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Abstract

A continuous time stochastic hybrid system, controlled by two players with opposite
objectives (zero-sum game), is considered. The parameters of the system may jump
at discrete moments of time according to a Markov Decision Process, i.e. a Markov
chain that is directly controlled by both players, and has finite state and action spaces.
Under assumption that the length of the intervals between the jumps is defined by a
small parameter €, the value of this game is shown to have limit as the small parameter
tends to zero. This limit is established to coincide with the viscosity solution of some

Hamilton-Jacobi type equations.
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1 Introduction and Statement of the problem

Consider the following hybrid stochastic controlled system. The state Z; € R" evolves

according to the following dynamics:

d

d_ZS :f(Z&}/S)v s € [th]a Zt =z (1)
S

where Y, € R¥ is the “control" and f : R" x R¥ — R"™ is a vector function. Y; is not chosen

directly by the controllers, but is obtained as a result of controlling the following underlying

stochastic discrete event system.

e Let ¢ be the basic time unit. Time is discretized, i.e. transitions occur at times
s=1le, 1 =0,1,2,..., (T —t)e |, where [x] stands for the greatest integer which is
smaller than or equal to x.

e There is a finite state space X and two players having finite action spaces A; and A,
respectively. Let A = A; x As.

o If the state is v and actions a = (a1, a2) are chosen by the players, then the next state
is w with probability P,q.,. Denote P = {Pyaw}-
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e A policy u® = {u},ul,...} in the set of policies U* for player i, i = 1,2 is a sequence
of probability measures on A; conditioned on the history of all previous states (the
X component only) and actions of both players, as well as the current state. More
precisely, define the set of histories:

H = UHl’ where H; := {(:Eo,a(l),ag,xl,a%,a%, ...,;El)}
l

are the sets of all sequences of 3/+1 elements describing the possible samples of previous
states and actions prior to ! as well as the currents state at stage ! (i.e. at time le). (The
range of [ will be either [ = 0,1,..., |(T'—t)e~ '], or, in other contexts, all nonnegative
integers, depending on whether we consider finite or infinite horizon problems). The
policy at stage [ for player 4, u}, is a map from H; to the set of probability measures
over the action space A;. (Hence at each time t = l¢, player ¢, observing the history
hi, chooses action a; with probability p(a;|h;)).

e Let F; be the discrete o-Algebra corresponding to H;. Each initial distribution & and
policy pair u for the players uniquely define a probability measure P over the space of
samples H (equipped with the discrete o-algebra), see e.g. [Hin70]. Denote by E¢ the
corresponding expectation operator. On the above probability space are now defined
the random processes X; and A; = (A}, A?), denoting the state and actions processes.
When the initial distribution is concentrated on a single state x, we shall denote the
corresponding probability measure and expectation by PY and EY.

Remark: The reason that we do not include the Z part of the state in the definition of the
policies is that the trajectory of this component is fully determined by the trajectories of the
X component together with the actions, for a fixed initial state z. The latter is assumed to
be fixed and common knowledge for the players.

Let g : X x A — R*, be some given vector-valued bounded function and X,, and A, =
(AL A2) denote the state and actions processes. Then Y in (1) is given by

Ys = 9(X|s/e)s Alsse))- (2)
Ys and thus Z; are well defined stochastic processes, and are both F|(r_;) -1 measurable.

We shall be especially interested in the following classes of policies.

e The stationary policies, denoted by S, for player 1, and Ss, for player 2. A policy u is
called stationary if u; depends only on the current state (the X-component), and does

not depend on previous states and actions nor on the time. Let S := &7 X Ss.

e The Markov policies M7, Ma: these are policies where u{ depends only on the current
X component of the state (at time ¢ = le) and on stage [, and does not depend on

previous states and actions. Denote M = My x Mas.

Let us define the payoff of the game by the equation

1

T
Itz it ) = B0 [0 P2 ds+ 62,
t

when policies u', u? are used by the players, the initial state of the system is z, the initial

state of the controlled Markov chain is z, Z, is obtained through (1) and F : R" x R* — R!,



G:R" — R are running cost and terminal cost function respectively.

In our dynamic game, player 1 wishes to maximize J.(,z,x;u',u?) and player 2 wants to
minimize it. We define the upper and lower value functions of the hybrid game as
B (t,z,x) = inf sup J(t, 2, 2;u",u?)
u2eU? 1ept
Bl(t,z,2) = sup inf J.(t, 2, x;ut, u?)
wleyt u?el?
It can be shown (see Appendix) that the stochastic hybrid game has value B.(t, z,2). That
is, for all (¢,z,2) € [0,T] x R" xX.

B.(t,z,x) def BYP(t,z,x) = Bl(t, 2, x).
Our model is characterized by the fact that € is supposed to be a small parameter and
our objective is to show that the value of the game has a limit as ¢ — 0 and this limit is a

viscosity solution of some Hamilton-Jacobi type equations.

Notice that this result can be viewed as an extension of viscosity solutions for deterministic
singularly perturbed zero-sum differential games (see [Gai96]) to the stochastic case under

consideration.

This paper is a continuation and generalization of previous works [SAG97] which solves a
hybrid problem restricted to a single controller and [AG94| which considers a linear hybrid
game with linear cost. Asin [SAG97, AG94], the fact that e is small means that the variables
Y, can be considered to be fast with respect to Zs, since, by (2), they may have a finite
(not tending with e to zero) change at each interval of the length e. This along with the
dynamic equation of the system (1) allow to decompose the game into stochastic sub-games
on a sequence of intervals which are short with respect to the variables Z (in the sense that
Z remain almost unchanged on these intervals) and which are long enough with respect
to Ys (so that the corresponding stochastic sub-games show on these intervals there limit

properties).

The type of model which we introduce is natural in the control of inventories or of pro-
duction (see for example [SZ94]), where we deal with material whose quantity may change in
a continuous way. Breakdowns, repairs and other control decisions yield the underlying con-
trolled Markov chain. In particular, repair, or preventive maintenance decisions are typical
actions of a player that minimizes costs. If there is some unknown parameter (disturbance)
of the dynamics of the system (e.g. the probability of breakdowns) which may change in a
way that depends on the current and past states in a way that is unknown and unpredictable
by the minimizer, we may formulate this situation as a zero-sum game, where the minimizer
wishes to guarantee the best performance (lowest expected cost) under the worst case behav-

iour of nature. Nature may then be modelled as the maximizing player.

Our model may also be used in the control of highly loaded queueing networks for which
the fluid approximation holds (see Kleinrock [Kle76] p. 56). The quantities Z; may then
represent the number of customers in the different queues whereas the underlying controlled
Markov chain may correspond to routing, or flow control of, say, some on-off traffic, with

again, nature controlling some disturbances in quantities such as service rates.



The remainder of this paper is organised as follows. In section 2 we give all imposed
assumptions and then introduce the associated sub-game and the existence of the value of
such game in section 3. The Limit Hamilton-Jacobi-Isaacs equations for the stochastic hybrid
game is defined in section 4. The main results are presented in section 5. The most tedious

proves are gathered in the last two sections.

2 Basic Assumptions

In our consideration, we use the following assumptions.

Assumption 1. There ezists a compact subset D1 € R™ which contains all solutions Zs of
the system (1) obtained with different admissible controls Yy which are defined as piecewise
constant function of time taking their values in a finite subset of R¥. Denote this subset by
Ds.

Assumption 2. All the functions used in the definitions of the stochastic hybrid and asso-
ciated games are continuous on Dy X Do and also they satisfy the local Lipschitz conditions
in (z,y) with Lipschitz constant L > 0. That is, for any (z;,y;) € (D1 x D2) i=1,2.

Hf(zhyl) - f(227y2)” < L{||21 — 22| = lly1 — y2||},
HF(Zlayl) - F(227y2)|| < L{||lz1 — 22|l = ly1 — v2ll},

Notice that from Assumption 1 and Assumption 2, it follows that the functions f and F
are bounded. That is, there exists a constant M > 0 such that for all (z,y) € D1 x Dy

IfEul<M,  FEyl<M and [[G(z)] <M.

Assumption 3. The stochastic process { X,,, A, } which is known as controlled Markov chain
or Markov decision process has a unichain structure: under any pair of stationary policies

for the two players, the state process constitutes a single ergodic class of states.

3 (z,A)-associated games

Consider a family of infinite horizon stochastic games, all with the same state and action
spaces X and A as above and the same transition probabilities P, parameterized by a pair
(z,A) e R" xR". Let r : R" x R" xX x A — IR be the immediate cost defined as follows

r(z,\z,a) = F(z, g(z, a)) + )\Tf(z, g(z, a)). (3)

With the same definition of the set of policies U = (U*,U?) as above, let

m—1

1
o(z, \,x,u) := lim —EY
m—oo TN

T(Z,)\,Xi,Ai) (4)
i=0

A policy pair u, x = (u} ,u2 ,) € U is said to be a saddle point or an equilibrium policy
pair for (z, A)-associated game with infinite horizon expected average cost criterion, if for all

ul e UL, u? e U?,

oz, A ut uly) <o(z A, ul yul ) <5020 2l u?).



Let fz)\ = (le)/\, fi)\), where le)/\, ff)\ be some stationary equilibrium policy pair for the
expected average problem. The existence of such stationary equilibrium policy pair is well
known under our unichain assumption 3, see [Rog69, Sob71] (this extends to the count-
able case under Simultaneous Doeblin Condition, introduced in [Hor77] Section 11.1, with
a communicating condition, or under contraction conditions, see e.g. [Fed78] and [AHS97],

respectively). The function
6(27)‘) = E(ZvAv‘rvle,)\afi)\) (5)

is then defined to be the value of the (z, A)-associated game, and it is known to be independent
on x (which we shall thus omit from the notation). It can be computed using value iteration,
(see e.g. [Wal81], chapter 13).

4 Limit Hamilton-Jacobi-Isaacs equations

for the stochastic hybrid game.

Let us consider Hamilton-Jacobi equations

_0B(t,z) H (z 0B(t, z)

o o > =0, (t2)€[0,T)xR" ©)

with Hamiltonian H(z,A) being equal to —7(z, \) defined in (5). These equations will be
referred to as Limit Hamilton-Jacobi-Isaacs (LHJI) equation for the stochastic hybrid game.
Let us denote by B(t, z) the viscosity solutions (see definition in the beginning of Section 6)
of this equation which satisfy the boundary condition

B(T,z) =G(z), VzeR". (7)

In the following sections, it will be established that the value of our hybrid game converges
to B(t,z) as € tends to zero.

As in stochastic hybrid optimal control problems e.g. [AG97, SAG97], the above results
can be considered to be a justification of a decomposition of the stochastic hybrid game
into the associated fast game allowing to describe an asymptotically optimal behaviour of
the players if the slow parameters are fixed and the LHJI equations responsible for a “near-

optimality" of the slow dynamics.

5 Main results

Our main result is now formulated as theorem below

Theorem 1. Let Assumption 1-3 be true. Let equation (6) with H(z,\) = —a(z,\) have
the unique continuous viscosity solution B(t,z) satisfying the boundary condition (7). Then

the stochastic hybrid game have a value in the limit. That is,
lim B.(t, z,x) d—efB(t z) (8)
E*}O € b ) - ) )

with the convergence being uniform on compact set [0,T] x Dy x X.



We shall use the following property of the value function. It is an equi-continuous type

and is crucial in our proof.

Lemma 2. Corresponding to any compact set [0, T|x D1 x X there exists continuous functions
w(a), pu(a) tending to zero as o tends to zero such that for any (t*, 2%, 2%) € [0, T]x D1 x X, i =
1,2
|Be(t', 2, at) — Be(t?,2%,2%)| S w(|t! — 2] + [2" = 2°|) + ule), 9)
with
B(T,z,xz) =G(z), ¥Y(z,z)€ D xX. (10)

This lemma is established in the appendix.

Let us introduce the notation
Vi(t,z) < B.(t, z,2%)

where 2* is some fixed (but arbitrary) state. By Lemma 2, if (¢,z,2) belongs to a compact
set [0,T] x Dy x X, then
‘Bé(t,z,x) — Ve(t,z)| < u(e). (11)

Hence, to prove (8) it is sufficient to show that
lim V. (¢, z) = B(t, 2), (12)
e—0

where the convergence is uniform with respect to (¢, z) from any compact subset of [0, 7] x R".
For the sake of brevity we shall refer to this sort of convergence as to U-convergence and the

corresponding limits will be called U-limits.
From Lemma 2, it follows that for (¢!,2%) € [0,7] x Dy,i=1,2
Vot =) = Vilt2,22)] < (it — 2] + |2 — 22)) + u(e). (13)

Lemma 3. Given any sequence €; tending to zero, one can find o subsequence €;, = € of this

sequence such that there exists the U-limit

lim V,, (t,2) < V(t, 2). (14)

€ —0

The proof of the lemma is also given in the appendix.

Let us show that any function obtained as U-limit in (14) coincides with B(t, z). Notice
that, by (13), any such function V' (¢, z) is continuous on [0,7] x R" and, by (10) and (11),
it satisfies the condition

V(T,z) =G(z), VzeR".

Thus, to show that it coincides with B(¢, z) it is enough to show that it is a viscosity solution
of (6) with H(z,\) = —35(z, \).



6 Proof of Main Result

To begin this section, let us recall the definition of viscosity solutions.
Definition.

1. A function V(t, z) is called a viscosity sub-solution of (6) if
ov(t, 2) _ ov(t, 2)
_An) o) <
ot + H(z, 5% <0,
for any (t,2) € [0,T) x R™ and for each function v(t,z) which has continuous partial

deriatives on [0,T) x R"™ and satisfies the conditions: v(t,z) = V(t,z) and v(t,2) >
V (t, z) in some neighbourhood of (,%).

2. A function V(t,z) is called a viscosity super-solution of (6) if
ov(t, 2) _ ov(t, 2)
_ ) e Sl IS
ot + H(z, 5% >0,
for any (t,2) € [0,T) x R™ and for each function v(t,z) which has continuous partial

derivatives on [0,T) x R™ and which satisfies the conditions: v(t,z) = V(t,2) and
v(t,z) < V(t,2) in some neighbourhood of (t,Zz).

3. A function V(t,z) which is both viscosity sub- and super- solution is called a viscosity

solution of equation (6).

Proof of Theorem 1. We first note that the hybrid game has the value (this is proved in
the Appendix). It permits us to consider the value function B.(t, z,z) instead of its upper
and lower value when dealing with dynamic programming approach.

Let A % ek (€) be a function of € such that K (e) takes integer value and

lim A =0, limK(e) = occ.

e—0 e—0

Take ¢ € [0,7] with initial state of the system Z; = z and initial state of the Controlled
Markov chain X ;) = Z. Then, it can be shown that

T
B(f,z,7) = inf sup E§“1>“2){ / F(ZS,YS)derG(ZT)}
u?2eU? 1yt i

1,2 {+A — — —
= inf sup B ){/ F(ZS,YS)dS—i—Be(t—i-A,z(t—i—A),x(t—i-A))}, (15)
£

u?eU? y1egyt
where z(f + A) = Zgya and z(t + A) = X (11a)/c)-

Let (¢,2,z) € [0,T) x Dy x X. Then, by Assumption 1, (z(t+ A),z(+A)) € Dy x X, where
D, are compact sets in IR". Since the convergence in (14) is uniform with respect to (¢, z)
from any compact subset of [0,7] x IR", there exists a function 7(¢;),

lim 7(e;) = 0, (16)

e —0



such that
Ve, (t,2) =V (t,2)| <v(e), V(t z) €[0,T] x Ds.

Using this and (11), one obtains from (15)

1 2 E+A — —
V(t,z) = inf sup E M{/ F(ZS,YS)ds+V(t+A,z(t+A))}
t

u?2eU? 1epyt
+ O(f(er)), (17)

where
fi(e)) = max{u(e), v(a), a}. (18)
Let now v(t, z) have continuous partial derivatives and satisfy the conditions: v(t,z) =
V(t,z) and v(t,z) > V(t,z2) for (¢,z) in some neighbourhood of (¢,z). From (17) it follows
then

1 2 t+A — —
v(t,2) < inf  sup B u>{/ F(ZS,YS)ds+v(t+A,z(t+A))}
t

T wu2elU? et
+O(fi(er))- (19)
By definition
t+A
z(t+ A) :2—|—/ f(Zs,Yy) ds. (20)
t

By Assumption 1 and 2, the function f is continuous and its arguments belong to compact
sets, the second term in the right hand side of (20) is of the order O(A(g;)). Thus, substituting

(20) into (19) and taking into account that v(t, z) has continuous partial derivatives, one

obtains
v(t, Z 1,2 A o(t,z)\ "
oult, 2) gt’ )+u212fU2 ?EBIE;“ 7“>{A(1€l)/t [F(ZS,YSH (8 gz )> f(Zs,Ys)] ds}
(e o(Al(e
2o

Notice that for any s € [£,f+ A(e)]

EJrA(él)
Zs:2+/ f(Zquvs)dS
t

Hence,
1Zs — 2| < MA(e)).

This and Assumption 2 imply that

ﬁq) /tt+A {F(Zs, Y.) + <8”§i’ 2))T f(ZS,YS)} ds

Denote



and note that

then
€]

it ~ 5| = 5 (=)
m(el) A(el) o A2(€l) 1-— el/A(q) '
From this and (3), it follows that there exist positive constants L; and Lo such that

1 t+A(er) . p [t/er]+m(er) o
- FZY)+ M f(z2Y,)|ds — — r(Z, N\, X3, 4A)|| L Li——
s [ e evren]e-gn 3 N ="a
i=|t/e;]+1
H o [t/e]+m(er) 1 [t/ e]+m(e) o
T(E,)\,Xi,Ai) — — T(z, A,XZ,Al) S LQ—.
Aler) i= /1) +1 mei) =t/ )1 Ale)
(23)
Using (22) — (23), one may obtain from (21)
g [t/ei]+m(e) o
ng;’ ?) + 2inf2 sup Eg(ﬁul’“2)—1 Z 7“(5, axg’z),Xi,Ai)
u?e€U? 1yt m(q) i=|F/e )41 z
€ O(ile)) | o(Ala))
+ O + O(A(e)) + + >0 24
(atey) otatan + S5+ 5t 20 @

Define now A(e;) as follows

Aler) = V/ile) = %ﬁl))) = o(Vi@).

Hence, passing to the limit in (24) as ¢; tends to zero and taking into account the associated

game with the existence of stationary equilibrium policy pair as stated in (5), one obtains
ov(t,z)  _[_ ov(t,z2) ov(t, z) _ ovu(t, 2)
) ) > A ) <.
dt +”(z’ 0. ) 207 T TH (BT ) =0

This establishes that V (¢, 2) is a viscosity sub-solution of (6) on [0,7) x R".

Similarly, taking v(¢, z) having continuous partial derivatives and satisfying the conditions:
v(t,z) = V(t,2) and v(t, z) < V(¢ z) in some neighbourhood of (¢, 2) € [0,7) x R", one can

obtain that _ _

_(%Eltt, z) " (27 Bv(t,z)) >0
which means that V' (¢, z) is a viscosity super-solution of (6) on [0,t) x R"™. Thus, V (¢, z) is
a viscosity solution (6) on [0,¢) x R"™ and, consequently, it coincides with B(t, z).

This proves that B.(t,z,z) U-converges (as € tends to zero) to B(t, z) since, otherwise,
by Lemma 3, one would be able to choose a subsequence ¢; tending to zero such that the
U-limit (14) does not coincide with B(t, z). O



7 Appendix

In this appendix we first present some general properties of the original game with fixed ¢,
which allows us to obtain some properties of the limit game.

We first show that the original game is equivalent to a stochastic game with finite state and
action spaces. This will allow us to use standard results to obtain the representation of the
value and optimal policies.

7.1 An equivalent stochastic game

Lemma 4. For a fized €, the original hybrid game is equivalent to a finite-stage stochastic

(Markov) game with finite state and action spaces and it has a value Bc(t,z,x). That is
B(t,z,x) = B*(t,z,x) = B(t, 2, x).
In fact, introduce the following stochastic game:

e State space: consists of the histories

|(r—t)e ]
X = U H; where H; := {(:Eo,a(l),ag,xl,a%,a%,...,:vl)}.
1=0

An element of the state space will be denoted by h; n(h) will denote the length of the

horizon.
e Action spaces: unchanged, i.e. A = A; x As.

o Transition probabilities these are obvious; for
h' = {(xo,a(l),ag,xl,a%,a%, ...,:vl)},h2 = {(yo,b(l),b%,yl,b},b%, ...,yk)},

we have

Priat,az,pz = Puyat a2y,

for

1 12 2 1 132 2
k=1+1,20=yo0,ap = by, a5 =b5,21 =Y1,..., 21 =y1,b, = a, by = a”,

and zero 0 otherwise.

o Immediate costs:

en(h)+e
cltmhiald) = [ Rz, V) ds
en(h)
for n(h) < |(T —t)e~ '], and
T
c(t,z, h;at,a?) = / F(Zs,Ys)ds + G(Z7)
en(h)

for n(h) = [ (T — t)e~'|. Note that the immediate cost is parameterized by the initial
z and t. We did not write the immediate cost explicitly, however the random variables
Zs,Ys and Zp appearing in the immediate cost are fully determined by A and the

actions a',a?.

10



Let us define the payoff of the new game: for any h such that n(h) < [(T —t)e™!|, we set

~ 'UI,U2
Jé(t,z,h;vl,vQ):E,(I ){/
t+en(h)

T
F(Z,Ys)ds + G(ZT)}.

Note that each policy u’ for player 4 in the original game has an obvious equivalent Markov
policy v* in this new game that achieves the same costs. It is thus simple to show that one
may restrict to Markov policies in the new game (optimal Markov policies will depend of
course on z and t). The original policies generate the same costs in the original game as their

equivalent new policies in the new game:
je(t, 2, hyvt 0?) = Jo(t, 2, oy ut, u?),

where h = x.

Since the new game is a standard stochastic game with finite number of states and actions,
it has a value (see e.g. Van Der Wal [Wal81], chapter 10). We conclude that the lower value
and the upper value in the original game coincide and are equal to this value. Note also that
dynamic programming can be used to characterize the value and optimal policies for both
players. O

7.2 Proof of Lemma 2

It follows from arguments as in [Gai96] that there exists some real number w such that for

any policies ! and u? for the two players and any z', 22,t!,t? and =,
|J(th, 2t w st u?) — T (82 2% 2wt u?)| S w((tt — 82+ |21 — 2%]) + O(e). (25)

This implies that (9) holds for the case where z! = x2.

To conclude the proof, it thus suffices to show that for any z and ¢,

|Je(t, 2, 25 ut u?) — Je(t, 2, 2250t u?)| < ple)
where p is as in Lemma 2. We do this next. Choose some arbitrary x*.
Denote 1 = inf{n : X,, = 2*}. Then

sup Egl’“zn < 00. (26)

ul,uz,z
Indeed, there exists a pure stationary pair u',u? that achieves this sup, since achieving the
sup is equivalent to a problem of maximizing some total expected cost in a transient MDP
with finite state and action spaces (see e.g. [Kal83] or [Hor77]). That the sup is finite follows

from the unichain assumption 3.

Note that
B.(t', 2%, z) — B.(?, 2%, 2)

= sup inf J(t' 2 z;ut,u?) — sup inf J.(t%, 2% z;ut, u?)

uleyl u?el? wley! u2el?
< sup inf J.(t', 2t et u?) - inf J (82 2%zt u?)
wley! \u?eU? u2elU?
1 1 ool 2 2 .2 . 2
< sup |J€(t527$7u7u)_‘]€(tvz5I7U5U)|'
ul u?

11



Since the same holds for B, (%, 2%, x) — Bc(t!, 2!, z) we conclude from the last equation and

from (25) that
|B(t', 21, x) — B(t?, 2%, 2)| < w(|t' — 2] + |21 = 22]) + O(e). (27)
Denote 7 = min(7,t + ne) and o =t + ne. Now, the optimality princile implies that
B(t,z,x)
T
= sup inf E“ u? / F(Z,,Ys)ds + G(Zr)
wleyt u?el? +

T

FZS,Y ds+/ F(ZS,YS)ds+G(ZT)>

T

= sup inf E“ u?
wleyt u?el?

= swp inf E“ u? (/ F(Z,Ys)ds+ G(Zy)1{oc > T} + B(1, Z;, 2" )1{0<T})
t

uleyl weU?
Thus,

B(t,z,2") — Be(t, z, 2°)

= sup inf E% (/ F(Z,,Ys)ds + G(Zr)1{o > T} + B(r, ZT,:c*)l{ogT}>
wleyt u?el? ¢

~ sup inf B, (/ F(ZS,YS)ds—FG(ZT)l{U>T}—|—BE(T,ZT,:13*)1{U§T})
uleUl u?€l? t

< sup E;ﬂ w? / F(Zs,Ys)ds + G(Zr)1{c > T}}
ul u2 t
+ sup B / F(Z,,Yy)ds + G(Zr)1{o > T}‘
ul,u? t
+ sup |EY Y Bo(r, Z, a1 {o < T} — B B(r, Zr,2")1{0 < T}} .
ul,u?

Since the same bound holds also for B.(t, z,2%) — B.(t, z,z'), we conclude that

’B (t,z,2') — Bé(t,z,:EQ)‘ (28)
< 2 sup E;;“{/ F(ZS,YS)ds—i—G(ZT)l{a>T}}‘ (29)
ulu?,x t
+ sup |EY Y Bo(r, Zr,a*)1{o < T} — B Bo(r, Zr,2)1{o < T}|  (30)
ul u?

The first term above is O(e) since F' and G are bounded, since 7 < t 4 ne and due to (26).
Next we bound the second term. We have

‘ng*“QBE(T, Ze,w" ) o < T} — B Bo(r, Zr,2")1{o < T}}
= |EY " B(r, Zs,27) — B Bo(7, Zs, 27)
—EY Y Bo(r, Zy,2)1{o > T} + E%" B(r, Zp, 2")1{0 > T}‘

'U.l ’U.2 ul u2 * 1 2
< ’Eml B(1,Z:,2%) = E ;" Be(1,Zr,2")| + sup 2M(T —7+1)P; " (0 > T).

z,ul u?

Due to (26), it follows that P* %" (¢ > T) is of order of O(e). It remains to estimate the first
term in the right hand side of the above inequality.
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Now, consider an arbitrary augmented probability space on which the two state and
action trajectories are defined simultateously: those that start from initial states ' and z?
respectively, and for which the marglnal distribution of each trajectory separately is given

by the corresponding probabilities P "% and P, ’u2, respectively. Let P xz be the

probability measure governing the augmented probability space, and we denote by Emlymj
the corresponding expectation.

Let ! and t? be the times at which we reach the state z* starting from states z' and
state 22, respectively. Let z! and 22 be the value of the z variable at those instants. Then
we have by (27)

\E% " Bo(r, 2y, %) — B Bo(r, 2y, a%))|

—’U.’U.

= [Ep2(Be(t, 2 2%) — B(t?, 2%, 2%))] < wEml gcz(lt1 — 2]+ |z = 2.
We have

D
sup E 1m2|t1—t2| < sup EZI:;2|tl—t|+ sup E 1m2|t —t] < 2e sup E“ u?

xl x2 ul u? zl 22 ul u? xl 22 ul ju? ul u?,x

Due to the bounded function f, one may get

1,2 1,2
sup  EY " |2t — 2% <2Me sup EY “p

xl 22 ul u? ulu?,x

Thus, we see that (30) is bounded by 2¢(M + 1) sup,,: EYv"2y. This concludes the proof.

O

7u2 ):E

Note that in the above proof we couple in some sense two systems that start in different
initial states, in order to be able to compute expressions such as E(t! — t?). However, we
did not have to make any particular assumption on the joint distribution between those two
systems in order to obtain the required bounds.

7.3 Proof of Lemma 3

Firstly, one can establish that given a compact subset [0,7] x D, D C R", the following
space

V={Vi(t,2), e >0}

where V_(t, z) are continuous functions on [0, 7] x D satisfying the property (13) under sup
metric, is complete and totally bounded. So, it is compact.

Hence, every sequence in V in the form {V.,, n — oo} contains a subsequence {V,,} such
that the convergence (14) will be uniform with respect to (¢, z) € [0,7] x D.

Notice that our claim is stronger than that since U-convergence is uniform with respect to
(t, z) from any compact subset of [0,T] x R". So, we just remove the dependence of compact
set D by choosing a sequence of subsets [0, 7] x D!, where D' C IR"™ is the closed ball centered
at zero and having the radius [, [ = 1,2, ..., and then, using a diagolization procedure one
can construct a subsequence providing the required U-convergence. O
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