

Although the object that is shared fairly seems to
be a very specific one, the throughput, it is shown
in [10, 6] that in fact, the starting point for obtain-
ing (weighted) proportional fairness of the through-
put can be a general (concave) utility function per
connection; it is then shown that a global minimiza-
tion of the (weighted) sum of these utilities leads to a
weighted proportional fair assignment of the through-
put. As opposed to this approach, we wish to use a
fairness concept which is defined directly in terms
of the utilities of users rather than in terms of the

throughputs they are assigned. Yet, as in weighted
proportional fairness, it would be desirable to obtain
this concept as the solution of a utility maximization
problem, since it makes it possible to use recent al-
gorithms for utility maximization in networks, along
with decentralized implementations [9, 8, 11].

The Nash Bargaining Solution (NBS) is a natural
framework that allows us to define and design fair
assignment of bandwidth between applications with
different concave utilities and has already been used
in networking problems [13, 7]. It is characterized by
a set of axioms that are appealing in defining fair-
ness. As already recognized in [6] and later in [7],
proportional fairness agrees with NBS when the ob-
ject that is shared fairly is the throughput (and the
minimum required rate is zero). We use NBS to study
the fairness of an assignment where connection ¢ has
a concave utility over an interval [MR;, PR;]. It thus
has a minimum rate requirement MR; and does not
need more than PR;. Utility functions with similar
features have been identified in [15] for representing
some real time applications such as voice and video,
and for elastic traffic in the case MR; = 0.

We study in this paper the way the concavity of the
utilities affects the bandwidth assignment according
to NBS, as well as according to a generalized ver-
sion of the proportional fairness (in which the utilities
that correspond to different assignments, instead of
the throughputs, are fairly allocated). Both notions
are introduced in Sec. 2. We then propose in Sec.
3 a quadratic approximation for the utility of each
connection, which allows us to parameterize the de-
gree of concavity of the utility function using a single
parameter. In Section 4 we provide an example of
allocation of bandwidth in a large network, and we
conclude in Section 5 with some final comments.

2 General problem

2.1 Utility function

The fairness problem which we consider is how to
allocate bandwidth to connections beyond their min-
imum required bandwidth (MR). (We assume that



if the minimum required bandwidth is not available
then the connection is not accepted by the network.)
The fairness issue is only interesting when the util-
ity of an application strictly increases when allocat-
ing more bandwidth than its MR. Connections with
on/off utility functions (which characterize some ap-
plications with hard real-time requirements, [15]) are
thus ignored in allocating extra bandwidth once they
receive their MR.

Two kinds of applications are considered in [15] for
which the fair allocation is relevant:
Elastic applications: Examples of such applications
are file transfer or email. The typical utility function
is concave increasing without a required minimum
rate, see Fig. 1.
“Delay adaptive” or “rate adaptive” applications:
These are typically real time applications such as
voice or video over IP. The utility functions that
we use for these applications (Fig. 1) are slightly
different than those in [15]. In [15], the utility is
always strictly positive for non null bandwidth and
tends to zero when the bandwidth does. We consider
in contrast the utility being equal to zero below
a certain value, as in [7]. Indeed, in many voice
applications, one can select the transmission rate by
choosing an appropriate compression mechanism and
existing compression software have an upper bound
on the compression, which implies a lower bound on
the transmission rate for which a communication can
be initiated. If there is no sufficient bandwidth, the
connection is not initiated. This kind of behavior
generates utility functions that are zero for band-
width below MR and which are not differentiable at
the point (MR, 0).
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Figure 1: Utility function of elastic (left) and of rate-
adaptive or delay-adaptive (right) applications

2.2 Fair allocations

Several concepts of fairness are known in the litera-
ture: the max-min fairness [3], (as well as the more
general concept of weighted max-min fairness) which
has been adopted by the ATM-forum [1] for ABR
traffic, the proportional fairness [6], the harmonic
mean fairness [12], the general fairness criterion that

bridges all the above concepts [14] and the Nash Bar-
gaining Solution (NBS).

Nash Bargaining Solution (NBS) Our starting point
is the NBP (Nash Bargaining Point) concept [7] for
fair allocation, which is frequently used in coopera-
tive game theory. It deals directly with fair allocation
of achievable utilities of players (and does not require
to relate them to the original objects, throughputs in
our case, that generate these utilities). Let there be n
users (or connections). Let IR™ represent the vectors
of utilities of the form (f1, ..., fn). Let u® = (u9):c1...n
be a minimum required performance of users.! If X is
the set of all achievable vectors of bandwidths, then
U= {f(z)|lr € X}. Let G = {(U,u°)|U c R"}:
it denotes the class of sets of performance measures
that satisfy the minimum performance bound u° (it
contains achievable performances obtained for differ-
ent utility functions f; in fact, in order to define NBP
one has to introduce its performance w.r.t. other util-
ities, as is seen from property 3 and 5 in the definition
below).

Definition 2.1. A mapping S G — IR" is

said to be a NBS (Nash Bargaining Solution) if

1.5(U,u°%) € U° := {u € Ulu > u°}, i.e. it guaran-
tees the minimum required performances.

2. It is Pareto optimal. 2

3. It is linearly invariant, i.e. the bargaining point is
unchanged if the performance objectives are affi-
nely scaled. More precisely, if  : IR™ — IR™ is a
linear map such that its it component is given by
oi(u) = a;u; + b;, then
S(o(U), (u”)) = ¢(S(U,u")).

4.5 is symmetric i.e. does not depend on the speci-
fic labels, i.e. users with the same minimum per-
formance measures and the same utilities will
have the same performances.

5.5 is not affected by enlarging the domain if a so-
lution to the problem with the larger domain can
be found on the restricted one. More precisely, if
VcU, (V,u') € G, and S(U,u’) € V then
S(U,u’) = S(V,u").

The definition of NBP is thus given through axioms
that game theorists find natural to require in seek-
ing for fair assignment. Having defined this concept
through the achievable utilities, we define the NBS
(Nash Bargaining Solution) in terms of the corre-
sponding strategies (i.e. the allocation of bandwidth

1Tn our context, u? = fi(MR;) where f; is concave increas-
ing.

2An allocation f is said to be Pareto optimal if it is impos-
sible to strictly increase the allocation of a connection without
strictly decreasing another one. The Pareto axiom assures that
no bandwidth is ”wasted”.



that results in the NBP), and then present its char-
acterization through a utility optimization approach.

Definition 2.2. The point u* := S(U,u°) is called
the Nash Bargaining Point and f~1(u*) is called the
set of Nash Bargaining Solutions.

Define X := {z € X|f(z) > u°}.

Theorem 2.1. [7, Thm. 2.1, Thm 2.2]. Let the
utility functions f; be concave, upper-bounded, de-
fined on X which is a conver and compact subset
of R*. Let J be the sets of achievable indices of
users able to achieve a performance strictly supe-
rior to their initial performance, i.e. ={J C
{1,...,n},32 € Xo,Vj € J, fj(x) > ul}. Assume
that for all J € J, {f;}jes are injective. Then there
exists a unique NBP as well as a unique NBS x that
verifies f;(x) > ug,j € J, and is the unique solution
of the problem Pj:

max H(f](w) —

Jj€J

.’L'GX().

(1)

Equivalently, it is the unique solution of:

Py) max > In(f;()
jeJ
Before examining some qualitative implications of
the definition, we introduce the very related notion
of generalized proportional fairness.
Generalized proportional fairness (GPF). An assign-
ment z € X is said to be (generalized) proportionally
fair with respect to a utility f, if for any other assign-
ment z* € X, the aggregate of proportional changes
in the utilities is zero or negative

Zfz e fz xl)SO.

Z

- u(;-), z € Xo.

(2)

Thus, an allocation is GPF if any change in the distri-
bution of the rates would result in the sum of the pro-
portional changes of the utilities to be non-positive.
This concept has been defined and applied without
considering any utility, i.e. by restricting the object
that is assigned fairly to the rates [10, 6] (see also
[4,12,14]). This amounts in taking in (2) fi(z;) = z;.
Yet, there is no conceptual difference in defining it as
we do, i.e. with respect to utilities. In particular, by
simply replacing z; by fi(z;), we have the following
property (established for the special case f;(x;) = x;)
of the solution 2%FF:

n

2FF maximizes E In f;(x;) over X or
i=1
n

2PF maximizes H fi(z;) over X.
=1

3)

The Internet is an example where proportional fair-
ness is used. Indeed, congestion control mechanisms
based on linear increase and multiplicative decrease
(such as TCP) achieve proportional fairness upper
appropriate conditions [6]. The (weighted) propor-
tional fairness is also advocated for future develop-
ments of TCP [5].

Comparing with Thm. 2.1, we conclude that GPF
coincides with the NBS of [7] when the MR;’s equal
zero, and to the original proportional fairness when
further restricting to the identity utilities.

We finally note that due to (3) it follows that GPF

is invariant under a scale change, i.e. if we multiply
the utility f; of a connection ¢ by a positive constant
¢;, the GPF assignment will not change. Yet in gen-
eral, it will not remain the same under translation by
a constant as in NBS.
General fairness criterion. We present another gen-
eral fairness criterion [14] but apply it to fair allo-
cation of utilities rather than of the rate. Given a
positive constant a # 1, consider the problem

Zfi(xi)l_

1—041:

“Sa>0a#l. (4

max
T

subject to the problem’s constraints. This defines
a unique allocation which is called the a-bandwidth
allocation. This allocation corresponds to the glob-
ally optimal allocation as a — 0, to the (generalized)
proportional fairness when a — 1, to the general-
ized harmonic mean fairness when o — 2, and to the
generalized maz-min allocation when oo — oo [14].

2.3 Statement of the general problem

We focus in the paper on the computation of the
NBS and briefly compare it to the GPF allocation.
Using Thm.2.1, the NBS is the unique solution z =

x1,%2, ..., Ly (with n the number of connections) of:
(fz(xz) fz(MRz)) where X, :=
IEXO

(5)
with L the number of links, A the routing matrix
(the element A; ; being equal to 1 if connection 4 goes
through link /, 0 otherwise), and C the capacity vec-
tor (C; is the capacity of link 1). (Az); < (C), are
the standard capacity constraints. We assume that
the network has sufficient bandwidth to satisfy all the
users’ minimum requirements i.e. VI € 1..L we have
Zilil Al’iMRi < (.



3 Quadratic utility functions

3.1 Definition of the utility function

Figure 2: Quadratic utility function.

The utility function of both “elastic traffic” and
“delay adaptive” applications have a minimum value
MR; below which it equals zero (in the former case,
MR; = 0). As the NBS is shift invariant, we can
assume without loss of generality that f;(MR;) = 0.
Beyond MR; the function is concave and increasing
with the bandwidth. We can approximate such a util-
ity function with a parabola with several parameters
that may depend on the applications (see Fig.2):

e PR;: maximum throughput needed by the appli-
cation

e T;: tangent of the utility function at the point
(mi7 0)

o fPR;: utility value at point PR;

Note that the utility function is defined only until
the point PR;, so we may ignore the whole right part
of the parabola (and in particular, the part in which
the function decreases).

As the utility function is a parabola, its general
equation has the form: fi(z;) = ¢; — as(w; — b;)2.
Obviously, f; can equally be defined by as, b;, ¢; or
through the equations f;(MR;) =0, f;(PR;) = fPR;
and f/(MR;) = T;. We should note that, since PR; is
in the increasing part of the function,

1
ETi(PRi — MR;) < fPR; < T;(PR; — MR;).
We thus define the concavity of the utility, 3; through
fPR; =T, 3; - (PR; — MR;)

We have: 1/2 < 8; < 1 and the smaller ; is, the
more concave is the utility. The limit 5; = 1 is the
linear case (studied in [7]).

Finally:
1-5; PR; — (26; — 1) MR;
i =Ty, b =
“ PR; — MR; 201 - 3
. _ TiPR.— MR,
and ¢ = g

We next present several examples where we use our
parabolic utility functions.

3.2 The linear network example

We consider the problem in Fig. 3 in which the
squares represent the links and the lines represent
the routes. We have N = L + 1 connections sharing
L links. Connection 0 uses all the links, whereas each
of the other L connections only goes through a sin-
gle link (connection 7 uses link 7). All proofs of the
following theorems and propositions can be found in

[16].
i bl L
TTT T

Figure 3: A linear network.

To obtain the NBS, we need to maximize

II fie).

i€{0,...,L}

(6)

But, as NBS is Pareto optimal, we have the following
constraints for ¢ = 1,...,L: 2o + z; = C; as well as
MRi S ZT; S PR, This 1mphes bi — :—Z S xT; S bi.

We make two significant assumptions. First, that
each link has the same capacity cap. Therefore, it
is straightforward to notice that each connection ¢
with 1 < ¢ < L will get the same bandwidth at the
equilibrium point. Secondly, we suppose that each
of these connections has the same utility function:
Vi € {2,.,.,L},ai =a1,b; =b1,¢c; =¢.

Therefore the term to maximize in equation (6)
becomes: fo(x)(fi(cap — x))* if we denote by x the
throughput of the connection zg.

Solution of the linear problem. By differentiating
(6) we obtain:

ao(x — bo)(e1 — ar(cap — x — by)?) = X
Lay(cap — x — by)(co — ag(z — bo)?)
which is a polynomial of the third degree. This can
be explicitly solved.

Possible limits. We are interested in the possible
limits x;;, of the bandwidth assigned to connection
xo as L grows to infinity.

Lemma 3.1. Assume MRy + PRy > cap. As L
grows to infinity, the only possible limit xi;m of the

bandwidth assigned to connection xzq is mﬁ% = by —

\/Co/ao = MR().

It is interesting to note that the limit x;;,, does not
depend on any parameter of the i**(; > 1) connec-
tions, or any parameter related to the concavity of



the utility function of the connection 0. We show in
Fig. 4 how the system converges to the solution as L
grows.

Influence of the concavity on the equilibrium value
MR=10, PR=90, cap=100, fPR=200
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Figure 4: NBS for the linear network.

Remark 3.1. The condition MRy + PRy, > cap in
Lemma 3.1 (and in the next propositions) is not re-
strictive. If it does not hold then we can replace (for
any L) MRy by MRy := cap — PRy without affecting
the NBS, and then apply Lemma 3.1 for MRy. In-
deed, let x* be NBS for the original problem. Then
x* > MRy due to the Pareto optimality of the NBS
(2nd element in Definition 2.1). Then it is the NBS
for the new problem due to the 5th element in Defi-
nition 2.1.

Asymptotic Analysis. We further refine the analysis
of the limit as L becomes large, show that it exists
and obtain the rate at which x converges to x;m,.

Proposition 3.1. Suppose that MRy + PRy > cap,
then x verifies:

x=MRy+ Z+o(1/L) (8)
with: Z = cap — MRO — MR1 1— PRl — ]MRl ’
2L denom

denom = 2(1—f31)(cap— MRy) — PRy + MR:1(203; — 1)

where 0(1/L) is a function that, when divided by L,
tends to zero as L grows to infinity.

We can notice that:
e the convergence of z is in 1/L,

e the result does not depend on Ty nor Ty (scale
invariant),

e in the asymptote, none of the parameters of the
0t* connection but MR, appears, so that the re-
sults are independent of the shape of the utility
function of zg,

e the larger (3, is, the smaller z gets.

In (8), we can easily check the asymptotes for special

cases:
cap — MRy — MR,

e when 3; — 1 we obtain: Z =

L
(linear case).
— MRy — MR
e when 31 — 1/2 we get: Z = cap 22 1

B PR, — MR,
cap— MRy — PR, |’

4 Numerical results

In this section we present a network example for
which we obtain the fair allocation. More details
on these examples and on the program used to ob-
tain them can be found in [16]. All links are as-
sumed to have equal capacity (although the program
allows to handle different capacities without increas-
ing the complexity). We present two figures. The
first with the set of links and nodes and the second
with the set of connections and amount of assigned
bandwidth. All connections had the same quadratic
utility with the parameters MR = 10 and PR = 80,
T = 3, fPR = 200. We took cap = 100 for all links.
Bandwidth parameters and assignments are given in
percent of full link capacity.

We considered the COST experimental network [2],
depicted in Fig. 5. It contains 11 nodes, representing
the main European capitals. We have considered the
30 connections with the highest forecast demand (We
did not include the connections whose forecast de-
mand, based on experiments dating from 1993, were
inferior to 2.5 Gb/s).

Connection Bandwith Connection Bandwith

71.58
80.00
80.00
22.04
28.42
63.00
27.11
50.00
35.79
35.79
19.46
28.42
21.87
23.73
63.00

3393
80.00
76.27
27.11
49.54
43.66
80.00
33.19
47.34
55.06
25.48

Zurich-Milano
Copenhaguen-Berlin
Copenhaguen—Prague
Berlin-Amsterdam-Bruxelles
Paris—Bruxelles—Amsterdam
Milano-Viena
Berlin-Amsterdam-Luxembourg
Zurich-Prague-Berlin
Zurich-Luxembourg—Amsterdam
Zurich-Luxembourg-Bruxelles
Viena—Zurich—Paris—London

London—Paris
London-Bruxelles
London-Amsterdam
Amsterdam-Berlin
Amsterdam—Bruxelles
Bruxelles—Paris
Paris—Berlin
Paris-Zurich
Paris—Milano
Zurich-Viena
Paris-Zurich-Viena
London-Paris-Milano
Milano-Viena-Berlin
Milano-Paris—Bruxelles
Berlin-Prague

24.74
37.00
27.93
50.00

Milano-Zurich-Luxembourg-Amsterdam
London~-Paris-Zurich
London-Amsterdam—Berlin
Berlin-Viena

Figure 7: Bandwidth allocation for COST network.

The experiments allow to identify several in-
dependent systems, such as isolated connections
(London-Brussels, Paris-Berlin, Berlin-Copenhaguen
and Copenhagen-Prague) that are all served at
their maximum rate of 80%, connections sharing
only one link (Zurich-Prague), served both at 50%,
two connections sharing two links (Milano- Viena-
Berlin) served at 63%, 63% and 37% respectively.
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For the other connections, we notice several un-
saturated links (Luxembourg-Brussels, Luxembourg-
Amsterdam). One link receives at most four connec-
tions, and the proportional fairness never assigns less
than 19.46% of the bandwidth to an individual con-
nection, which is remarquably high, enlightening the
interest of our approach.

5 Conclusion

We have applied in this paper the NBS approach for
bandwidth allocation, as well as the GPF concept
that is sensitive to the utilities of connections. We
have studied some of the characteristics of these con-
cepts, and showed that they are indeed more suit-
able for applications that have concave utility. We
proposed a simple parameterization of the concav-
ity of the utility function using quadratic functions.
Computational approaches are proposed in [16]: a
Lagrangian approach that allows us to handle large
networks and an alternative centralized computation
approach based on Semi-Definite-programming.
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