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Abstra
t

A 
ontinuous time sto
hasti
 hybrid system, 
ontrolled by two players with opposite

obje
tives (zero-sum game), is 
onsidered. The parameters of the system may jump

at dis
rete moments of time a

ording to a Markov De
ision Pro
ess, i.e. a Markov


hain that is dire
tly 
ontrolled by both players, and has �nite state and a
tion spa
es.

Under assumption that the length of the intervals between the jumps is de�ned by a

small parameter ǫ, the value of this game is shown to have limit as the small parameter

tends to zero. This limit is established to 
oin
ide with the vis
osity solution of some

Hamilton-Ja
obi type equations.
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1 Introdu
tion and Statement of the problem

Consider the following hybrid sto
hasti
 
ontrolled system. The state Zs ∈ IRn
evolves

a

ording to the following dynami
s:

d

ds
Zs = f(Zs, Ys), s ∈ [t, T ], Zt = z (1)

where Ys ∈ IRk
is the �
ontrol" and f : IRn × IRk → IRn

is a ve
tor fun
tion. Ys is not 
hosen

dire
tly by the 
ontrollers, but is obtained as a result of 
ontrolling the following underlying

sto
hasti
 dis
rete event system.

• Let ǫ be the basi
 time unit. Time is dis
retized, i.e. transitions o

ur at times

s = lǫ, l = 0, 1, 2, ...,
⌊

(T − t)ǫ−1
⌋

, where ⌊x⌋ stands for the greatest integer whi
h is

smaller than or equal to x.

• There is a �nite state spa
e X and two players having �nite a
tion spa
es A1 and A2

respe
tively. Let A = A1 ×A2.

• If the state is v and a
tions a = (a1, a2) are 
hosen by the players, then the next state

is w with probability Pvaw. Denote P = {Pvaw}.
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• A poli
y ui = {ui
0, u

i
1, ...} in the set of poli
ies U i

for player i, i = 1, 2 is a sequen
e

of probability measures on Ai 
onditioned on the history of all previous states (the

X 
omponent only) and a
tions of both players, as well as the 
urrent state. More

pre
isely, de�ne the set of histories:

H :=
⋃

l

Hl, where Hl :=
{

(x0, a
1
0, a

2
0, x1, a

1
1, a

2
1, ..., xl)

}

are the sets of all sequen
es of 3l+1 elements des
ribing the possible samples of previous

states and a
tions prior to l as well as the 
urrents state at stage l (i.e. at time lǫ). (The

range of l will be either l = 0, 1, ...,
⌊

(T − t)ǫ−1
⌋

, or, in other 
ontexts, all nonnegative

integers, depending on whether we 
onsider �nite or in�nite horizon problems). The

poli
y at stage l for player i, ui
l, is a map from Hl to the set of probability measures

over the a
tion spa
e Ai. (Hen
e at ea
h time t = lǫ, player i, observing the history

hl, 
hooses a
tion ai with probability p(ai|hl)).

• Let Fl be the dis
rete σ-Algebra 
orresponding to Hl. Ea
h initial distribution ξ and

poli
y pair u for the players uniquely de�ne a probability measure Pu
ξ over the spa
e of

samples H (equipped with the dis
rete σ-algebra), see e.g. [Hin70℄. Denote by Eu
ξ the


orresponding expe
tation operator. On the above probability spa
e are now de�ned

the random pro
esses Xl and Al = (A1
l , A

2
l ), denoting the state and a
tions pro
esses.

When the initial distribution is 
on
entrated on a single state x, we shall denote the


orresponding probability measure and expe
tation by Pu
x and Eu

x .

Remark: The reason that we do not in
lude the Z part of the state in the de�nition of the

poli
ies is that the traje
tory of this 
omponent is fully determined by the traje
tories of the

X 
omponent together with the a
tions, for a �xed initial state z. The latter is assumed to

be �xed and 
ommon knowledge for the players.

Let g : X ×A → IRk
, be some given ve
tor-valued bounded fun
tion and Xn and An =

(A1
n, A

2
n) denote the state and a
tions pro
esses. Then Ys in (1) is given by

Ys = g(X⌊s/ǫ⌋, A⌊s/ǫ⌋). (2)

Ys and thus Zs are well de�ned sto
hasti
 pro
esses, and are both F⌊(T−t)ǫ−1⌋ measurable.

We shall be espe
ially interested in the following 
lasses of poli
ies.

• The stationary poli
ies, denoted by S1, for player 1, and S2, for player 2. A poli
y u is


alled stationary if ul depends only on the 
urrent state (the X-
omponent), and does

not depend on previous states and a
tions nor on the time. Let S := S1 × S2.

• The Markov poli
ies M1,M2: these are poli
ies where u
i
l depends only on the 
urrent

X 
omponent of the state (at time t = lǫ) and on stage l, and does not depend on

previous states and a
tions. Denote M = M1 ×M2.

Let us de�ne the payo� of the game by the equation

Jǫ(t, z, x;u
1, u2) = E(u1,u2)

x

{

∫ T

t

F (Zs, Ys) ds+G(ZT )
}

,

when poli
ies u1, u2
are used by the players, the initial state of the system is z, the initial

state of the 
ontrolled Markov 
hain is x, Zs is obtained through (1) and F : IRn × IRk → IR1
,

2



G : IRn → IR1
are running 
ost and terminal 
ost fun
tion respe
tively.

In our dynami
 game, player 1 wishes to maximize Jǫ(t, z, x;u
1, u2) and player 2 wants to

minimize it. We de�ne the upper and lower value fun
tions of the hybrid game as

Bup
ǫ (t, z, x) = inf

u2∈U2

sup
u1∈U1

Jǫ(t, z, x;u
1, u2)

Blo
ǫ (t, z, x) = sup

u1∈U1

inf
u2∈U2

Jǫ(t, z, x;u
1, u2)

It 
an be shown (see Appendix) that the sto
hasti
 hybrid game has value Bǫ(t, z, x). That

is, for all (t, z, x) ∈ [0, T ]× IRn ×X.

Bǫ(t, z, x)
def
= Bup

ǫ (t, z, x) = Blo
ǫ (t, z, x).

Our model is 
hara
terized by the fa
t that ǫ is supposed to be a small parameter and

our obje
tive is to show that the value of the game has a limit as ǫ → 0 and this limit is a

vis
osity solution of some Hamilton-Ja
obi type equations.

Noti
e that this result 
an be viewed as an extension of vis
osity solutions for deterministi


singularly perturbed zero-sum di�erential games (see [Gai96℄) to the sto
hasti
 
ase under


onsideration.

This paper is a 
ontinuation and generalization of previous works [SAG97℄ whi
h solves a

hybrid problem restri
ted to a single 
ontroller and [AG94℄ whi
h 
onsiders a linear hybrid

game with linear 
ost. As in [SAG97, AG94℄, the fa
t that ǫ is small means that the variables

Ys 
an be 
onsidered to be fast with respe
t to Zs, sin
e, by (2), they may have a �nite

(not tending with ǫ to zero) 
hange at ea
h interval of the length ǫ. This along with the

dynami
 equation of the system (1) allow to de
ompose the game into sto
hasti
 sub-games

on a sequen
e of intervals whi
h are short with respe
t to the variables Zs (in the sense that

Zs remain almost un
hanged on these intervals) and whi
h are long enough with respe
t

to Ys (so that the 
orresponding sto
hasti
 sub-games show on these intervals there limit

properties).

The type of model whi
h we introdu
e is natural in the 
ontrol of inventories or of pro-

du
tion (see for example [SZ94℄), where we deal with material whose quantity may 
hange in

a 
ontinuous way. Breakdowns, repairs and other 
ontrol de
isions yield the underlying 
on-

trolled Markov 
hain. In parti
ular, repair, or preventive maintenan
e de
isions are typi
al

a
tions of a player that minimizes 
osts. If there is some unknown parameter (disturban
e)

of the dynami
s of the system (e.g. the probability of breakdowns) whi
h may 
hange in a

way that depends on the 
urrent and past states in a way that is unknown and unpredi
table

by the minimizer, we may formulate this situation as a zero-sum game, where the minimizer

wishes to guarantee the best performan
e (lowest expe
ted 
ost) under the worst 
ase behav-

iour of nature. Nature may then be modelled as the maximizing player.

Our model may also be used in the 
ontrol of highly loaded queueing networks for whi
h

the �uid approximation holds (see Kleinro
k [Kle76℄ p. 56). The quantities Zt may then

represent the number of 
ustomers in the di�erent queues whereas the underlying 
ontrolled

Markov 
hain may 
orrespond to routing, or �ow 
ontrol of, say, some on-o� tra�
, with

again, nature 
ontrolling some disturban
es in quantities su
h as servi
e rates.
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The remainder of this paper is organised as follows. In se
tion 2 we give all imposed

assumptions and then introdu
e the asso
iated sub-game and the existen
e of the value of

su
h game in se
tion 3. The Limit Hamilton-Ja
obi-Isaa
s equations for the sto
hasti
 hybrid

game is de�ned in se
tion 4. The main results are presented in se
tion 5. The most tedious

proves are gathered in the last two se
tions.

2 Basi
 Assumptions

In our 
onsideration, we use the following assumptions.

Assumption 1. There exists a 
ompa
t subset D1 ∈ IRn
whi
h 
ontains all solutions Zs of

the system (1) obtained with di�erent admissible 
ontrols Ys whi
h are de�ned as pie
ewise


onstant fun
tion of time taking their values in a �nite subset of IRk
. Denote this subset by

D2.

Assumption 2. All the fun
tions used in the de�nitions of the sto
hasti
 hybrid and asso-


iated games are 
ontinuous on D1 ×D2 and also they satisfy the lo
al Lips
hitz 
onditions

in (z, y) with Lips
hitz 
onstant L ≥ 0. That is, for any (zi, yi) ∈ (D1 ×D2) i = 1, 2.

∥

∥f(z1, y1)− f(z2, y2)
∥

∥ ≤ L
{

‖z1 − z2‖ − ‖y1 − y2‖
}

,
∥

∥F (z1, y1)− F (z2, y2)
∥

∥ ≤ L
{

‖z1 − z2‖ − ‖y1 − y2‖
}

,
∥

∥G(z1)−G(z2)
∥

∥ ≤ L‖z1 − z2‖.

Noti
e that from Assumption 1 and Assumption 2, it follows that the fun
tions f and F

are bounded. That is, there exists a 
onstant M ≥ 0 su
h that for all (z, y) ∈ D1 ×D2

‖f(z, y)‖ ≤ M, ‖F (z, y)‖ ≤ M and ‖G(z)‖ ≤ M.

Assumption 3. The sto
hasti
 pro
ess {Xn, An} whi
h is known as 
ontrolled Markov 
hain

or Markov de
ision pro
ess has a uni
hain stru
ture: under any pair of stationary poli
ies

for the two players, the state pro
ess 
onstitutes a single ergodi
 
lass of states.

3 (z, λ)-asso
iated games

Consider a family of in�nite horizon sto
hasti
 games, all with the same state and a
tion

spa
es X and A as above and the same transition probabilities P , parameterized by a pair

(z, λ) ∈ IRn × IRn
. Let r : IRn × IRn ×X×A → IR be the immediate 
ost de�ned as follows

r(z, λ, x, a) = F
(

z, g(x, a)
)

+ λT f
(

z, g(x, a)
)

. (3)

With the same de�nition of the set of poli
ies U = (U1,U2) as above, let

σ(z, λ, x, u) := lim
m→∞

1

m
Eu

x

m−1
∑

i=0

r(z, λ,Xi, Ai) (4)

A poli
y pair uz,λ = (u1
z,λ, u

2
z,λ) ∈ U is said to be a saddle point or an equilibrium poli
y

pair for (z, λ)-asso
iated game with in�nite horizon expe
ted average 
ost 
riterion, if for all

u1 ∈ U1, u2 ∈ U2
,

σ(z, λ, x, u1, u2
z,λ) ≤ σ(z, λ, x, u1

z,λ, u
2
z,λ) ≤ σ(z, λ, x, u1

z,λ, u
2).
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Let f̂z,λ = (f̂1
z,λ, f̂

2
z,λ), where f̂1

z,λ, f̂
2
z,λ be some stationary equilibrium poli
y pair for the

expe
ted average problem. The existen
e of su
h stationary equilibrium poli
y pair is well

known under our uni
hain assumption 3, see [Rog69, Sob71℄ (this extends to the 
ount-

able 
ase under Simultaneous Doeblin Condition, introdu
ed in [Hor77℄ Se
tion 11.1, with

a 
ommuni
ating 
ondition, or under 
ontra
tion 
onditions, see e.g. [Fed78℄ and [AHS97℄,

respe
tively). The fun
tion

σ(z, λ) := σ(z, λ, x, f̂1
z,λ, f̂

2
z,λ) (5)

is then de�ned to be the value of the (z, λ)-asso
iated game, and it is known to be independent

on x (whi
h we shall thus omit from the notation). It 
an be 
omputed using value iteration,

(see e.g. [Wal81℄, 
hapter 13).

4 Limit Hamilton-Ja
obi-Isaa
s equations

for the sto
hasti
 hybrid game.

Let us 
onsider Hamilton-Ja
obi equations

−
∂B(t, z)

∂t
+H

(

z,
∂B(t, z)

∂z

)

= 0, (t, z) ∈ [0, T )× IRn
(6)

with Hamiltonian H(z, λ) being equal to −σ(z, λ) de�ned in (5). These equations will be

referred to as Limit Hamilton-Ja
obi-Isaa
s (LHJI) equation for the sto
hasti
 hybrid game.

Let us denote by B(t, z) the vis
osity solutions (see de�nition in the beginning of Se
tion 6)

of this equation whi
h satisfy the boundary 
ondition

B(T, z) = G(z), ∀z ∈ IRn . (7)

In the following se
tions, it will be established that the value of our hybrid game 
onverges

to B(t, z) as ǫ tends to zero.

As in sto
hasti
 hybrid optimal 
ontrol problems e.g. [AG97, SAG97℄, the above results


an be 
onsidered to be a justi�
ation of a de
omposition of the sto
hasti
 hybrid game

into the asso
iated fast game allowing to des
ribe an asymptoti
ally optimal behaviour of

the players if the slow parameters are �xed and the LHJI equations responsible for a �near-

optimality" of the slow dynami
s.

5 Main results

Our main result is now formulated as theorem below

Theorem 1. Let Assumption 1�3 be true. Let equation (6) with H(z, λ) = −σ(z, λ) have

the unique 
ontinuous vis
osity solution B(t, z) satisfying the boundary 
ondition (7). Then

the sto
hasti
 hybrid game have a value in the limit. That is,

lim
ǫ→0

Bǫ(t, z, x)
def

= B(t, z), (8)

with the 
onvergen
e being uniform on 
ompa
t set [0, T ]×D1 ×X.
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We shall use the following property of the value fun
tion. It is an equi-
ontinuous type

and is 
ru
ial in our proof.

Lemma 2. Corresponding to any 
ompa
t set [0, T ]×D1×X there exists 
ontinuous fun
tions

ω(α), µ(α) tending to zero as α tends to zero su
h that for any (ti, zi, xi) ∈ [0, T ]×D1×X, i =

1, 2
∣

∣Bǫ(t
1, z1, x1)−Bǫ(t

2, z2, x2)
∣

∣ ≤ ω(|t1 − t2|+ |z1 − z2|) + µ(ǫ), (9)

with

Bǫ(T, z, x) = G(z), ∀(z, x) ∈ D1 ×X. (10)

This lemma is established in the appendix.

Let us introdu
e the notation

Vǫ(t, z)
def
= Bǫ(t, z, x

∗)

where x∗
is some �xed (but arbitrary) state. By Lemma 2, if (t, z, x) belongs to a 
ompa
t

set [0, T ]×D1 ×X, then

∣

∣Bǫ(t, z, x)− Vǫ(t, z)
∣

∣ ≤ µ(ǫ). (11)

Hen
e, to prove (8) it is su�
ient to show that

lim
ǫ→0

Vǫ(t, z) = B(t, z), (12)

where the 
onvergen
e is uniform with respe
t to (t, z) from any 
ompa
t subset of [0, T ]×IRn
.

For the sake of brevity we shall refer to this sort of 
onvergen
e as to U -
onvergen
e and the


orresponding limits will be 
alled U -limits.

From Lemma 2, it follows that for (ti, zi) ∈ [0, T ]×D1, i = 1, 2

∣

∣Vǫ(t
1, z1)− Vǫ(t

2, z2)
∣

∣ ≤ ω
(

|t1 − t2|+ |z1 − z2|
)

+ µ(ǫ). (13)

Lemma 3. Given any sequen
e ǫi tending to zero, one 
an �nd a subsequen
e ǫil = ǫl of this

sequen
e su
h that there exists the U -limit

lim
ǫl→0

Vǫl(t, z)
def
= V (t, z). (14)

The proof of the lemma is also given in the appendix.

��

Let us show that any fun
tion obtained as U -limit in (14) 
oin
ides with B(t, z). Noti
e

that, by (13), any su
h fun
tion V (t, z) is 
ontinuous on [0, T ]× IRn
and, by (10) and (11),

it satis�es the 
ondition

V (T, z) = G(z), ∀z ∈ IRn .

Thus, to show that it 
oin
ides with B(t, z) it is enough to show that it is a vis
osity solution

of (6) with H(z, λ) = −σ(z, λ).

6



6 Proof of Main Result

To begin this se
tion, let us re
all the de�nition of vis
osity solutions.

De�nition.

1. A fun
tion V (t, z) is 
alled a vis
osity sub-solution of (6) if

−
∂v(t̄, z̄)

∂t
+H

(

z̄,
∂v(t̄, z̄)

∂z

)

≤ 0,

for any (t̄, z̄) ∈ [0, T )× IRn
and for ea
h fun
tion v(t, z) whi
h has 
ontinuous partial

derivatives on [0, T ) × IRn
and satis�es the 
onditions: v(t̄, z̄) = V (t̄, z̄) and v(t, z) ≥

V (t, z) in some neighbourhood of (t̄, z̄).

2. A fun
tion V (t, z) is 
alled a vis
osity super-solution of (6) if

−
∂v(t̄, z̄)

∂t
+H

(

z̄,
∂v(t̄, z̄)

∂z

)

≥ 0,

for any (t̄, z̄) ∈ [0, T )× IRn
and for ea
h fun
tion v(t, z) whi
h has 
ontinuous partial

derivatives on [0, T ) × IRn
and whi
h satis�es the 
onditions: v(t̄, z̄) = V (t̄, z̄) and

v(t, z) ≤ V (t, z) in some neighbourhood of (t̄, z̄).

3. A fun
tion V (t, z) whi
h is both vis
osity sub- and super- solution is 
alled a vis
osity

solution of equation (6).

��-

Proof of Theorem 1. We �rst note that the hybrid game has the value (this is proved in

the Appendix). It permits us to 
onsider the value fun
tion Bǫ(t, z, x) instead of its upper

and lower value when dealing with dynami
 programming approa
h.

Let ∆
def

= ǫK(ǫ) be a fun
tion of ǫ su
h that K(ǫ) takes integer value and

lim
ǫ→0

∆ = 0, lim
ǫ→0

K(ǫ) = ∞.

Take t̄ ∈ [0, T ] with initial state of the system Zt̄ = z̄ and initial state of the Controlled

Markov 
hain X⌊t̄/ǫ⌋ = x̄. Then, it 
an be shown that

Bup
ǫ (t̄, z̄, x̄) = inf

u2∈U2

sup
u1∈U1

E(u1,u2)
x

{

∫ T

t̄

F (Zs, Ys) ds+G(ZT )
}

= inf
u2∈U2

sup
u1∈U1

E(u1,u2)
x

{

∫ t̄+∆

t̄

F (Zs, Ys) ds+Bǫ

(

t̄+∆, z(t̄+∆), x(t̄+∆)
)

}

, (15)

where z(t̄+∆) = Zt̄+∆ and x(t̄+∆) = X⌊(t̄+∆)/ǫ⌋.

Let (t̄, z̄, x̄) ∈ [0, T )×D1×X. Then, by Assumption 1,

(

z(t̄+∆), x(t̄+∆)
)

∈ D1×X, where

D1 are 
ompa
t sets in IRn
. Sin
e the 
onvergen
e in (14) is uniform with respe
t to (t, z)

from any 
ompa
t subset of [0, T ]× IRn
, there exists a fun
tion ν̃(ǫl),

lim
ǫl→0

ν̃(ǫl) = 0, (16)

7



su
h that

|Vǫl(t, z)− V (t, z)| ≤ ν̃(ǫl), ∀(t, z) ∈ [0, T ]×D1.

Using this and (11), one obtains from (15)

V (t̄, z̄) = inf
u2∈U2

sup
u1∈U1

E(u1,u2)
x

{
∫ t̄+∆

t̄

F (Zs, Ys) ds+ V
(

t̄+∆, z(t̄+∆)
)

}

+O(µ̃(ǫl)), (17)

where

µ̃(ǫl) = max{µ(ǫl), ν̃(ǫl), ǫl}. (18)

Let now v(t, z) have 
ontinuous partial derivatives and satisfy the 
onditions: v(t̄, z̄) =

V (t̄, z̄) and v(t, z) ≥ V (t, z) for (t, z) in some neighbourhood of (t̄, z̄). From (17) it follows

then

v(t̄, z̄) ≤ inf
u2∈U2

sup
u1∈U1

E(u1,u2)
x

{
∫ t̄+∆

t̄

F (Zs, Ys) ds+ v
(

t̄+∆, z(t̄+∆)
)

}

+O(µ̃(ǫl)). (19)

By de�nition

z(t̄+∆) = z̄ +

∫ t̄+∆

t̄

f(Zs, Ys) ds. (20)

By Assumption 1 and 2, the fun
tion f is 
ontinuous and its arguments belong to 
ompa
t

sets, the se
ond term in the right hand side of (20) is of the orderO
(

∆(ǫl)
)

. Thus, substituting

(20) into (19) and taking into a

ount that v(t, z) has 
ontinuous partial derivatives, one

obtains

∂v(t̄, z̄)

∂t
+ inf

u2∈U2

sup
u1∈U1

E(u1,u2)
x

{

1

∆(ǫl)

∫ t̄+∆

t̄

[

F (Zs, Ys) +

(

∂v(t̄, z̄)

∂z

)T

f(Zs, Ys)

]

ds

}

+
O
(

µ̃(ǫl)
)

∆(ǫl)
+

o
(

∆(ǫl)
)

∆(ǫl)
≥ 0. (21)

Noti
e that for any s ∈ [t̄, t̄+∆(ǫl)]

Zs = z̄ +

∫ t̄+∆(ǫl)

t̄

f(Zs, Ys) ds

Hen
e,

∥

∥Zs − z̄
∥

∥ ≤ M∆(ǫl).

This and Assumption 2 imply that

1

∆(ǫl)

∫ t̄+∆

t̄

[

F (Zs, Ys) +

(

∂v(t̄, z̄)

∂z

)T

f(Zs, Ys)

]

ds

=
1

∆(ǫl)

∫ t̄+∆

t̄

[

F (z̄, Ys) +

(

∂v(t̄, z̄)

∂z

)T

f(z̄, Ys)

]

ds+O
(

∆(ǫl)
)

(22)

Denote

m(ǫl) =

⌊

t̄+∆(ǫl)

ǫl

⌋

−

⌊

t̄

ǫl

⌋

8



and note that

∣

∣

∣

∣

m(ǫl)−
∆(ǫl)

ǫl

∣

∣

∣

∣

≤ 1,

then

∣

∣

∣

∣

1

m(ǫl)
−

ǫl
∆(ǫl)

∣

∣

∣

∣

≤
ǫ2l

∆2(ǫl)

(

1

1− ǫl/∆(ǫl)

)

.

From this and (3), it follows that there exist positive 
onstants L1 and L2 su
h that

∥

∥

∥

∥

1

∆(ǫl)

∫ t̄+∆(ǫl)

t̄

[

F (z̄, Ys) + λT f(z̄, Ys)
]

ds−
ǫl

∆(ǫl)

⌊t̄/ǫl⌋+m(ǫl)
∑

i=⌊t̄/ǫl⌋+1

r(z̄, λ,Xi, Ai)

∥

∥

∥

∥

≤ L1
ǫl

∆(ǫl)

∥

∥

∥

∥

ǫl
∆(ǫl)

⌊t̄/ǫl⌋+m(ǫl)
∑

i=⌊t̄/ǫl⌋+1

r(z̄, λ,Xi, Ai)−
1

m(ǫl)

⌊t̄/ǫl⌋+m(ǫl)
∑

i=⌊t̄/ǫl⌋+1

r(z̄, λ,Xi, Ai)

∥

∥

∥

∥

≤ L2
ǫl

∆(ǫl)
.

(23)

Using (22) � (23), one may obtain from (21)

∂v(t̄, z̄)

∂t
+ inf

u2∈U2

sup
u1∈U1

E(u1,u2)
x

1

m(ǫl)

⌊t̄/ǫl⌋+m(ǫl)
∑

i=⌊t̄/ǫl⌋+1

r

(

z̄,
∂x(t̄, z̄)

∂z
,Xi, Ai

)

+O

(

ǫl
∆(ǫl)

)

+O
(

∆(ǫl)
)

+
O
(

µ̃(ǫl)
)

∆(ǫl)
+

o
(

∆(ǫl)
)

∆(ǫl)
≥ 0. (24)

De�ne now ∆(ǫl) as follows

∆(ǫl) =
√

µ̃(ǫl) ⇒
O
(

µ̃(ǫl)
)

∆(ǫl)
= O

(

√

µ̃(ǫl)
)

.

Hen
e, passing to the limit in (24) as ǫl tends to zero and taking into a

ount the asso
iated

game with the existen
e of stationary equilibrium poli
y pair as stated in (5), one obtains

∂v(t̄, z̄)

dt
+ σ

(

z̄,
∂v(t̄, z̄)

∂z

)

≥ 0 ⇒ −
∂v(t̄, z̄)

dt
+H

(

z̄,
∂v(t̄, z̄)

∂z

)

≤ 0.

This establishes that V (t, z) is a vis
osity sub-solution of (6) on [0, T )× IRn
.

Similarly, taking v(t, z) having 
ontinuous partial derivatives and satisfying the 
onditions:

v(t̄, z̄) = V (t̄, z̄) and v(t, z) ≤ V (t, z) in some neighbourhood of (t̄, z̄) ∈ [0, T )× IRn
, one 
an

obtain that

−
∂v(t̄, z̄)

dt
+H

(

z̄,
∂v(t̄, z̄)

∂z

)

≥ 0

whi
h means that V (t, z) is a vis
osity super-solution of (6) on [0, t)× IRn
. Thus, V (t, z) is

a vis
osity solution (6) on [0, t)× IRn
and, 
onsequently, it 
oin
ides with B(t, z).

This proves that Bǫ(t, z, x) U -
onverges (as ǫ tends to zero) to B(t, z) sin
e, otherwise,

by Lemma 3, one would be able to 
hoose a subsequen
e ǫl tending to zero su
h that the

U -limit (14) does not 
oin
ide with B(t, z).
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7 Appendix

In this appendix we �rst present some general properties of the original game with �xed ǫ,

whi
h allows us to obtain some properties of the limit game.

We �rst show that the original game is equivalent to a sto
hasti
 game with �nite state and

a
tion spa
es. This will allow us to use standard results to obtain the representation of the

value and optimal poli
ies.

7.1 An equivalent sto
hasti
 game

Lemma 4. For a �xed ǫ, the original hybrid game is equivalent to a �nite-stage sto
hasti


(Markov) game with �nite state and a
tion spa
es and it has a value Bǫ(t, z, x). That is

Bǫ(t, z, x) = Bup
ǫ (t, z, x) = Blo

ǫ (t, z, x).

In fa
t, introdu
e the following sto
hasti
 game:

• State spa
e: 
onsists of the histories

X :=

⌊

(T−t)ǫ−1

⌋

⋃

l=0

Hl where Hl :=
{

(x0, a
1
0, a

2
0, x1, a

1
1, a

2
1, ..., xl)

}

.

An element of the state spa
e will be denoted by h; n(h) will denote the length of the

horizon.

• A
tion spa
es: un
hanged, i.e. A = A1 ×A2.

• Transition probabilities these are obvious; for

h1 =
{

(x0, a
1
0, a

2
0, x1, a

1
1, a

2
1, ..., xl)

}

, h2 =
{

(y0, b
1
0, b

2
0, y1, b

1
1, b

2
1, ..., yk)

}

,

we have

P̂h1,α1,α2,h2 = Pxl,α1,α2,yk

for

k = l + 1, x0 = y0, a
1
0 = b10, a

2
0 = b20, x1 = y1, ..., xl = yl, b

1
k = α1, b2k = α2,

and zero 0 otherwise.

• Immediate 
osts:

c(t, z, h; a1, a2) =

∫ ǫn(h)+ǫ

ǫn(h)

F (Zs, Ys) ds

for n(h) <
⌊

(T − t)ǫ−1
⌋

, and

c(t, z, h; a1, a2) =

∫ T

ǫn(h)

F (Zs, Ys) ds+G(ZT )

for n(h) =
⌊

(T − t)ǫ−1
⌋

. Note that the immediate 
ost is parameterized by the initial

z and t. We did not write the immediate 
ost expli
itly, however the random variables

Zs, Ys and ZT appearing in the immediate 
ost are fully determined by h and the

a
tions a1, a2.

10



Let us de�ne the payo� of the new game: for any h su
h that n(h) ≤
⌊

(T − t)ǫ−1
⌋

, we set

Ĵǫ(t, z, h; v
1, v2) = E

(v1,v2)
h

{

∫ T

t+ǫn(h)

F (Zs, Ys) ds+G(ZT )
}

.

Note that ea
h poli
y ui
for player i in the original game has an obvious equivalent Markov

poli
y vi in this new game that a
hieves the same 
osts. It is thus simple to show that one

may restri
t to Markov poli
ies in the new game (optimal Markov poli
ies will depend of


ourse on z and t). The original poli
ies generate the same 
osts in the original game as their

equivalent new poli
ies in the new game:

Ĵǫ(t, z, h; v
1, v2) = Jǫ(t, z, x;u

1, u2),

where h = x.

Sin
e the new game is a standard sto
hasti
 game with �nite number of states and a
tions,

it has a value (see e.g. Van Der Wal [Wal81℄, 
hapter 10). We 
on
lude that the lower value

and the upper value in the original game 
oin
ide and are equal to this value. Note also that

dynami
 programming 
an be used to 
hara
terize the value and optimal poli
ies for both

players.

7.2 Proof of Lemma 2

It follows from arguments as in [Gai96℄ that there exists some real number ω su
h that for

any poli
ies u1
and u2

for the two players and any z1, z2, t1, t2 and x,

|Jǫ(t
1, z1, x : u1, u2)− Jǫ(t

2, z2, x : u1, u2)| ≤ ω(|t1 − t2|+ |z1 − z2|) +O(ǫ). (25)

This implies that (9) holds for the 
ase where x1 = x2
.

To 
on
lude the proof, it thus su�
es to show that for any z and t,

|Jǫ(t, z, x
1;u1, u2)− Jǫ(t, z, x

2;u1, u2)| < µ(ǫ)

where µ is as in Lemma 2. We do this next. Choose some arbitrary x∗
.

Denote η = inf{n : Xn = x∗}. Then

sup
u1,u2,x

Eu1,u2

x η < ∞. (26)

Indeed, there exists a pure stationary pair u1, u2
that a
hieves this sup, sin
e a
hieving the

sup is equivalent to a problem of maximizing some total expe
ted 
ost in a transient MDP

with �nite state and a
tion spa
es (see e.g. [Kal83℄ or [Hor77℄). That the sup is �nite follows

from the uni
hain assumption 3.

Note that

Bǫ(t
1, z1, x)−Bǫ(t

2, z2, x)

= sup
u1∈U1

inf
u2∈U2

Jǫ(t
1, z1, x;u1, u2)− sup

u1∈U1

inf
u2∈U2

Jǫ(t
2, z2, x;u1, u2)

≤ sup
u1∈U1

(

inf
u2∈U2

Jǫ(t
1, z1, x;u1, u2)− inf

u2∈U2

Jǫ(t
2, z2, x;u1, u2)

)

≤ sup
u1,u2

|Jǫ(t
1, z1, x;u1, u2)− Jǫ(t

2, z2, x;u1, u2)|.
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Sin
e the same holds for Bǫ(t
2, z2, x)− Bǫ(t

1, z1, x) we 
on
lude from the last equation and

from (25) that

|Bǫ(t
1, z1, x)−Bǫ(t

2, z2, x)| ≤ ω(|t1 − t2|+ |z1 − z2|) +O(ǫ). (27)

Denote τ = min(T, t+ ηǫ) and σ = t+ ηǫ. Now, the optimality prin
ile implies that

Bǫ(t, z, x)

= sup
u1∈U1

inf
u2∈U2

Eu1,u2

x

(

∫ T

t

F (Zs, Ys) ds+G(ZT )

)

= sup
u1∈U1

inf
u2∈U2

Eu1,u2

x

(

∫ τ

t

F (Zs, Ys) ds+

∫ T

τ

F (Zs, Ys) ds+G(ZT )

)

= sup
u1∈U1

inf
u2∈U2

Eu1,u2

x

(
∫ τ

t

F (Zs, Ys) ds+G(ZT )1{σ > T }+Bǫ(τ, Zτ , x
∗)1{σ ≤ T }

)

Thus,

Bǫ(t, z, x
1)−Bǫ(t, z, x

2)

= sup
u1∈U1

inf
u2∈U2

Eu1,u2

x1

(

∫ τ

t

F (Zs, Ys) ds+G(ZT )1{σ > T }+Bǫ(τ, Zτ , x
∗)1{σ ≤ T }

)

− sup
u1∈U1

inf
u2∈U2

Eu1,u2

x2

(

∫ τ

t

F (Zs, Ys) ds+G(ZT )1{σ > T }+Bǫ(τ, Zτ , x
∗)1{σ ≤ T }

)

≤ sup
u1,u2

Eu1,u2

x1

∣

∣

∣

∣

∫ τ

t

F (Zs, Ys) ds+G(ZT )1{σ > T }

∣

∣

∣

∣

+ sup
u1,u2

Eu1,u2

x2

∣

∣

∣

∣

∫ τ

t

F (Zs, Ys) ds+G(ZT )1{σ > T }

∣

∣

∣

∣

+ sup
u1,u2

∣

∣

∣
Eu1,u2

x1 Bǫ(τ, Zτ , x
∗)1{σ ≤ T } − Eu1,u2

x2 Bǫ(τ, Zτ , x
∗)1{σ ≤ T }

∣

∣

∣
.

Sin
e the same bound holds also for Bǫ(t, z, x
2)−Bǫ(t, z, x

1), we 
on
lude that

∣

∣Bǫ(t, z, x
1)−Bǫ(t, z, x

2)
∣

∣

(28)

≤ 2 sup
u1,u2,x

∣

∣

∣

∣

Eu1,u2

x

{

∫ τ

t

F (Zs, Ys) ds+G(ZT )1{σ > T }
}

∣

∣

∣

∣

(29)

+ sup
u1,u2

∣

∣

∣
Eu1,u2

x1 Bǫ(τ, Zτ , x
∗)1{σ ≤ T } − Eu1,u2

x2 Bǫ(τ, Zτ , x
∗)1{σ ≤ T }

∣

∣

∣
(30)

The �rst term above is O(ǫ) sin
e F and G are bounded, sin
e τ ≤ t+ ηǫ and due to (26).

Next we bound the se
ond term. We have

∣

∣

∣
Eu1,u2

x1 Bǫ(τ, Zτ , x
∗)1{σ ≤ T } − Eu1,u2

x2 Bǫ(τ, Zτ , x
∗)1{σ ≤ T }

∣

∣

∣

=
∣

∣

∣
Eu1,u2

x1 Bǫ(τ, Zτ , x
∗)− Eu1,u2

x2 Bǫ(τ, Zτ , x
∗)

−Eu1,u2

x1 Bǫ(τ, Zτ , x
∗)1{σ > T }+ Eu1,u2

x2 Bǫ(τ, Zτ , x
∗)1{σ > T }

∣

∣

∣

≤
∣

∣

∣
Eu1,u2

x1 Bǫ(τ, Zτ , x
∗)− Eu1,u2

x2 Bǫ(τ, Zτ , x
∗)
∣

∣

∣
+ sup

x,u1,u2

2M(T − τ + 1)Pu1,u2

x (σ > T ).

Due to (26), it follows that Pu1,u2

x (σ > T ) is of order of O(ǫ). It remains to estimate the �rst

term in the right hand side of the above inequality.
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Now, 
onsider an arbitrary augmented probability spa
e on whi
h the two state and

a
tion traje
tories are de�ned simultateously: those that start from initial states x1
and x2

respe
tively, and for whi
h the marginal distribution of ea
h traje
tory separately is given

by the 
orresponding probabilities Pu1,u2

x1 and Pu1,u2

x2 , respe
tively. Let P
u1,u2

x1,x2 be the

probability measure governing the augmented probability spa
e, and we denote by E
u1,u2

x1,x2

the 
orresponding expe
tation.

Let t1 and t2 be the times at whi
h we rea
h the state x∗
starting from states x1

and

state x2
, respe
tively. Let z1 and z2 be the value of the z variable at those instants. Then

we have by (27)

|Eu1,u2

x1 Bǫ(τ, Zτ , x
∗)− Eu1,u2

x2 Bǫ(τ, Zτ , x
∗)|

= |E
u1,u2

x1,x2 (Bǫ(t
1, z1, x∗)−Bǫ(t

2, z2, x∗))| ≤ ωE
u1,u2

x1,x2 (|t1 − t2|+ |z1 − z2|).

We have

sup
x1,x2,u1,u2

E
u1,u2

x1,x2 |t1−t2| ≤ sup
x1,x2,u1,u2

E
u1,u2

x1,x2 |t1−t|+ sup
x1,x2,u1,u2

E
u1,u2

x1,x2 |t2−t| ≤ 2ǫ sup
u1,u2,x

Eu1,u2

x η.

Due to the bounded fun
tion f , one may get

sup
x1,x2,u1,u2

Eu1,u2

x |z1 − z2| ≤ 2Mǫ sup
u1,u2,x

Eu1,u2

x η.

Thus, we see that (30) is bounded by 2ǫ(M +1) supu1,u2,xE
u1,u2

x η. This 
on
ludes the proof.

Note that in the above proof we 
ouple in some sense two systems that start in di�erent

initial states, in order to be able to 
ompute expressions su
h as E(t1 − t2). However, we

did not have to make any parti
ular assumption on the joint distribution between those two

systems in order to obtain the required bounds.

7.3 Proof of Lemma 3

Firstly, one 
an establish that given a 
ompa
t subset [0, T ] × D, D ⊂ IRn
, the following

spa
e

V =
{

Vǫ(t, z), ǫ → 0
}

where Vǫ(t, z) are 
ontinuous fun
tions on [0, T ]×D satisfying the property (13) under sup

metri
, is 
omplete and totally bounded. So, it is 
ompa
t.

Hen
e, every sequen
e in V in the form

{

Vǫn , n → ∞
}


ontains a subsequen
e

{

Vǫl

}

su
h

that the 
onvergen
e (14) will be uniform with respe
t to (t, z) ∈ [0, T ]×D.

Noti
e that our 
laim is stronger than that sin
e U-
onvergen
e is uniform with respe
t to

(t, z) from any 
ompa
t subset of [0, T ]× IRn
. So, we just remove the dependen
e of 
ompa
t

set D by 
hoosing a sequen
e of subsets [0, T ]×Dl
, where Dl ⊂ IRn

is the 
losed ball 
entered

at zero and having the radius l, l = 1, 2, . . . , and then, using a diagolization pro
edure one


an 
onstru
t a subsequen
e providing the required U -
onvergen
e.
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