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Abstract— Routing games, as introduced in the pio-
neering work of Orda, Rom and Shimkin (1993), are
very closely related to the traffic assignment problems as
already studied by Wardrop and to congestion games, as
introduced by Rosenthal. But they exhibit more complex
behavior: often the equilibrium is not unique, and com-
putation of equilibria is typically harder. They cannot
be transformed in general into an equivalent global
optimization problem as is the case with congestion games
and in the traffic assignment problem which possess a
potential under fairly general conditions. In this paper
we study convergence of various learning schemes to an
equilibrium in the problem of routing games. We are
able to considerably extend previous published results
[1] that were restricted to routing into two parallel links.
We study evolutionary-based learning algorithms and
establish their convergence for general topologies.

I. INTRODUCTION

Routing games are concerned with the question of

how each of several non-cooperative sources of traffic

(say a service provider) should split (or route) its

demand among several available paths in a network.

Each service provider wishes to minimize its own cost,

which is however influenced by the routing decisions of

other service providers. A routing policy vector (where
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entry i specifies the routing policy for provider i) is

called an equilibrium if no provider can reduce strictly

its costs by changing its routing policy unilaterally.

In this paper we are concerned with the question

of how the equilibrium can be attained from non-

equilibrium starting points. This question was already

raised in the very paper [5] by Orda, Rom and Shimkin

that introduced these games (in the communication

networks context). They have been able to show that

adjustments based on best responses converge to equi-

librium in the case of a network of two parallel links

shared by two providers. They point out however that

”this convergence result is not readily extendible to

more general cases”. Indeed, when extending to more

than two providers, some asynchronous as well as

synchronous best response schemes have been showed

in [1] not to converge to the equilibrium. It is shown,

however, in [1] that a round robin scheme converges

(for the case of two parallel links and linear costs).

This type of formulation of a routing game, already

studied in the context of road traffic [4], turns out

to be much more difficult and does not enjoy in

general the structure of a potential game. In particular,

counterexamples are given in [5] for non-uniqueness of

the equilibrium. It is therefore of interest to identify

conditions on the cost structure that allow one to

obtain a potential game in the setting of [5]. In [2]

it was shown that the case of linear link costs provides

such conditions. The authors then exploit the potential

game structure to obtain convergence to equilibrium

of schemes based on best responses. In this paper

we follow a similar approach, this time for a general
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topology and cost function, but for symmetric systems.

II. MODEL

Consider a network with a general topology given

by G = (L, E) where L is a set of |L| links and E

a set of edges. The links are assumed to be directed.

Consider K classes of users where class i has a total

flow demand ri to ship from a source s to a destination

d.

Assume that we have a given set P of paths from

the source to the destination over which we can send

the traffic. Assume that each player i sends a flow of

yi
p over path p. Let yp =

∑
i y

i
p.

Let xi
l be the flow that player i ships over link l.

With some abuse of notation we write xl =
∑

i∈I xi
l .

We have

xi
l =

∑

p:l∈p

yi
p

which we write in matrix form as xi = Ayi where A

is the incidence matrix of size |L| × |P | that has 1 at

its (l, p) entry if and only if l is in path p.

Introduce for each link l a cost density function Tl(.)

assumed to be convex increasing and to depend on the

total flow through link l. Let J i(x) =
∑

l∈L xi
lTl(xl)

be the total cost for player i.

Player i wishes to minimize J i(x) subject to xi
l ≥

0 for all l, and to the standard flow conservation

constraints which should hold at each node:
∑

e∈E

∑

l∈In(e)

xi
l + ri,in

e =
∑

e∈E

∑

l∈Out(e)

xi
l + ri,out

e (1)

where In(e) are the links directed into edge e, where

Out(e) are the links directed out of edge e, ri,in
e equals

ri if e is the source node si of class i and equals −ri

if e is its destination node di.

The existence of an equilibrium has been established

in [3].

We write the Lagrangian that corresponds to the

optimization problem faced by player i at equilibrium,

where we relax the constraints in (1):

L(λ, y) = J i(x) +
∑

e∈E

λi
e

( ∑

e∈E

∑

l∈In(e)

xi
l + ri,in

e

−
∑

e∈E

∑

l∈Out(e)

xi
l + ri,out

e

)

where xi = Ayi. The Kuhn Tucker conditions at

equilibrium state that there exists for every link (n,m)

Lagrange multipliers λn and λm such that

Tnm(xmn) + xi
mnT ′nm(xmn) ≥ λn − λm,

Tnm(xmn) + xi
mnT ′nm(xmn) = λn − λm for xi

mn > 0

III. RELATION TO WARDROP EQUILIBRIUM

Introduce the following assumption:

A1. There exists an equilibrium such that for each

link l, xi
l > 0 for some i if and only if xi

l > 0 for all

i.

We say that users are symmetric if they have the

same demands, same sources, destinations and autho-

rized links. A direct extension of the proof in [5]

implies:

Lemma 3.1: There is at most one equilibrium sat-

isfying A1. If users are symmetric then there exists a

single equilibrium, it satisfies A1, and at that equilib-

rium each user sends over each link 1/I of the whole

link’s flow.

Summing over all users we get under A1

ITnm(xmn) + xmnT ′nm(xmn) ≥ λn − λm (2)

ITnm(xmn)+xmnT ′nm(xmn) = λn−λm for xmn > 0

(3)

where λn =
∑

i λ
i
n. Note that if A1 does not hold then

the last equality need not hold.

Define λp = minl∈p xl and

cl(xl) = ITl(xl) + xlT
′
l (xl)
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By summing (2) we get for α = λs − λd:
∑

l∈p

cl(xl) ≥ α (4)

and summing (3) we get
∑

l∈p

cl(xl) = α

if λp > 0. Since yp > 0 implies that λp > 0 we

conclude that if y∗ is an equilibrium then it satisfies

(4) with x = Ay and
∑

l∈p

cl(xl) = α if yp > 0. (5)

These are known to be the variational inequalities

that determine the Wardrop equilibrium for link costs

given by cl.
Next, introduce the link cost

Hl(xl, I) =
xlTl(xl)

I
+

∫ xl

0
Tl(s)ds

and the total cost

H(x, I) =
∑

l

Hl(xl, I)

Then H(x) is the potential for this Wardrop equilib-

rium. Note that when users are symmetric then there is

a unique equilibrium and A1 holds for that equilibrium,

see [5]. Thus the following theorem holds.
Theorem 3.1: (i) There is a unique (in terms of total

link flows) Wardrop equilibrium to the problem with

transformed link costs given by c.

(ii) The link flows at that equilibrium are the unique

solution to the convex optimization problem of mini-

mizing the total expected cost H(x, I).

(iii) Under A1, there exists a Nash equilibrium to

the original problem such that the link flows are a

Wardrop equilibrium with the transformed costs c. In

particular, if the users are symmetric, A1 holds, and

the Wardrop equilibrium is a Nash equilibrium for our

original problem where, each user sends over each link

1/I of the whole link’s flow.

IV. CONVERGENCE

The Wardrop equilibrium is unchanged if we divide

the link costs by I . It then follows from Theorem

3.1 that for symmetric users, the path flows at the

unique Nash equilibrium is the Wardrop equilibrium

corresponding to the transformed link costs

cl(xl) = Tl(xl) +
xlT

′
l (xl)
I

We see that as I → ∞, this converges to the costs

that give the Wardrop equilibrium for the original

(non-transformed) link costs Tl(xl). This suggests that

for symmetric users, the Nash equilibrium link flows

converge to the Wardrop equilibrium (that corresponds

to the original link costs). We next establish this.

Consider the convex optimization problem of mini-

mizing the total expected cost H(x, I) over the convex

set

{(x, y) : x = Ay, y ≥ 0,
∑

p

yp = r}.

This is equivalent to the problem P (I) of minimizing

Ĥ(y, I) = H(Ay, I) over the convex set

∆ = {y ≥ 0,
∑

p

yp = r}.

Denote

Ĥ(y,∞) =
∫ xl

0
Tl(s)ds, where x = Ay.

Then Ĥ(·, I) converges to Ĥ(·,∞) uniformly over ∆.

Since Tl are convex increasing, Ĥ(·, I) and Ĥ(·,∞)

are convex functions. It then follows (see e.g. [8,

Appendix]) that the argument that minimizes Ĥ(·, I)

over ∆ converges to the one that minimizes Ĥ(·,∞)

over ∆. But Ĥ(·,∞) is the potential that corresponds

to the Wardrop equilibrium for the original cost. We

thus conclude that the link flows at Nash equilibrium

converge to the link flows at the Wardrop equilibrium

as the number of players goes to infinity.
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Note that this convergence is already established in

[4] using a variational approach without the restriction

on symmetrical users, but with more restrictive condi-

tions on the cost function.

V. POPULATION DYNAMICS

Denote Zp(y) =
∑

l∈p cl(xl) where x = Ay. Intro-

duce the following evolutionary dynamics:

• Replicator Dynamics:

ẏi
p = −yi

p

(
Zp(y)− 1

ri

∑
q

yi
qZq(y)

)

• Brown – Von Neumann (BNN) Dynamics: Define

γi
p = max

[
1
ri

∑
q

yi
qZq(y)− Zp(y), 0

]

Then

ẏi
p =

(
riγi

p − yi
p

∑
q

γi
q

)

A symmetric flow configuration is the one in which

the individual flows of each user on any path are the

same. Since the dynamics are defined in terms of the

individual path flows yi
p rather than yp, it is necessary

to start from from a symmetric point so that the final

configuration is symmetric, which according to theorem

(3.1) is a necessary condition for it to be a Nash

equilibrium. Using [6] that applies to convergence of

BNN to the Wardrop equilibrium, we see that BNN

converges to the original Nash equilibrium for the

symmetric case. Similar result holds for the replicator

dynamics provided we start at an interior point, see

[6],[7]. We thus have the following theorem.
Theorem 5.1: Assume that the users are symmetric.

Then A1 holds and

• The BNN dynamics converges to the Nash equi-

librium provided we start from a symmetric point.

• The Replicator dynamics converges to Nash equi-

librium provided we start from an interior sym-

metric point.
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Fig. 1. Link flows at Nash equilibrium

VI. NUMERICAL EXAMPLE

Consider the network topology shown in Fig.1. There

are two users who wish to route traffic flows from

source node A to destination node D with demands

r1 = r2 = 1. There are four possible paths that connect

the source to the destination. Path 1 is A-C-D, path 2

is A-B-D, path 3 is A-B-C-D and path 4 is A-D. For

l = 1, · · · , 6, we use an exponential cost function for

the links marked in the diagram, given by Tl(xl) = kle
x

where k = (k1, · · · , k6) = (1, 2, 3, 4, 5, 6). We use

the two distributed algorithms, replicator dynamics and

BNN dynamics to reach the equilibrium path flow pro-

files of the users: y∗i = (y∗i1 , y∗i2 , y∗i3 , y∗i4 ) starting from

the symmetric point y1 = y2 = (0.25, 0.25, 0.25, 0.25).

Both algorithms converge to the following Nash equi-

librium flow profiles:

y∗1 = y∗2 = (0.3963, 0.2740, 0.0000, 0.3297)

The equilibrium flows of the players on each of the

links are shown in the diagram. Following are the

trajectories of individual user path flows with respect

to time under both the dynamics. As the graphs show,

convergence under replicator dynamics is much faster

as compared to the BNN dynamics.

VII. CONCLUDING COMMENTS

We have shown in this paper how population dynam-

ics can be used for convergence to the unique Nash
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Fig. 2. Convergence to Nash equilibrium under Replicator dynam-

ics
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Fig. 3. Convergence to Nash equilibrium under BNN dynamics

equilibrium in some symmetric routing games with

general topology and costs. The convergence followed

by showing that a potential exists in a large class of

games that include those with symmetrical players.

This potential allows us to obtain only the total amount

of link flows at equilibrium, at symmetricity is used to

deduce from it the share of each player.
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