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Abstrat

A ontinuous time stohasti hybrid system, ontrolled by two players with opposite

objetives (zero-sum game), is onsidered. The parameters of the system may jump

at disrete moments of time aording to a Markov Deision Proess, i.e. a Markov

hain that is diretly ontrolled by both players, and has �nite state and ation spaes.

Under assumption that the length of the intervals between the jumps is de�ned by a

small parameter ǫ, the value of this game is shown to have limit as the small parameter

tends to zero. This limit is established to oinide with the visosity solution of some

Hamilton-Jaobi type equations.

Key words: Hybrid stohasti systems, stohasti games, small parameter, averaging, visosity

solutions, Hamilton-Jaobi-Isaas equations, asymptoti optimality, non-linear dynamis.

1 Introdution and Statement of the problem

Consider the following hybrid stohasti ontrolled system. The state Zs ∈ IRn
evolves

aording to the following dynamis:

d

ds
Zs = f(Zs, Ys), s ∈ [t, T ], Zt = z (1)

where Ys ∈ IRk
is the �ontrol" and f : IRn × IRk → IRn

is a vetor funtion. Ys is not hosen

diretly by the ontrollers, but is obtained as a result of ontrolling the following underlying

stohasti disrete event system.

• Let ǫ be the basi time unit. Time is disretized, i.e. transitions our at times

s = lǫ, l = 0, 1, 2, ...,
⌊

(T − t)ǫ−1
⌋

, where ⌊x⌋ stands for the greatest integer whih is

smaller than or equal to x.

• There is a �nite state spae X and two players having �nite ation spaes A1 and A2

respetively. Let A = A1 ×A2.

• If the state is v and ations a = (a1, a2) are hosen by the players, then the next state

is w with probability Pvaw. Denote P = {Pvaw}.
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• A poliy ui = {ui
0, u

i
1, ...} in the set of poliies U i

for player i, i = 1, 2 is a sequene

of probability measures on Ai onditioned on the history of all previous states (the

X omponent only) and ations of both players, as well as the urrent state. More

preisely, de�ne the set of histories:

H :=
⋃

l

Hl, where Hl :=
{

(x0, a
1
0, a

2
0, x1, a

1
1, a

2
1, ..., xl)

}

are the sets of all sequenes of 3l+1 elements desribing the possible samples of previous

states and ations prior to l as well as the urrents state at stage l (i.e. at time lǫ). (The

range of l will be either l = 0, 1, ...,
⌊

(T − t)ǫ−1
⌋

, or, in other ontexts, all nonnegative

integers, depending on whether we onsider �nite or in�nite horizon problems). The

poliy at stage l for player i, ui
l, is a map from Hl to the set of probability measures

over the ation spae Ai. (Hene at eah time t = lǫ, player i, observing the history

hl, hooses ation ai with probability p(ai|hl)).

• Let Fl be the disrete σ-Algebra orresponding to Hl. Eah initial distribution ξ and

poliy pair u for the players uniquely de�ne a probability measure Pu
ξ over the spae of

samples H (equipped with the disrete σ-algebra), see e.g. [Hin70℄. Denote by Eu
ξ the

orresponding expetation operator. On the above probability spae are now de�ned

the random proesses Xl and Al = (A1
l , A

2
l ), denoting the state and ations proesses.

When the initial distribution is onentrated on a single state x, we shall denote the

orresponding probability measure and expetation by Pu
x and Eu

x .

Remark: The reason that we do not inlude the Z part of the state in the de�nition of the

poliies is that the trajetory of this omponent is fully determined by the trajetories of the

X omponent together with the ations, for a �xed initial state z. The latter is assumed to

be �xed and ommon knowledge for the players.

Let g : X ×A → IRk
, be some given vetor-valued bounded funtion and Xn and An =

(A1
n, A

2
n) denote the state and ations proesses. Then Ys in (1) is given by

Ys = g(X⌊s/ǫ⌋, A⌊s/ǫ⌋). (2)

Ys and thus Zs are well de�ned stohasti proesses, and are both F⌊(T−t)ǫ−1⌋ measurable.

We shall be espeially interested in the following lasses of poliies.

• The stationary poliies, denoted by S1, for player 1, and S2, for player 2. A poliy u is

alled stationary if ul depends only on the urrent state (the X-omponent), and does

not depend on previous states and ations nor on the time. Let S := S1 × S2.

• The Markov poliies M1,M2: these are poliies where u
i
l depends only on the urrent

X omponent of the state (at time t = lǫ) and on stage l, and does not depend on

previous states and ations. Denote M = M1 ×M2.

Let us de�ne the payo� of the game by the equation

Jǫ(t, z, x;u
1, u2) = E(u1,u2)

x

{

∫ T

t

F (Zs, Ys) ds+G(ZT )
}

,

when poliies u1, u2
are used by the players, the initial state of the system is z, the initial

state of the ontrolled Markov hain is x, Zs is obtained through (1) and F : IRn × IRk → IR1
,
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G : IRn → IR1
are running ost and terminal ost funtion respetively.

In our dynami game, player 1 wishes to maximize Jǫ(t, z, x;u
1, u2) and player 2 wants to

minimize it. We de�ne the upper and lower value funtions of the hybrid game as

Bup
ǫ (t, z, x) = inf

u2∈U2

sup
u1∈U1

Jǫ(t, z, x;u
1, u2)

Blo
ǫ (t, z, x) = sup

u1∈U1

inf
u2∈U2

Jǫ(t, z, x;u
1, u2)

It an be shown (see Appendix) that the stohasti hybrid game has value Bǫ(t, z, x). That

is, for all (t, z, x) ∈ [0, T ]× IRn ×X.

Bǫ(t, z, x)
def
= Bup

ǫ (t, z, x) = Blo
ǫ (t, z, x).

Our model is haraterized by the fat that ǫ is supposed to be a small parameter and

our objetive is to show that the value of the game has a limit as ǫ → 0 and this limit is a

visosity solution of some Hamilton-Jaobi type equations.

Notie that this result an be viewed as an extension of visosity solutions for deterministi

singularly perturbed zero-sum di�erential games (see [Gai96℄) to the stohasti ase under

onsideration.

This paper is a ontinuation and generalization of previous works [SAG97℄ whih solves a

hybrid problem restrited to a single ontroller and [AG94℄ whih onsiders a linear hybrid

game with linear ost. As in [SAG97, AG94℄, the fat that ǫ is small means that the variables

Ys an be onsidered to be fast with respet to Zs, sine, by (2), they may have a �nite

(not tending with ǫ to zero) hange at eah interval of the length ǫ. This along with the

dynami equation of the system (1) allow to deompose the game into stohasti sub-games

on a sequene of intervals whih are short with respet to the variables Zs (in the sense that

Zs remain almost unhanged on these intervals) and whih are long enough with respet

to Ys (so that the orresponding stohasti sub-games show on these intervals there limit

properties).

The type of model whih we introdue is natural in the ontrol of inventories or of pro-

dution (see for example [SZ94℄), where we deal with material whose quantity may hange in

a ontinuous way. Breakdowns, repairs and other ontrol deisions yield the underlying on-

trolled Markov hain. In partiular, repair, or preventive maintenane deisions are typial

ations of a player that minimizes osts. If there is some unknown parameter (disturbane)

of the dynamis of the system (e.g. the probability of breakdowns) whih may hange in a

way that depends on the urrent and past states in a way that is unknown and unpreditable

by the minimizer, we may formulate this situation as a zero-sum game, where the minimizer

wishes to guarantee the best performane (lowest expeted ost) under the worst ase behav-

iour of nature. Nature may then be modelled as the maximizing player.

Our model may also be used in the ontrol of highly loaded queueing networks for whih

the �uid approximation holds (see Kleinrok [Kle76℄ p. 56). The quantities Zt may then

represent the number of ustomers in the di�erent queues whereas the underlying ontrolled

Markov hain may orrespond to routing, or �ow ontrol of, say, some on-o� tra�, with

again, nature ontrolling some disturbanes in quantities suh as servie rates.
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The remainder of this paper is organised as follows. In setion 2 we give all imposed

assumptions and then introdue the assoiated sub-game and the existene of the value of

suh game in setion 3. The Limit Hamilton-Jaobi-Isaas equations for the stohasti hybrid

game is de�ned in setion 4. The main results are presented in setion 5. The most tedious

proves are gathered in the last two setions.

2 Basi Assumptions

In our onsideration, we use the following assumptions.

Assumption 1. There exists a ompat subset D1 ∈ IRn
whih ontains all solutions Zs of

the system (1) obtained with di�erent admissible ontrols Ys whih are de�ned as pieewise

onstant funtion of time taking their values in a �nite subset of IRk
. Denote this subset by

D2.

Assumption 2. All the funtions used in the de�nitions of the stohasti hybrid and asso-

iated games are ontinuous on D1 ×D2 and also they satisfy the loal Lipshitz onditions

in (z, y) with Lipshitz onstant L ≥ 0. That is, for any (zi, yi) ∈ (D1 ×D2) i = 1, 2.

∥

∥f(z1, y1)− f(z2, y2)
∥

∥ ≤ L
{

‖z1 − z2‖ − ‖y1 − y2‖
}

,
∥

∥F (z1, y1)− F (z2, y2)
∥

∥ ≤ L
{

‖z1 − z2‖ − ‖y1 − y2‖
}

,
∥

∥G(z1)−G(z2)
∥

∥ ≤ L‖z1 − z2‖.

Notie that from Assumption 1 and Assumption 2, it follows that the funtions f and F

are bounded. That is, there exists a onstant M ≥ 0 suh that for all (z, y) ∈ D1 ×D2

‖f(z, y)‖ ≤ M, ‖F (z, y)‖ ≤ M and ‖G(z)‖ ≤ M.

Assumption 3. The stohasti proess {Xn, An} whih is known as ontrolled Markov hain

or Markov deision proess has a unihain struture: under any pair of stationary poliies

for the two players, the state proess onstitutes a single ergodi lass of states.

3 (z, λ)-assoiated games

Consider a family of in�nite horizon stohasti games, all with the same state and ation

spaes X and A as above and the same transition probabilities P , parameterized by a pair

(z, λ) ∈ IRn × IRn
. Let r : IRn × IRn ×X×A → IR be the immediate ost de�ned as follows

r(z, λ, x, a) = F
(

z, g(x, a)
)

+ λT f
(

z, g(x, a)
)

. (3)

With the same de�nition of the set of poliies U = (U1,U2) as above, let

σ(z, λ, x, u) := lim
m→∞

1

m
Eu

x

m−1
∑

i=0

r(z, λ,Xi, Ai) (4)

A poliy pair uz,λ = (u1
z,λ, u

2
z,λ) ∈ U is said to be a saddle point or an equilibrium poliy

pair for (z, λ)-assoiated game with in�nite horizon expeted average ost riterion, if for all

u1 ∈ U1, u2 ∈ U2
,

σ(z, λ, x, u1, u2
z,λ) ≤ σ(z, λ, x, u1

z,λ, u
2
z,λ) ≤ σ(z, λ, x, u1

z,λ, u
2).
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Let f̂z,λ = (f̂1
z,λ, f̂

2
z,λ), where f̂1

z,λ, f̂
2
z,λ be some stationary equilibrium poliy pair for the

expeted average problem. The existene of suh stationary equilibrium poliy pair is well

known under our unihain assumption 3, see [Rog69, Sob71℄ (this extends to the ount-

able ase under Simultaneous Doeblin Condition, introdued in [Hor77℄ Setion 11.1, with

a ommuniating ondition, or under ontration onditions, see e.g. [Fed78℄ and [AHS97℄,

respetively). The funtion

σ(z, λ) := σ(z, λ, x, f̂1
z,λ, f̂

2
z,λ) (5)

is then de�ned to be the value of the (z, λ)-assoiated game, and it is known to be independent

on x (whih we shall thus omit from the notation). It an be omputed using value iteration,

(see e.g. [Wal81℄, hapter 13).

4 Limit Hamilton-Jaobi-Isaas equations

for the stohasti hybrid game.

Let us onsider Hamilton-Jaobi equations

−
∂B(t, z)

∂t
+H

(

z,
∂B(t, z)

∂z

)

= 0, (t, z) ∈ [0, T )× IRn
(6)

with Hamiltonian H(z, λ) being equal to −σ(z, λ) de�ned in (5). These equations will be

referred to as Limit Hamilton-Jaobi-Isaas (LHJI) equation for the stohasti hybrid game.

Let us denote by B(t, z) the visosity solutions (see de�nition in the beginning of Setion 6)

of this equation whih satisfy the boundary ondition

B(T, z) = G(z), ∀z ∈ IRn . (7)

In the following setions, it will be established that the value of our hybrid game onverges

to B(t, z) as ǫ tends to zero.

As in stohasti hybrid optimal ontrol problems e.g. [AG97, SAG97℄, the above results

an be onsidered to be a justi�ation of a deomposition of the stohasti hybrid game

into the assoiated fast game allowing to desribe an asymptotially optimal behaviour of

the players if the slow parameters are �xed and the LHJI equations responsible for a �near-

optimality" of the slow dynamis.

5 Main results

Our main result is now formulated as theorem below

Theorem 1. Let Assumption 1�3 be true. Let equation (6) with H(z, λ) = −σ(z, λ) have

the unique ontinuous visosity solution B(t, z) satisfying the boundary ondition (7). Then

the stohasti hybrid game have a value in the limit. That is,

lim
ǫ→0

Bǫ(t, z, x)
def

= B(t, z), (8)

with the onvergene being uniform on ompat set [0, T ]×D1 ×X.
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We shall use the following property of the value funtion. It is an equi-ontinuous type

and is ruial in our proof.

Lemma 2. Corresponding to any ompat set [0, T ]×D1×X there exists ontinuous funtions

ω(α), µ(α) tending to zero as α tends to zero suh that for any (ti, zi, xi) ∈ [0, T ]×D1×X, i =

1, 2
∣

∣Bǫ(t
1, z1, x1)−Bǫ(t

2, z2, x2)
∣

∣ ≤ ω(|t1 − t2|+ |z1 − z2|) + µ(ǫ), (9)

with

Bǫ(T, z, x) = G(z), ∀(z, x) ∈ D1 ×X. (10)

This lemma is established in the appendix.

Let us introdue the notation

Vǫ(t, z)
def
= Bǫ(t, z, x

∗)

where x∗
is some �xed (but arbitrary) state. By Lemma 2, if (t, z, x) belongs to a ompat

set [0, T ]×D1 ×X, then

∣

∣Bǫ(t, z, x)− Vǫ(t, z)
∣

∣ ≤ µ(ǫ). (11)

Hene, to prove (8) it is su�ient to show that

lim
ǫ→0

Vǫ(t, z) = B(t, z), (12)

where the onvergene is uniform with respet to (t, z) from any ompat subset of [0, T ]×IRn
.

For the sake of brevity we shall refer to this sort of onvergene as to U -onvergene and the

orresponding limits will be alled U -limits.

From Lemma 2, it follows that for (ti, zi) ∈ [0, T ]×D1, i = 1, 2

∣

∣Vǫ(t
1, z1)− Vǫ(t

2, z2)
∣

∣ ≤ ω
(

|t1 − t2|+ |z1 − z2|
)

+ µ(ǫ). (13)

Lemma 3. Given any sequene ǫi tending to zero, one an �nd a subsequene ǫil = ǫl of this

sequene suh that there exists the U -limit

lim
ǫl→0

Vǫl(t, z)
def
= V (t, z). (14)

The proof of the lemma is also given in the appendix.

��

Let us show that any funtion obtained as U -limit in (14) oinides with B(t, z). Notie

that, by (13), any suh funtion V (t, z) is ontinuous on [0, T ]× IRn
and, by (10) and (11),

it satis�es the ondition

V (T, z) = G(z), ∀z ∈ IRn .

Thus, to show that it oinides with B(t, z) it is enough to show that it is a visosity solution

of (6) with H(z, λ) = −σ(z, λ).
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6 Proof of Main Result

To begin this setion, let us reall the de�nition of visosity solutions.

De�nition.

1. A funtion V (t, z) is alled a visosity sub-solution of (6) if

−
∂v(t̄, z̄)

∂t
+H

(

z̄,
∂v(t̄, z̄)

∂z

)

≤ 0,

for any (t̄, z̄) ∈ [0, T )× IRn
and for eah funtion v(t, z) whih has ontinuous partial

derivatives on [0, T ) × IRn
and satis�es the onditions: v(t̄, z̄) = V (t̄, z̄) and v(t, z) ≥

V (t, z) in some neighbourhood of (t̄, z̄).

2. A funtion V (t, z) is alled a visosity super-solution of (6) if

−
∂v(t̄, z̄)

∂t
+H

(

z̄,
∂v(t̄, z̄)

∂z

)

≥ 0,

for any (t̄, z̄) ∈ [0, T )× IRn
and for eah funtion v(t, z) whih has ontinuous partial

derivatives on [0, T ) × IRn
and whih satis�es the onditions: v(t̄, z̄) = V (t̄, z̄) and

v(t, z) ≤ V (t, z) in some neighbourhood of (t̄, z̄).

3. A funtion V (t, z) whih is both visosity sub- and super- solution is alled a visosity

solution of equation (6).

��-

Proof of Theorem 1. We �rst note that the hybrid game has the value (this is proved in

the Appendix). It permits us to onsider the value funtion Bǫ(t, z, x) instead of its upper

and lower value when dealing with dynami programming approah.

Let ∆
def

= ǫK(ǫ) be a funtion of ǫ suh that K(ǫ) takes integer value and

lim
ǫ→0

∆ = 0, lim
ǫ→0

K(ǫ) = ∞.

Take t̄ ∈ [0, T ] with initial state of the system Zt̄ = z̄ and initial state of the Controlled

Markov hain X⌊t̄/ǫ⌋ = x̄. Then, it an be shown that

Bup
ǫ (t̄, z̄, x̄) = inf

u2∈U2

sup
u1∈U1

E(u1,u2)
x

{

∫ T

t̄

F (Zs, Ys) ds+G(ZT )
}

= inf
u2∈U2

sup
u1∈U1

E(u1,u2)
x

{

∫ t̄+∆

t̄

F (Zs, Ys) ds+Bǫ

(

t̄+∆, z(t̄+∆), x(t̄+∆)
)

}

, (15)

where z(t̄+∆) = Zt̄+∆ and x(t̄+∆) = X⌊(t̄+∆)/ǫ⌋.

Let (t̄, z̄, x̄) ∈ [0, T )×D1×X. Then, by Assumption 1,

(

z(t̄+∆), x(t̄+∆)
)

∈ D1×X, where

D1 are ompat sets in IRn
. Sine the onvergene in (14) is uniform with respet to (t, z)

from any ompat subset of [0, T ]× IRn
, there exists a funtion ν̃(ǫl),

lim
ǫl→0

ν̃(ǫl) = 0, (16)
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suh that

|Vǫl(t, z)− V (t, z)| ≤ ν̃(ǫl), ∀(t, z) ∈ [0, T ]×D1.

Using this and (11), one obtains from (15)

V (t̄, z̄) = inf
u2∈U2

sup
u1∈U1

E(u1,u2)
x

{
∫ t̄+∆

t̄

F (Zs, Ys) ds+ V
(

t̄+∆, z(t̄+∆)
)

}

+O(µ̃(ǫl)), (17)

where

µ̃(ǫl) = max{µ(ǫl), ν̃(ǫl), ǫl}. (18)

Let now v(t, z) have ontinuous partial derivatives and satisfy the onditions: v(t̄, z̄) =

V (t̄, z̄) and v(t, z) ≥ V (t, z) for (t, z) in some neighbourhood of (t̄, z̄). From (17) it follows

then

v(t̄, z̄) ≤ inf
u2∈U2

sup
u1∈U1

E(u1,u2)
x

{
∫ t̄+∆

t̄

F (Zs, Ys) ds+ v
(

t̄+∆, z(t̄+∆)
)

}

+O(µ̃(ǫl)). (19)

By de�nition

z(t̄+∆) = z̄ +

∫ t̄+∆

t̄

f(Zs, Ys) ds. (20)

By Assumption 1 and 2, the funtion f is ontinuous and its arguments belong to ompat

sets, the seond term in the right hand side of (20) is of the orderO
(

∆(ǫl)
)

. Thus, substituting

(20) into (19) and taking into aount that v(t, z) has ontinuous partial derivatives, one

obtains

∂v(t̄, z̄)

∂t
+ inf

u2∈U2

sup
u1∈U1

E(u1,u2)
x

{

1

∆(ǫl)

∫ t̄+∆

t̄

[

F (Zs, Ys) +

(

∂v(t̄, z̄)

∂z

)T

f(Zs, Ys)

]

ds

}

+
O
(

µ̃(ǫl)
)

∆(ǫl)
+

o
(

∆(ǫl)
)

∆(ǫl)
≥ 0. (21)

Notie that for any s ∈ [t̄, t̄+∆(ǫl)]

Zs = z̄ +

∫ t̄+∆(ǫl)

t̄

f(Zs, Ys) ds

Hene,

∥

∥Zs − z̄
∥

∥ ≤ M∆(ǫl).

This and Assumption 2 imply that

1

∆(ǫl)

∫ t̄+∆

t̄

[

F (Zs, Ys) +

(

∂v(t̄, z̄)

∂z

)T

f(Zs, Ys)

]

ds

=
1

∆(ǫl)

∫ t̄+∆

t̄

[

F (z̄, Ys) +

(

∂v(t̄, z̄)

∂z

)T

f(z̄, Ys)

]

ds+O
(

∆(ǫl)
)

(22)

Denote

m(ǫl) =

⌊

t̄+∆(ǫl)

ǫl

⌋

−

⌊

t̄

ǫl

⌋
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and note that

∣

∣

∣

∣

m(ǫl)−
∆(ǫl)

ǫl

∣

∣

∣

∣

≤ 1,

then

∣

∣

∣

∣

1

m(ǫl)
−

ǫl
∆(ǫl)

∣

∣

∣

∣

≤
ǫ2l

∆2(ǫl)

(

1

1− ǫl/∆(ǫl)

)

.

From this and (3), it follows that there exist positive onstants L1 and L2 suh that

∥

∥

∥

∥

1

∆(ǫl)

∫ t̄+∆(ǫl)

t̄

[

F (z̄, Ys) + λT f(z̄, Ys)
]

ds−
ǫl

∆(ǫl)

⌊t̄/ǫl⌋+m(ǫl)
∑

i=⌊t̄/ǫl⌋+1

r(z̄, λ,Xi, Ai)

∥

∥

∥

∥

≤ L1
ǫl

∆(ǫl)

∥

∥

∥

∥

ǫl
∆(ǫl)

⌊t̄/ǫl⌋+m(ǫl)
∑

i=⌊t̄/ǫl⌋+1

r(z̄, λ,Xi, Ai)−
1

m(ǫl)

⌊t̄/ǫl⌋+m(ǫl)
∑

i=⌊t̄/ǫl⌋+1

r(z̄, λ,Xi, Ai)

∥

∥

∥

∥

≤ L2
ǫl

∆(ǫl)
.

(23)

Using (22) � (23), one may obtain from (21)

∂v(t̄, z̄)

∂t
+ inf

u2∈U2

sup
u1∈U1

E(u1,u2)
x

1

m(ǫl)

⌊t̄/ǫl⌋+m(ǫl)
∑

i=⌊t̄/ǫl⌋+1

r

(

z̄,
∂x(t̄, z̄)

∂z
,Xi, Ai

)

+O

(

ǫl
∆(ǫl)

)

+O
(

∆(ǫl)
)

+
O
(

µ̃(ǫl)
)

∆(ǫl)
+

o
(

∆(ǫl)
)

∆(ǫl)
≥ 0. (24)

De�ne now ∆(ǫl) as follows

∆(ǫl) =
√

µ̃(ǫl) ⇒
O
(

µ̃(ǫl)
)

∆(ǫl)
= O

(

√

µ̃(ǫl)
)

.

Hene, passing to the limit in (24) as ǫl tends to zero and taking into aount the assoiated

game with the existene of stationary equilibrium poliy pair as stated in (5), one obtains

∂v(t̄, z̄)

dt
+ σ

(

z̄,
∂v(t̄, z̄)

∂z

)

≥ 0 ⇒ −
∂v(t̄, z̄)

dt
+H

(

z̄,
∂v(t̄, z̄)

∂z

)

≤ 0.

This establishes that V (t, z) is a visosity sub-solution of (6) on [0, T )× IRn
.

Similarly, taking v(t, z) having ontinuous partial derivatives and satisfying the onditions:

v(t̄, z̄) = V (t̄, z̄) and v(t, z) ≤ V (t, z) in some neighbourhood of (t̄, z̄) ∈ [0, T )× IRn
, one an

obtain that

−
∂v(t̄, z̄)

dt
+H

(

z̄,
∂v(t̄, z̄)

∂z

)

≥ 0

whih means that V (t, z) is a visosity super-solution of (6) on [0, t)× IRn
. Thus, V (t, z) is

a visosity solution (6) on [0, t)× IRn
and, onsequently, it oinides with B(t, z).

This proves that Bǫ(t, z, x) U -onverges (as ǫ tends to zero) to B(t, z) sine, otherwise,

by Lemma 3, one would be able to hoose a subsequene ǫl tending to zero suh that the

U -limit (14) does not oinide with B(t, z).
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7 Appendix

In this appendix we �rst present some general properties of the original game with �xed ǫ,

whih allows us to obtain some properties of the limit game.

We �rst show that the original game is equivalent to a stohasti game with �nite state and

ation spaes. This will allow us to use standard results to obtain the representation of the

value and optimal poliies.

7.1 An equivalent stohasti game

Lemma 4. For a �xed ǫ, the original hybrid game is equivalent to a �nite-stage stohasti

(Markov) game with �nite state and ation spaes and it has a value Bǫ(t, z, x). That is

Bǫ(t, z, x) = Bup
ǫ (t, z, x) = Blo

ǫ (t, z, x).

In fat, introdue the following stohasti game:

• State spae: onsists of the histories

X :=

⌊

(T−t)ǫ−1

⌋

⋃

l=0

Hl where Hl :=
{

(x0, a
1
0, a

2
0, x1, a

1
1, a

2
1, ..., xl)

}

.

An element of the state spae will be denoted by h; n(h) will denote the length of the

horizon.

• Ation spaes: unhanged, i.e. A = A1 ×A2.

• Transition probabilities these are obvious; for

h1 =
{

(x0, a
1
0, a

2
0, x1, a

1
1, a

2
1, ..., xl)

}

, h2 =
{

(y0, b
1
0, b

2
0, y1, b

1
1, b

2
1, ..., yk)

}

,

we have

P̂h1,α1,α2,h2 = Pxl,α1,α2,yk

for

k = l + 1, x0 = y0, a
1
0 = b10, a

2
0 = b20, x1 = y1, ..., xl = yl, b

1
k = α1, b2k = α2,

and zero 0 otherwise.

• Immediate osts:

c(t, z, h; a1, a2) =

∫ ǫn(h)+ǫ

ǫn(h)

F (Zs, Ys) ds

for n(h) <
⌊

(T − t)ǫ−1
⌋

, and

c(t, z, h; a1, a2) =

∫ T

ǫn(h)

F (Zs, Ys) ds+G(ZT )

for n(h) =
⌊

(T − t)ǫ−1
⌋

. Note that the immediate ost is parameterized by the initial

z and t. We did not write the immediate ost expliitly, however the random variables

Zs, Ys and ZT appearing in the immediate ost are fully determined by h and the

ations a1, a2.

10



Let us de�ne the payo� of the new game: for any h suh that n(h) ≤
⌊

(T − t)ǫ−1
⌋

, we set

Ĵǫ(t, z, h; v
1, v2) = E

(v1,v2)
h

{

∫ T

t+ǫn(h)

F (Zs, Ys) ds+G(ZT )
}

.

Note that eah poliy ui
for player i in the original game has an obvious equivalent Markov

poliy vi in this new game that ahieves the same osts. It is thus simple to show that one

may restrit to Markov poliies in the new game (optimal Markov poliies will depend of

ourse on z and t). The original poliies generate the same osts in the original game as their

equivalent new poliies in the new game:

Ĵǫ(t, z, h; v
1, v2) = Jǫ(t, z, x;u

1, u2),

where h = x.

Sine the new game is a standard stohasti game with �nite number of states and ations,

it has a value (see e.g. Van Der Wal [Wal81℄, hapter 10). We onlude that the lower value

and the upper value in the original game oinide and are equal to this value. Note also that

dynami programming an be used to haraterize the value and optimal poliies for both

players.

7.2 Proof of Lemma 2

It follows from arguments as in [Gai96℄ that there exists some real number ω suh that for

any poliies u1
and u2

for the two players and any z1, z2, t1, t2 and x,

|Jǫ(t
1, z1, x : u1, u2)− Jǫ(t

2, z2, x : u1, u2)| ≤ ω(|t1 − t2|+ |z1 − z2|) +O(ǫ). (25)

This implies that (9) holds for the ase where x1 = x2
.

To onlude the proof, it thus su�es to show that for any z and t,

|Jǫ(t, z, x
1;u1, u2)− Jǫ(t, z, x

2;u1, u2)| < µ(ǫ)

where µ is as in Lemma 2. We do this next. Choose some arbitrary x∗
.

Denote η = inf{n : Xn = x∗}. Then

sup
u1,u2,x

Eu1,u2

x η < ∞. (26)

Indeed, there exists a pure stationary pair u1, u2
that ahieves this sup, sine ahieving the

sup is equivalent to a problem of maximizing some total expeted ost in a transient MDP

with �nite state and ation spaes (see e.g. [Kal83℄ or [Hor77℄). That the sup is �nite follows

from the unihain assumption 3.

Note that

Bǫ(t
1, z1, x)−Bǫ(t

2, z2, x)

= sup
u1∈U1

inf
u2∈U2

Jǫ(t
1, z1, x;u1, u2)− sup

u1∈U1

inf
u2∈U2

Jǫ(t
2, z2, x;u1, u2)

≤ sup
u1∈U1

(

inf
u2∈U2

Jǫ(t
1, z1, x;u1, u2)− inf

u2∈U2

Jǫ(t
2, z2, x;u1, u2)

)

≤ sup
u1,u2

|Jǫ(t
1, z1, x;u1, u2)− Jǫ(t

2, z2, x;u1, u2)|.

11



Sine the same holds for Bǫ(t
2, z2, x)− Bǫ(t

1, z1, x) we onlude from the last equation and

from (25) that

|Bǫ(t
1, z1, x)−Bǫ(t

2, z2, x)| ≤ ω(|t1 − t2|+ |z1 − z2|) +O(ǫ). (27)

Denote τ = min(T, t+ ηǫ) and σ = t+ ηǫ. Now, the optimality prinile implies that

Bǫ(t, z, x)

= sup
u1∈U1

inf
u2∈U2

Eu1,u2

x

(

∫ T

t

F (Zs, Ys) ds+G(ZT )

)

= sup
u1∈U1

inf
u2∈U2

Eu1,u2

x

(

∫ τ

t

F (Zs, Ys) ds+

∫ T

τ

F (Zs, Ys) ds+G(ZT )

)

= sup
u1∈U1

inf
u2∈U2

Eu1,u2

x

(
∫ τ

t

F (Zs, Ys) ds+G(ZT )1{σ > T }+Bǫ(τ, Zτ , x
∗)1{σ ≤ T }

)

Thus,

Bǫ(t, z, x
1)−Bǫ(t, z, x

2)

= sup
u1∈U1

inf
u2∈U2

Eu1,u2

x1

(

∫ τ

t

F (Zs, Ys) ds+G(ZT )1{σ > T }+Bǫ(τ, Zτ , x
∗)1{σ ≤ T }

)

− sup
u1∈U1

inf
u2∈U2

Eu1,u2

x2

(

∫ τ

t

F (Zs, Ys) ds+G(ZT )1{σ > T }+Bǫ(τ, Zτ , x
∗)1{σ ≤ T }

)

≤ sup
u1,u2

Eu1,u2

x1

∣

∣

∣

∣

∫ τ

t

F (Zs, Ys) ds+G(ZT )1{σ > T }

∣

∣

∣

∣

+ sup
u1,u2

Eu1,u2

x2

∣

∣

∣

∣

∫ τ

t

F (Zs, Ys) ds+G(ZT )1{σ > T }

∣

∣

∣

∣

+ sup
u1,u2

∣

∣

∣
Eu1,u2

x1 Bǫ(τ, Zτ , x
∗)1{σ ≤ T } − Eu1,u2

x2 Bǫ(τ, Zτ , x
∗)1{σ ≤ T }

∣

∣

∣
.

Sine the same bound holds also for Bǫ(t, z, x
2)−Bǫ(t, z, x

1), we onlude that

∣

∣Bǫ(t, z, x
1)−Bǫ(t, z, x

2)
∣

∣

(28)

≤ 2 sup
u1,u2,x

∣

∣

∣

∣

Eu1,u2

x

{

∫ τ

t

F (Zs, Ys) ds+G(ZT )1{σ > T }
}

∣

∣

∣

∣

(29)

+ sup
u1,u2

∣

∣

∣
Eu1,u2

x1 Bǫ(τ, Zτ , x
∗)1{σ ≤ T } − Eu1,u2

x2 Bǫ(τ, Zτ , x
∗)1{σ ≤ T }

∣

∣

∣
(30)

The �rst term above is O(ǫ) sine F and G are bounded, sine τ ≤ t+ ηǫ and due to (26).

Next we bound the seond term. We have

∣

∣

∣
Eu1,u2

x1 Bǫ(τ, Zτ , x
∗)1{σ ≤ T } − Eu1,u2

x2 Bǫ(τ, Zτ , x
∗)1{σ ≤ T }

∣

∣

∣

=
∣

∣

∣
Eu1,u2

x1 Bǫ(τ, Zτ , x
∗)− Eu1,u2

x2 Bǫ(τ, Zτ , x
∗)

−Eu1,u2

x1 Bǫ(τ, Zτ , x
∗)1{σ > T }+ Eu1,u2

x2 Bǫ(τ, Zτ , x
∗)1{σ > T }

∣

∣

∣

≤
∣

∣

∣
Eu1,u2

x1 Bǫ(τ, Zτ , x
∗)− Eu1,u2

x2 Bǫ(τ, Zτ , x
∗)
∣

∣

∣
+ sup

x,u1,u2

2M(T − τ + 1)Pu1,u2

x (σ > T ).

Due to (26), it follows that Pu1,u2

x (σ > T ) is of order of O(ǫ). It remains to estimate the �rst

term in the right hand side of the above inequality.
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Now, onsider an arbitrary augmented probability spae on whih the two state and

ation trajetories are de�ned simultateously: those that start from initial states x1
and x2

respetively, and for whih the marginal distribution of eah trajetory separately is given

by the orresponding probabilities Pu1,u2

x1 and Pu1,u2

x2 , respetively. Let P
u1,u2

x1,x2 be the

probability measure governing the augmented probability spae, and we denote by E
u1,u2

x1,x2

the orresponding expetation.

Let t1 and t2 be the times at whih we reah the state x∗
starting from states x1

and

state x2
, respetively. Let z1 and z2 be the value of the z variable at those instants. Then

we have by (27)

|Eu1,u2

x1 Bǫ(τ, Zτ , x
∗)− Eu1,u2

x2 Bǫ(τ, Zτ , x
∗)|

= |E
u1,u2

x1,x2 (Bǫ(t
1, z1, x∗)−Bǫ(t

2, z2, x∗))| ≤ ωE
u1,u2

x1,x2 (|t1 − t2|+ |z1 − z2|).

We have

sup
x1,x2,u1,u2

E
u1,u2

x1,x2 |t1−t2| ≤ sup
x1,x2,u1,u2

E
u1,u2

x1,x2 |t1−t|+ sup
x1,x2,u1,u2

E
u1,u2

x1,x2 |t2−t| ≤ 2ǫ sup
u1,u2,x

Eu1,u2

x η.

Due to the bounded funtion f , one may get

sup
x1,x2,u1,u2

Eu1,u2

x |z1 − z2| ≤ 2Mǫ sup
u1,u2,x

Eu1,u2

x η.

Thus, we see that (30) is bounded by 2ǫ(M +1) supu1,u2,xE
u1,u2

x η. This onludes the proof.

Note that in the above proof we ouple in some sense two systems that start in di�erent

initial states, in order to be able to ompute expressions suh as E(t1 − t2). However, we

did not have to make any partiular assumption on the joint distribution between those two

systems in order to obtain the required bounds.

7.3 Proof of Lemma 3

Firstly, one an establish that given a ompat subset [0, T ] × D, D ⊂ IRn
, the following

spae

V =
{

Vǫ(t, z), ǫ → 0
}

where Vǫ(t, z) are ontinuous funtions on [0, T ]×D satisfying the property (13) under sup

metri, is omplete and totally bounded. So, it is ompat.

Hene, every sequene in V in the form

{

Vǫn , n → ∞
}

ontains a subsequene

{

Vǫl

}

suh

that the onvergene (14) will be uniform with respet to (t, z) ∈ [0, T ]×D.

Notie that our laim is stronger than that sine U-onvergene is uniform with respet to

(t, z) from any ompat subset of [0, T ]× IRn
. So, we just remove the dependene of ompat

set D by hoosing a sequene of subsets [0, T ]×Dl
, where Dl ⊂ IRn

is the losed ball entered

at zero and having the radius l, l = 1, 2, . . . , and then, using a diagolization proedure one

an onstrut a subsequene providing the required U -onvergene.
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