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Abstract. We propose two modeling approaches of AIMD congestion
control mechanisms. The first separates the increase and decrease parts
where as the second describes the rate evolution as a continuous process
governed by a differential equation. We relate the approaches and show
that the second one is an averaged approximation of the first one. The
objective of this paper is twofold: model a class of (stable) generalized
TCP protocols as a nonlinear extension of AIMD mechanisms, and in
particular to analyze stability of Floyd’s HighSpeed TCP. The class of
models studied will be useful for control design and tuning.

1 Introduction

TCP regulates its congestion window by an additive increase/multiplicative de-
crease (AIMD) mechanism usually represented by parameters a and b, respec-
tively, see [1, 2]. Many authors indicate that TCP performance is poor when
fast long-distance networks are considered, cf. [3, 4]. Floyd et al. [4] proposed
HighSpeed TCP, a modification of TCP basic algorithm, designed to fit some
requirements of high speed networks. They propose increase/decrease parame-
ters a(w) and b(w) which depend on window size w.

We study two modeling approaches for these AIMD mechanisms. The “dis-
continuous model” separates the increase and decrease parts; it uses smooth
increase of the rate with sharp smoothed decrease at loss instants, see e.g. [5,
6]. The second approach describes the window evolution as a continuous process
governed by a differential equation, a so-called fluid model, see e.g. [7, 8, 6]. Our
first goal is to make the relation between these two approaches. We propose a
class of generalized TCP (GTCP) of which standard TCP and HSTCP are spe-
cial cases, and obtain qualitative stability properties: the existence of a unique
periodic orbit process to which the window size converges from any initial value.
Whereas similar type of results have been known for TCP, this type of result is
new in the context of HSTCP, and not at all obvious, as we know of cases of
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several limiting regimes that may occur when a and b depend on w (in particular
when a increases in w), cf. [9, Remark 2].

The structure of the paper is as follows. In Section 2, we review briefly TCP
algorithm, the discontinuous TCP model is then deduced. Section 3 presents
our modeling assumptions and applies basic results of averaging theory to the
proposed discontinuous TCP model. Comparisons of TCP models, and NS sim-
ulations are provided, confirming theoretical findings. A class of (stable) gener-
alized TCP models are proposed in Section 4 as a nonlinear extension of AIMD
congestion control mechanisms. Uniqueness conditions and asymptotic stability
results are derived for GTCP. We finish with some conclusions and remarks.

2 Discontinuous Nature of TCP

In this section, a “binary feedback” model of TCP, represented by a discontin-
uous differential equation, is derived.

TCP Congestion Control Mechanism.
Consider a single source. Let u denote the congestion indication signal. This
variable represents the binary feedback of [1], where u = 0 represents the non-
congestion (increase load) phase, and u = 1 indicates the decrease part due to
packet losses.

TCP congestion window behavior can be explained in the following form. As-
sume a discrete time mechanism with time divided into round-trip times (rtts).
In congestion avoidance, if there is no congestion, that is u = 0, the congestion
window cwnd is increased by a every time a full window is acknowledged (after
a rtt), this phase is known as additive increase,

ACK: cwnd[n + 1] = cwnd[n] + a (1)

After a congestion is detected1, denoted here by u = 1, the cwnd is reduced by
a factor 1 − b (multiplicative decrease):

Drop: cwnd[n + 1] = (1 − b)cwnd[n] (2)

In particular, we consider a NewReno-like implementation of TCP which reduces
its congestion window at most once per rtt. Usually, a = 1, b = 1/2 are the
canonical values for TCP. In general, we refer to pure AIMD congestion con-
trol by AIMD(a, b), with increase parameter a, and decrease parameter b. Let us
analyze this behavior.

Discontinuous TCP Model.
Increasing Part: Dividing (1) by rtt, this equation can be rewritten as the
rate of change of the congestion window size, as follows

cwnd[n + 1] − cwnd[n]
rtt

=
a

rtt
1 For instance, by duplicate ACKs or marked packets.
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Thus, the left-hand side approximates the derivative of the window size. Replac-
ing cwnd by the continuous variable w, it yields the standard TCP differential
equation of the additive increase phase[10, 7]:

dw

dt
=

a

rtt
(3)

Decreasing Part: Instead of considering jumps at loss instants, we prefer to
smooth the jumps over the rtt duration, which reflects the fact that in practice
the throughput does not decrease immediately. This is also in line with mod-
eling of the decrease part in other congestion control protocols [11]2. Thus, we
approximate (2) by the continuous-time differential equation

dw

dt
= − k

rtt
w (4)

which holds for a duration of rtt.
Let us analyze the last equation with respect to (2). Beginning with a window

size w0, the congestion window decreases, after one rtt to w(t = rtt) = (1 −
b)w0. A solution to (4) is given by

w(t) = w0 exp(−k t/rtt)

where w0 = w(0). Therefore, we have (1 − b)w0 = w0 exp(−k) which results in
k = − log(1 − b).

Note, − log(1 − b) = 2b
2−b + O

(
( 2b
2−b )

3
)
. In later calculations, particularly

in the analysis of Floyd’s HSTCP, it will be more appropriate to approximate
− log(1−b) by 2b/(2−b) on the interval 0 ≤ b ≤ 0.5. Equation (4) then becomes3

dw

dt
= − 2b

2 − b

w

rtt
(5)

Resulting ‘Binary Feedback’ Model. Congestion signal u, which takes values
on {0, 1}, can be used to bring together Equations (3) and (5), leading to a
discontinuous differential equation4 model:

dw

dt
=

a

rtt
(1 − u) − 2b

2 − b

w

rtt
u

or, equivalently,

rtt
dw

dt
= a −

(
a +

2b

2 − b
w

)
u (6)

with w0 = w(0) ≥ 1. It is easy to see that when u = 0 we obtain (3), and (5)
otherwise.
2 Nonetheless, as we will later our approach relies on the basic reasonable assump-

tion rtt � T (where T is the average time between losses), providing a reliable
approximation to instantaneous jumps.

3 The term 2b/(2 − b), that is, a factor of 2/3 when b = 1/2, appears explicitly in
Reno-1, and Reno-2 models proposed in [12].

4 This kind of models reminds the variable structure systems of Utkin [13]. Reference
[14] presents technical details and methods for analysis of this class of differential
equations.
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3 Averaged TCP Model

3.1 Assumptions

In the sequel, we consider the following assumptions:
1. A constant inter-loss time T , and
2. A fixed round trip time rtt much smaller that T , i.e., rtt � T , such that
quotient rtt/T is constant.
Note that in practice the inter-loss time T is often random (e.g. in when TCP
operates over wireless channels). We prefer to approximate it by a constant (that
may be related to an expected inter-loss time). This is a standard approximation
in the modeling of TCP, see e.g. [15] as well as [2] where, using a determinis-
tic inter-loss model, AIMD response function is derived. If random independent
inter-loss times are replaced by their expectation, then the steady state through-
put decreases, see [16, eq 9]. Thus the model we study can be used as a bound.

Assumption 1 leads to the following scalar control function u = u(t):

u(t) =

{
0 if tk ≤ t < tk + (T − rtt)
1 if tk + (T − rtt) ≤ t < tk+1

(7)

where tk is the time instant when additive increase begins. A congestion epoch,
given by [tk, tk+1], has a duration T = tk+1−tk. Function u(t) is then T -periodic,
i.e., u(t + T ) = u(t) for all t.

Taking into account the periodic behavior of (6) under the control signal (7),
we will apply the method of averaging. In the study of systems which combine
slow and fast motions, the averaging principle suggests that a good approxima-
tion of the slow motion on long time intervals can be obtained by averaging its
parameters in fast variables. This approach is standard in the case of, for exam-
ple, control of DC-to-DC converters [17]: the discontinuous model is translated
into a model of continuous nature, easier to analyze from a control theory point
of view.

3.2 Averaging

We first summarize some basic results on averaging theory, which are taken from
Sanders and Verhulst [18] and from Khalil [19].

Let x, y, x0 belong to an open subset D ⊂ R, let t ∈ R+ = [0,∞), and let
the parameter ε vary in the range (0, ε0] with ε0 � 1. Let f : R+ × D → R be
a piecewise continuous function5. Consider the initial value problem

dx

dt
= εf(t, x), x(0) = x0 (8)

5 Here the classical “smooth” assumption is replaced by a “piecewise continuous”
assumption, this approach is justified by [20, Appendix C] to define the concept of
solution of a differential equation. Another approach consists in regarding (6)–(7) as
a Carathéodory differential equation [14, Chap. 1].
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If f(t, x) is a T -periodic function in its first argument, we let the averaged system
be

dy

dt
= εf0(y), y(0) = x0 (9)

f0(y) =
1
T

∫ T

0

f(t, y)dt

From [18, p.39,71] and [19, p.430], we have the following

Theorem 1. There exists a positive ε0 such that, for all 0 < ε ≤ ε0,

1. x(t) − y(t) = O(ε) as ε → 0 on the time scale 1/ε, and
2. if x∗ is a hyperbolically (resp. asymptotically) stable equilibrium6 point for

f0, then x(t) − y(t) = O(ε) as ε → 0 for all t ∈ R+, and the differential
equation (8) possesses a unique periodic orbit (periodic solution) which is hy-
perbolically (resp. asymptotically) stable and belongs to an O(ε) neighborhood
of x∗.

Consider the following averaged quantities:

Definition 1. Time-average congestion window w̄ and averaged control µ are
defined, respectively, by

w̄ =
1
T

∫ T

0

w(σ)dσ and µ =
1
T

∫ T

0

u(σ)dσ

We use w̄ to denote the average de w over an entire congestion epoch. Expression
(11) and previous assumptions lead to a constant µ, independent of time scaling,
given by

µ =
rtt

T
(10)

Note µ corresponds to a sort of normalized packet-loss rate.
Equations (6) and (7) can be represented as a standard averaging problem

by changing the time variable from t to s = εt, that is:

rtt
dw

ds
= ε

[
a −

(
a +

2b

2 − b
w(s)

)
u(s)

]

u(s) =

{
0 if sk ≤ s < sk + (T−rtt)

ε

1 if sk + (T−rtt)
ε ≤ s < sk+1

(11)

where sk = tk/ε. Control input u(s) is periodic in s of period T/ε. A reasonable
choice of ε is ε = αrtt, 0 < α < 1.

Thus, we associate with (11) the autonomous averaged system

rtt
dw̄

ds
= ε

[
a −

(
a +

2b

2 − b
w̄

)
µ

]
(12)

6 Definitions of these notions are given in the first footnote of Section 4.1.
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where u(s) has been replaced by its average µ. Note that µ must be necessarily
limited to 0 ≤ µ = rtt/T ≤ 1.

Theorem 1 justifies approximating the solutions w(t) of of the non-autono-
mous system (11) by the solutions w̄(t) of the averaged system (12). More-
over, for µ = 0 or 1, there is no distinction between (11) and (12). Aver-
aged system (12) has a unique equilibrium point w̄∗ = a(2−b)

2b ( 1
µ − 1) > 1,

which is asymptotically stable (a.s.). To show this, define a Lyapunov function
V (w̄) = 1/2(w̄ − a(2−b)

2b ( 1
µ − 1))2, yielding V̇ (w̄) < 0 for all w̄ > 1 except for

w̄ = w̄∗. Thus, system (11) possesses an a.s. periodic solution of period T/ε.
Pulling back to original time coordinates, our TCP averaged model is given

by

rtt
dw̄

dt
=

[
a −

(
a +

2b

2 − b
w̄

)
µ

]
(13)

In Figure 1, a numerical simulation is depicted comparing the discrete be-
havior (1)–(2), and the response of discontinuous (6)–(7), and averaged (13)
TCP models. Notice that the discontinuous and averaged system trajectories fit
well the (periodic) discrete dynamical behavior of TCP. In steady state oscilla-
tion, the discontinuous model response agrees satisfactorily with the determin-
istic analysis of [2]. The initial condition of the averaged differential equation is
taken to be w̄(0) = w(0). The average window is suitably predicted by the pro-
posed model, compared to an NS simulation obtained under similar conditions.
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Fig. 1. left: the discrete behavior (dotted line) which coincides with the discontinuous
model (solid line), and the averaged (dash-dotted) TCP window size, initial condition
cwnd = w(0) = w̄(0) = 25 packets, T = 21 sec, rtt = 0.5 sec. NS simulation (right)
with constant inter-loss time.

3.3 Further Analysis

Second-Order Averaging. In order to show that the averaging principle fits
well to our purposes, let us consider the second-order averaging. Define φ(t) =
rttµ/2−∫ t

0
[ u(σ)−µ] dσ; it is T -periodic and bounded for t ≥ 0. A second-order

averaged solution w̄S to (6)–(7) is given by
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w̄S(t) = w̄(t) − 1
rtt

(
a +

2b

2 − b
w̄(t)

)
φ(t) (14)

where w̄(t) is a solution of (13). Furthermore, taking t = 0, w̄S(0) = w(0) and
solving for w̄(0), a corrected estimate of w̄(0) results from (14),

w̄(0) =
a(1

2µ) + w̄S(0)
1 + 2b

2−b (− 1
2µ)

=
a(1

2µ) + w(0)
1 − 2b

2−b (
1
2µ)

(15)

Figure 2 compares discontinuous (6), first- (13), and second-order (14) av-
eraged TCP solutions, considering the corrected initial condition (15). The cor-
rected initial condition produces a solution which follows closely moving averages
along the original periodic TCP trajectories.
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Fig. 2. Comparison (left) of discontinuous (solid), first- (dashed), and second-order
(dash-dotted) averaged TCP solutions, w(0) = 100 packets, w̄(0) = 148.96 packets
(corrected initial condition), T = 21 sec, rtt = 0.5 sec. NS simulation (right).

Steady State TCP Behavior. See [2]. In terms of T , the mean W of the TCP
congestion window in steady state, results in

W =
a(2 − b)

2b

T

rtt
(16)

The total number of packets between losses is n = W × T/rtt; the per-packet
drop rate p is n = 1/p, i.e. pTW = rtt. Hence,

p =
a(2 − b)

2b

1
W 2

(17)

Model (13) depends on the normalized packet-loss rate µ. It can also be
written in terms of p. Replacing W by w̄, (10) yields µ = pw̄. Hence, (13)
becomes

rtt
dw̄

dt
= a −

(
a +

2b

2 − b
w̄

)
w̄ p (18)
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where p is a new ‘control’ parameter. Let us analyze this system for a fixed
averaged window size w̄∗. In steady-state, the equilibrium point (w̄∗, p∗(w̄∗))
yields

p∗ =
a

(
a + 2b

2−b w̄
∗
)

w̄∗
(19)

When w̄∗ is large, 2bw̄∗
2−b � a, equation (19) translates into (17).

Remark 1. Consider similarities of (18) to fluid-flow models presented in the
literature, cf. for instance [7, 8]; observe that time delays and time-dependent
rtts would be easily incorporated in our analysis. Note, moreover, the model
in [8] is also obtained by “averaging”: it is an averaging over many samples, i.e.
the statistical expectation that is used. In this paper, in contrast, we use time-
averaging over a single sample path. Similar (time-)averaging could be used also
for each individual sample in models with random time between losses.

4 Generalized TCP Protocols

AIMD algorithms are included in a class of so-called linear controls defined in
[1]. In this section, the modeling approach presented above serves to establish
a large class of nonlinear AIMD mechanisms. Thus, generalized TCP (GTCP)
models are proposed under appropriate conditions, namely (local) asymptotic
stability of an (sometimes unique) equilibrium point of averaged GTCP models.
We show that standard TCP and HSTCP models presented in this paper are
particular cases of these generalized models.

4.1 Main Result

Let us define a discontinuous GTCP model as

rtt
dw

dt
= g(w) − (

g(w) + w h(w)
)
u (20)

where w is the congestion window size, and u is given as before by (7); g(w),
h(w) are appropriate smooth functions defining, resp., increase and decrease
behaviors. In fact, these functions define the increase/decrease parameters a(w),
b(w) which depend on the present window size w.

Averaged GTCP model is thus given by

rtt
dw̄

dt
= φ(w̄, µ) = g(w̄) − (

g(w̄) + w̄ h(w̄)
)
µ (21)

where congestion signal u have been replaced by the normalized packet-loss rate
µ. At equilibrium φ(w̄∗, µ) = 0, that is,

µ =
g(w̄∗)

g(w̄∗) + w̄∗ h(w̄∗)
= λ(w̄∗)
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where λ : (1,∞) → (0, 1). A (locally) (a.s.) equilibrium point7 exists if the
Jacobian of f satisfies

∂φ

∂w̄
(w̄∗, µ) < 0 (22)

In our setting, Theorem 1 yields the following

Lemma 1. The discontinuous GTCP model (20) possesses a unique hyperbolic
periodic orbit if the following conditions are satisfied ∀w > 1:

1. g(w) > 0,
2. h(w) > 0,
3. the invertible function λ−1 : (0, 1) → (1,∞) exists, and
4. − h(w) g(w) − w[g(x) ∂ h

∂w − h(x) ∂ g
∂w ] < 0.

Proof. Straightforward by applying Theorem 1. Replace x∗ by w∗, x by w, y by
w̄, x0 by w0. Condition 3 and 4 guarantees, resp., the existence of a (unique)
equilibrium point and asymptotic stability (22)8.

The following result includes the class of linear AIMD algorithms, cf. [1, 2]:

Corollary 1. Discontinuous TCP (6)–(7) possesses a unique hyperbolic periodic
orbit.

Proof. Define g(w) = a, h(x) = 2b/(2− b); a.s. equilibrium point of (13) is given
by

w̄∗ =
a(2 − b)

2b

1 − µ

µ
=

a(2 − b)
2b

(
T

rtt
− 1

)
(23)

4.2 HighSpeed TCP

Conditions 1-4 of Lemma 1 serves to analyze and design appropriate nonlinear
AIMD congestion control mechanisms, in particular in order to define suitable
a(w) and b(w) parameters. This is the case of HSTCP. HSTCP is described as

7 Let us recall the following Theorem [19, Th. 4.7]: Let x = x∗ be an equilib-
rium point for the nonlinear system ẋ = f(x) where f : D −→ Rn is continuously
differentiable and D is a neighborhood of x∗. Let

A =
∂f

∂x
(x)

∣∣
x=x∗

Then,
1. x∗ is asymptotically stable (denoted a.s.) if the real part �(zi) < 0 for all eigen-
values zi of A.
2. x∗ is unstable if �(zi) > 0 for one or more zi of A.
In this context, an equilibrium point is called hyperbolic if �(zi) �= 0. Asymptotic
stability means limt→∞ x(t) = x∗. Roughly speaking, a hyperbolic periodic orbit is
analogous to that of a hyperbolic equilibrium point.

8 Observe proposed conditions are similar to those implied by sliding regimes of non-
linear variable-structure feedback systems, cf. [13].
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follows [4]. When the window size is smaller than a given value ω, i.e. cwnd ≤ ω,
the increase/decrease parameter functions are a(cwnd) = a = 1, b(cwnd) = b =
1/2, as in standard TCP. For cwnd > ω, parameter π(cwnd) is defined, which is
reminiscent of the per-packet drop rate p. Thus, HSTCP parameters are given
by

π(cwnd) = e
[log(P1)−log(P )] log(cwnd)−log(ω)

log(ω1)−log(ω) +log(P )

b(cwnd) = (B − b)
log(cwnd) − log(ω)
log(ω1) − log(ω)

+ b

a(cwnd) = cwnd2π(cwnd)
2b(cwnd)

2 − b(cwnd)

(24)

where ‘log’ is the natural logarithm. Default values are: B = 0.1, ω = 31,
P = 3/(2ω2), P1 = 10−7, ω1 = 83000.

Discontinuous HighSpeed TCP model is given by (20), where g(w) and h(w)
are given by

h(w) =
2b(w)

2 − b(w)
, g(w) = a(w) = wπ(w) h(w) (25)

where cwnd has been replaced by w, a(w), b(w) are defined by (24).
The following result is not at all obvious for this nonlinear extension of AIMD

algorithms:

Corollary 2. Discontinuous HSTCP model defined by (25) possesses a unique
hyperbolic periodic orbit for all initial conditions w0 > 1 that satisfies b(w0) > 0.

Proof. Conditions 1–4 of Lemma 1 apply for initial condition ω < w0 < ω̄ =
597045, where b(w0) > 0. Parameters (24) implies g(w̄), h(w̄) > 0, for ω < w̄ <
ω̄. Thus, w̄∗π(w̄∗) − (w̄∗π(w̄∗) + 1)µ = 0. Function λ−1, for ω < w̄∗ < ω̄,

w̄∗ = k1

(
1 − µ

µ

)k2

= λ−1(µ) (26)

where k1 = e

(
log(P1) log(ω)−log(P ) log(ω1)

log(ω1)−log(ω)+log(P1)−log(P )

)

, and k2 = log ω1P1
ωP

(ω/ω1), i.e. k1 

.4009375 · 10−4, k2 
 4.47686.

First- and second-order averaged models, and corrected estimation of w̄(0),
are defined accordingly. Figure 3 presents a numerical simulation comparing dis-
crete, defined by (24), discontinuous and first-order averaged HSTCP responses.

5 Conclusions

We defined discontinuous and averaged models for a class of generalized TCP
(GTCP) protocols, which include standard TCP and more recent versions such
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a)
0 500 1000 1500

0

2000

4000

6000

8000

10000

12000
HSTCP congestion window

t [sec]

cw
nd

 (
−

 −
),

  w
 (

−
),

 a
ve

ra
ge

d 
(−

.)

b)
260 280 300 320 340 360 380 400 420

4600

4800

5000

5200

5400

5600

5800

6000

6200

6400

6600

t [sec]

Fig. 3. a) Comparison of discrete (dashed line), discontinuous (solid), and averaged
(dash-dotted) HSTCP solutions, initial condition cwnd = w(0) = w̄(0) = 100 packets,
T = 15 sec, rtt = 0.2 sec. b) A zoom.

as HighSpeed TCP. We make the relation between two approaches (discontinu-
ous and averaged) and, under the assumption of fixed rtt and inter-loss time
T , we show that the second type of models results in fact from the classical,
deterministic principle of averaging. We demonstrated uniqueness and stability
of periodic behaviors for GTCPs and, particularly, for HighSpeed TCP. Sev-
eral lines of research will be pursued, including average modeling, conditions of
uniqueness, and stability of different types of protocols. It is worth noting, for
example, that Scalable TCP [3] yields in our approach a trivial averaged model
(dw̄/dt = 0). The proposed models can be used to analyze important properties,
like bandwidth sharing, and also are useful for control purposes [21].
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