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ABSTRACT

Linear Programming is known to be an important and useful tool for solving Markov Decision

Processes �MDP� Its derivation relies on the Dynamic Programming approach� which also serves

to solve MDP� However� for Markov Decision Processes with several constraints the only available

methods are based on Linear Programs� The aim of this paper is to investigate some aspects of

such Linear Programs� related to multi�chain MDPs� We �rst present a stochastic interpretation

of the decision variables that appear in the Linear Programs available in the literature� We then

show for the multi�constrained Markov Decision Process that the Linear Program suggested in ���

can be obtained from an equivalent unconstrained Lagrange formulation of the control problem�

This shows the connection between the Linear Program approach and the Lagrange approach� that

was previously used only for the case of a single constraint ���	��	���

Keywords� Multi�chain Markov Decision Processes� average cost criterion� state�action frequen�

cies� deviation measure� linear programming� lagrange formulation�

	



INTRODUCTION

Markov Decision Processes �MDP have been used extensively in the past to model and solve

problems in data communications� computer networks� production etc��� We consider in this note

MDPs where the optimization criteria are of expected time average type� with �nite state and

action spaces� A basic method for solving such problems has been Dynamic Programming� Derman

��� obtained a Linear Program formulation from the dynamic program and investigated its dual

program DLP� Using DLP and another Linear Program he was able to obtain an optimal control

policy� Later on� Hordijk and Kallenberg obtained an optimal policy directly from DLP ���� One

advantage of using this new approach was that it could be extended to ConstrainedMarkov Decision

Processes� as Hordijk and Kallenberg did in ���� unlike the Dynamic Programming approach�

The �rst issue of this paper is to present a stochastic meaning to the two di�erent kinds of

decision variables that appear in the Linear Programs of ����

The �rst kind is related to the expected frequencies of pairs of states and actions �see e�g�

���� These frequencies are also known as �occupation measure� �see e�g� ��� or expected empirical

probabilities of state�action pairs� The precise de�nition of these frequencies is given in the next

Section� Derman ��� considered the set of all frequencies that are achieved by di�erent policies� and

showed that it is equal to the set of achievable decision variables of the �rst kind� The properties

of these frequencies have been studied in ���� ��� and ����

However� the stochastic meaning of the second type of decision variables was unknown till

now� to the best of our knowledge� except for stationary policies� where the decision variables were

related to the deviation matrix by Kallenberg �	���

We note that for MDPs with a sample�path constraint �instead of the weaker constraint on the

expected cost� an ��optimal policy can be obtained by using Linear Programs that do not involve

the second type of decision variables� see �	
��

The importance in understanding the stochastic meaning of the decision variables is that it

may enable us to obtain a Linear Program for solving MDP�s directly� without requiring to go

through the dual problem obtained from the Dynamic Program� This may be crucial in case

duality problems may arise� such as the duality gap in in�nite Linear Programs� Such a direct

approach to obtain the Linear Problem is illustrated in �	�� There Altman and Shwartz obtained a

Linear Program for solving constrained MDPs with a countable state space� However� they make

strong ergodic assumptions �such as the unichain assumption under which only decision variables

of the �rst kind are needed� In the case of an in�nite state space� it seems that understanding the






meaning of all decision variables may enable to obtain Linear Programs with a general multichain

structure� This is especially important in the constrained case where no alternative methods are

known for solving the problem�

The second issue in this paper is to present an alternative derivation of the Linear Program used

for solving the constrained Markov Decision problem ���� Our derivation is based on a Lagrange

formulation which generalizes the one used in the case of a single constraint ��� �later extended in

�	����	�� to the countable state space and is realted to the approach used by Borkar in his book

���� Our new derivation seems to be more natural and straightforward than the previous method

���� where the paradigm was to introduce the LP and then to prove that the optimal policy and

optimal value of the control problem are appropriately related to the optimal solution and value of

the LP�

After reviewing in Section 
 the Linear Program for solving MDPs� we introduce in Section �

the biased deviation measure for arbitrary policies and show that it corresponds to the second kind

of decision variables in the following sense� The sets of pairs of frequencies and biased deviation

measures obtained by any arbitrary policy form a feasible solution for the Linear Program� In

Section � we then present some properties of the deviation measures� In Section � we present the

alternative derivation of the LP used for the constrained case�

�� MODEL AND ASSUMPTIONS�

Consider a Markov decision process with a �nite state space X � f�� 	� ���� Ng and a �nite

action space A� Without loss of generality� we assume that in any state x all actions in A are

available� The probability to go from state x to state y given that action a is used� is given by the

transition probability Pxay� A policy u in the policy space U is described as u � fu�� u�� ���g� where

ut� applied at time epoch t� is a probability measure over A conditioned on the whole history of

actions and state prior to t� as well as the state at time t� Given an initial distribution � on X� each

policy u induces a probability measure denoted by Pu
� on the space of sample paths of states and

actions �which serves as the canonical sample space �� The corresponding expectation operator

is denoted by Eu
� � On this probability space are de�ned the state and action processes� Xt� At�

t � 	� 
� ����

A Markov policy u � U�M is characterized by the dependence of ut�� on the current state

and the time only� A stationary policy g � U�S is characterized by a single conditional probability

measure pg�jx over A� so that pg
Ajx � 	� under g� Xt becomes a Markov chain with stationary

�



transition probabilities� given by P g
xy �

P
a�A p

g
ajxPxay� The class of stationary deterministic

policies U�SD is a subclass of U�S� and every g � U�SD is characterized by a mapping g�X� A�

so that pg�jx � �g�x��� is concentrated at the point g�x for each x�

For any given policy g � U�S we denote by ��g the number of closed classes in the Markov

chain generated by policy g� We write B�g for a subset of X that contains precisely one state

from each closed class� Clearly jB�gj � ��g� T �g denotes the set of transient states and Rl�g�

l � 	� � � � � ��g the closed classes�

MP g
�x
fXt � yg ��

��
�
P
g
�x
fXt � y�Xs ��M� 
 � s � tg� t � 


�x�y� t � 	

stands for the taboo transition probabilities with taboo set M � The probabilities FM ��x� g of

reaching set M � when the chain initially starts in state x� are equal to

FM��x� g �
X
m�M

�X
t��

X
y�X�M

MP
g
�x
fXt � ygP g

ym�

for x ��M � and 	 for x � M �

Let c � X �A � R� be a �real valued cost function and de�ne the average costs associated

with a policy u and with an initial distribution � on X�

C��u � lim
t��

	

t
Eu
�

�
tX

s��

c�Xs� As

�
�	�


Denote by OP the problem of �nding a policy u that minimizes C��u for a given initial

distribution �� Let C� be the optimal value of OP� A policy that achieves C��u � C� is said to

be optimal for OP� Denote U� the set of all such policies�

Derman ��� has shown that the cost in �	�
 can be represented in terms of the following state

action frequencies� let

�fT ��� u is the matrix whose elements are given by

�fT �y� a��� u �� the average expected frequency of state y and action a till time T when using

policy u and initial probability distribution on the state space is ���� i�e�

�fT �y� a��� u �
	

T

TX
s��

Pu
� �Xs � y�As � a

�



Let �F ��� u be the set of accumulation points of �fT ��� u� A generic element of �F ��� u will be

denoted by �f��� u�

Given a class of policies U �� de�ne L��U
� �� 	u�U �

�F ��� u� The set of frequencies obtained

by all policies is L� �� 	u�U �F ��� u�

The following notation is used below� 	fAg is the indicator function of the set A and �a�x is

the Kronecker delta function� We denote by B the closure of a set B� and jBj is the cardinality of

the set �we shall use this notation for �nite sets only� in which case jBj is the number of elements

in B� For two matrices 	�Q of appropriate dimensions� 	 �Q stands for summation over common

indices �scalar product�

�� LINEAR PROGRAM FOR SOLVING MDPs

One method of solving OP is based on the solution of a LP which we present below� The im�

portance of this method lies in the fact that it also enables to deal with optimization problems with

additional constraints� where other methods �based on dynamic programming are not applicable�

Given the initial distribution � over X� de�ne �� to be the set of f�z� 	g� z� 	 � RjX�Aj� that

satisfy X
y�X

X
a�A

��y�v
 Pyavz�y� a � �� �v � X �
�	�a

X
a�A

z�v� a �
X
y�X

X
a�A

��y�v
 Pyav	�y� a � ��v� �v � X �
�	�b

z � � �
�	�c

	 � � �
�	�d

Remark� Every z��� � � �� satis�es
P

y�a z�y� a � 	� This can be seen by summing equation

�
�	�b over all v � X�

Consider the following Linear Program�

LP� Find z� 	 � RjX�Aj� that minimize c � z subject to �z� 	 � �� �

�



LP is related to OP in the following way �see ���	��� Given any �z� 	 � �� de�ne the stationary

policy g�z� 	 by

p
g�z���
ajy �

����������
���������

z�y� aP
a z�y� a

� if
X
a

z�y� a 
 �

	�y� aP
a 	�y� a

� if
X
a

z�y� a � � and
X
a

	�y� a 
 �

arbitrary� otherwise�

Lemma ��

�i� The optimal value of OP and of LP are equal�

�ii� Suppose that �z�� 	� is any optimal solution of LP� Then g�z�� 	� is optimal for OP�

The proof of the Lemma is given in ���	��� except that the average cost in these references

is de�ned di�erently� namely� the limsup and the summation are intechanged� That these results

apply to our case follows from the following observation� Let

C��u �� lim
t��

t��Eu
�

�
tX

s��

c�Xs� As

�

C��� u ��
X
y�X

��y lim
t��

t��Eu
�

�
tX

s��

c�Xs� AsjX� � y

�

C��u �� lim
t��

t��Eu
�

�
tX

s��

c�Xs� As

�

C��� u ��
X
y�X

��y lim
t��

t��Eu
�

�
tX

s��

c�Xs� AsjX� � y

�
�

Then�

C��� u � C��u � C��u � C��� u

for every policy u� and

C��� u � C��u � C��u � C��� u

for every stationary policy u� Since OP is known to have a stationary deterministic optimal policy�

infu C��� u may be considered and the results of ���	�� can be used�

�



The Lemma motivates our interest in studying the properties of LP� as these may relate to

properties of Markov Decision Processes� The Lemma also has extensions to constrained Markov

Decision Problems �see ���� The aim of this paper is to study more about the properties of the

decision variables of LP and their relation to quantities that characterize policies�

Denote �z
� �� fz � �	 s�t� �z� 	 � ��g�

It is known ��� that �z
� � L�� This means that for any policy u� �f��� u � �z

� � On the other

hand� for each z � �z
� there exists a policy u such that �f��� u � z�

However� little is known about the �physical� meaning of the variable 	� For u � U�S

Kallenberg �	� p� 	��� gives an explicit expression 	 � 	��� u such that � �f��� u� 	��� u � �� �

The reason that the meaning of the relation between the decision variables of LP and the control

problem was not clear �for all policies before is related to the fact that LP was not obtained directly

from the control problem� but rather as the dual problem of another LP� related to dynamical

programming� In the following sections we present an interpretation of the variables 	 that is

related to the control problem�

�� THE DEVIATION MEASURE

With relation to some �f��� u � �F ��� u we de�ne the biased total occupation matrix �rT ��� u

whose elements are given by

�rT �y� a��� u ��
PT

s��

h
Pu
� fXs � y�As � ag 
 �f�y� a��� u

i
De�ne the average biased occupation matrix �rT ��� u whose elements are given by

 rT �y� a��� u �� �
T

PT
t�� �r

t�y� a��� u�

Let tn be a subsequence of t along which �f t��� u � �f��� u� Pick a further subsequence sn of tn

along which some �possibly in�nite limit  r��� u �� limn��  rsn��� u exists� Let  R� �f� �� u denote

the set of all such limits corresponding to �f��� u� We call  r��� u the deviation measure�

The following Lemma relates the quantities �f��� u and  r��� u to the decision variables in LP�

or more precisely to the variables that determine the set �� � By appropriately adding a bias factor�

we then obtain in Theorem � a stronger characterization�

Lemma ��

�



Under any policy u � U and initial distribution �� if for some �f��� u � �F ��� u� the elements

of some  r��� u �  R� �f� �� u are �nite then the tuple � �f��� u�  r��� u satis�es equations �����a��

�����b� and �����c��

Proof� We shall use the following�

PfXt � yg � E �PfXt � yjHt��g� �
X
a�z

PfXt�� � z�At�� � agPzay ���	

By averaging we obtain�

	

t

tX
s��

Pu
� fXs � yg �

	

t

tX
s��

X
a�z

Pu
� fXs�� � z�As�� � agPzay ���


Interchanging the order of summation in the right side of ���
� we get after some algebra

X
y�a

�f�z� a��� u ��y�z
 Pzay� � � ����

for any accumulation point �f��� u� which proves that �
�	�a is satis�ed� Moreover� we clearly have

�f�y� a��� u � � ����

This proves that �
�	�c is satis�ed�

Using ���	 and ���� we get

tX
s��

X
a

�
Pu
� fXs � y�As � ag 
 �f�y� a��� u

	
�

tX
s��

X
z�a

�

Pu
� fXs�� � z�As�� � ag 
 �f�z� a��� u

�
Pzay

	
����

We then obtain by de�nition of �rt�

X
a

�rt�y� a��� u �
X
a

�f�y� a��� u
 ��y �
X
z�a

�rt���z� a��� uPzay ����

Taking the time average of ���� we obtain�

X
a

	

s
 	

sX
t��

�rt�y� a��� u �
X
a

�f�y� a��� u
 ��y

�



�
X
z�a

Pzay
	

s
 	

sX
t��

�rt���z� a��� u ����

Equation ���� can then be rewritten as�

X
a

�
s

s
 	
 rs�y� a��� u





	

s
 	

X
a

�r��y� a��� u �
X
a

�f�y� a��� u
 ��y

�
X
z�a

 rs���z� a��� uPzay ����

Note that the term �
s�� �r

��y� a��� u converges to zero as s � � With the sequence sn de�ned

above Lemma 
� note that we have

lim
n��

 rsn����� u �  r��� u ����

which follows from the fact that

t

t
 	
 rt�y� a��� u
  rt���y� a��� u �

	

t
 	
�rt�y� a��� u �

t

t
 	

�
�f t�y� a��� u
 �f�y� a��� u

	
� � ���	�

as t�� along the subsequence sn� We thus obtain from ����X
a

�f�y� a��� u �
X
z�a

 r�z� a��� u ��y�z
 Pzay� � ��y ���		

and hence also �
�	�b is satis�ed� Note that ���		 is obtained for any subsequence sn of tn�

Remark� If the limit �r��� u �� limt�� rt��� u exists then ���		 can be obtained directly

from ���� with �r��� u replacing  r��� u�

Consequently� for any such policy u� � �f��� u� �r��� u satis�es �
�	�a� �
�	�b and �
�	�c�

Note that the  r need not be nonnegative and hence equation �
�	�d is not satis�ed� In fact�

for any u � U and initial distribution ��
P

y�a  r�y� a��� u � �� This follows from the fact that

X
y�a

 r�y� a��� u �
X
a�y

lim
n��

	

sn

snX
s��

sX
t��

�
Pu
� �Xt � y�At � a


X
a

�f�y� a��� u

�
�

�



lim
n��

X
a�y

	

sn

snX
s��

sX
t��

�
Pu
� �Xt � y�At � a


X
a

�f�y� a��� u

�
�

� lim
n��

	

sn

snX
s��

	

sn

sX
t��

�	
 	� � �

Hence in order that all the  r be non�negative� so that we have in fact � �f��� u�  r��� u � �� �

another bias factor should be added� By doing so� �see Theorem � below� we obtain the main

result of the paper� that states that for any policy u� the pair �frequencies� corresponding biased

deviation are feasible solutions for the LP in ���� i�e� belong to the set �� � This result was known

to hold only for stationary policies� and the Theorem below generalizes it to any policy�

Let T � X � A be the set of pairs fy� ag satisfying �f�y� a��� u � �� Note that for any

�y� a � T �  r�y� a��� u � �� Let � be any real number that satis�es

� � min
k

�
 r�y� a��� u � k �f�y� a��� u � � for all y� a

�
�

Then � 
 �� De�ne�

Y �y� a��� u ��  r�y� a��� u � � �f�y� a��� u�

Clearly Y �y� a��� u are nonnegative for all state�action pairs� Hence Y ��� u satis�es equation

�
�	�d� We thus obtain�

Theorem �� Under any policy u � U and initial distribution �� if the elements of  r��� u are

�nite then � �f��� u� Y ��� u � �� �

Proof� The proof that equations �
�	�a and �
�	�c are satis�ed remains unchanged� Equation

�
�	�b holds by �
�	�a and ���		�

An open problem is whether for any solution �z� 	 of LP we can construct a policy u� such

that �z� 	 �


�f��� u� Y ��� u

�
� A step towards the answer is presented in Theorem �� where we

give a characterization of the polytope �� � To do so� we need some notation �rst�

For sake of convenience we will write z�y� 	�y and �f�y��� u for
P

a z�y� a�
P

a 	�y� a andP
a
�f�y� a��� u� From the context it will always be clear� whether these quantities have to be

interpreted as vectors or as matrices�

Finally we have to introduce the deviation matrix� the entries of which are given formally by

D�y� �x� g � lim
�	�

�X
t��

�t��


P g
�x
fXt � yg 
 �f�y� �x� g

�
�

	�



This can be rewritten as �cf� Spieksma �	�� p� �


D�y� �x� g �
X
v�X



�x�v
 �f�v� �x� g

� �X
t��

X
w�X

B�g�P
g
�v
fXt � wg



�w�y
 �f�y� �w� g

�
� ���	


Theorem �� Fix some initial distribution �� �z� 	 � �� �� there are g�� g� � U�S and

an initial distribution  �� such that z� 	 as vectors on X satisfy �	��	� and z�y� a � z�yP g�
ajy�

	�y� a � 	�yP g�
ajy� y � X�

������������������������
�����������������������

z�y � �f�y�  �� g�� � y

	�y �
X
x

h
��xD�y� �x� g�

�


�f�x��� g�
 z�x

� �X
t��

B�g��P
g�
�x
fXt � yg� ��x �f�y� �x� g�

i
� � y

X
x



��x
 z�x

�
FRl�g����x� g� � �� l � 	� � � � � ��g�

X
x



��x
 z�x

� �X
t��

B�g��P
g�
�x
fXt � yg � �� � y � T �g��

���	�a

���	�b

���	�c

���	�d

where � is a vector on X with

��y �

��
�

�� y � T �g�

cl� y � Rl�g��

with cl a constant satisfying

cl � max
y�Rl�g��



P

x

h
��xD�y� �x� g� �



�f�x��� g�
 z�x

�P�
t�� B�g��P

g�
�x
fXt � yg

i
P

x�Rl�g��
�f�y� �x� g�

� l � 	� � � � � ��g��

Notice� that the vector � is constant on each positive recurrent class in the Markov chain

induced by g�� Equations ���	�c and ���	�d are necessary to ensure that we only get positive

solutions 	 to system ���	��

If  � � � and g� � g�� then 	�y �
P

x

h
��xD�y� �x� g� � ��x �f�y� �x� g�

i
� This is in fact the

formula used by Kallenberg to show� that we can construct a feasible solution �x� 	 of �� for any

stationary policy�

		



Proof of Theorem ��

First choose �z� 	 � �� � By the construction in �	�� �� is not empty� De�ne two stationary

policies g�� g� in the following way�

pg�ajy ��

����������
���������

z�y� a

z�y
� if z�y 
 �

	�y� a

	�y
� if z�y � �� 	�y 
 �

arbitrarily �otherwise�

pg�ajy ��

����������
���������

	�y� a

	�y
� if 	�y 
 �

z�y� a

z�y
� if 	�y � �� z�y 
 �

arbitrarily �otherwise�

So� g� and g� only di�er in states y with z�y� 	�y 
 � and z�y� a�z�y �� 	�y� a�	�y� or possibly

in states y with z�y � 	�y � ��

By the construction of g� and g� and by �
�	a �resp� �
�	b the vectors z and 	 satisfy the

following linear equations�

z�y

X
x

z�xP g�
xy � �� y � X ���	�a

z�y � 	�y

X
x

	�xP g�
xy � ��y� y � X� ���	�b

By the remark following �
�	�
P

y z�y � 	� Consequently z is an invariant probability measure for

the Markov chain generated by policy g� and so z � �f�z� g�� In fact� z � �f�  �� g� for any initial

distribution  � so that
P

x
 ��xRl�g��F ��x� g� �

P
y�Rl�g��

z�y�

Notice� that �f��� �x� g� is an invariant measure under g�� Hence for any vector  on X� z�

 	�� �� 	�� �
P

x �x
�f��� �x� g�

�
are a solution of ���	� as well� Let B�g� be a set of reference

states in the Markov chain generated by g�� We write bl �� Rl�g� � B�g�� l � 	� � � � � ��g�� As

the vector  we choose �y �� � for y � T �g�� and �y �� 
	�bl�
P

x�Rl�g��
�f�bl� �x� g� for

y � Rl�g�� Note that �x �f�y� �x� g� � � for y � Rl�g�� x �� Rl�g�� Thus� we have chosen  to

be constant on each positive recurrent class and � otherwise� in such a way that  	�bl � �� Plugging

 	 into equation ���	�b we get

 	�y � ��y
 z�y �
X

x 
�B�g��

 	�xP g�
xy �

Iterating this we obtain

	




 	�y � ��y
 z�y �
X

x
�B�g��

h
��x
 z�x �

X
v 
�B�g��

 	�vP g�
vx

i
P g�
xy

� ��y
 z�y �
X

x
�B�g��



��x
 z�x

�
P g�
xy

�
X

v 
�B�g��

 	�vP g�
�v
fX� � y�X� �� B�g�g

� ��y
 z�y �
X

x
�B�g��



��x
 z�x

� TX
t��

P g�
�x
fXt � y�Xs �� B�g�� 
 � s � tg

�
X

v 
�B�g��

 	�vP g�
�v
fXT�� � y�Xs �� B�g�� 
 � s � Tg�

Set B�g� is reached with probability 	 from any initial state� when policy g� is used� So� taking

the limit for T � in the last equation yields

 	�y � ��y
 z�y �
X

x
�B�g��



��x
 z�x

� �X
t��

P g�
�x
fXt � y�Xs �� B�g�� 
 � s � tg� ���	�

We note that in ���	�� we interchanged limit with summation� This is justi�ed since the second

summation is �nite� Indeed�

P g�
�x
fXt � y�Xs �� B�g�� 
 � s � tg � P g�

�x
fXs �� B�g�� 
 � s � tg � P g�

�x
f

	

t
 


t��X
s��

�X�s��B�g� � �g�

It follows from the Large deviation principle for Markov chains �see e�g� ��� that the latter prob�

ability behaves asymptotically �for large t as exp�
tI where I 
 � is some constant �the rate

function� This implies the �niteness of the second summation in ���	��

For y �� B�g� the probabilities in the last expression in ���	� equal the taboo transition

probabilities for the taboo set B�g�� For y � B�g� they equal the �rst hitting probabilities of y�

As a consequence we obtain the following expressions for  	�

 	�y �

������
�����

X
x
�B�g��



��x
 z�x

� �X
t��

B�g��P
g�
�x
fXt � yg� y �� B�g�

X
x

���x
 z�xFy��x� g�� y � B�g��

���	�a

���	�b

	�



As Fbl��x� g� � FRl�g����x� g� for x � X� Fbl��x� g� � 	 for x � Rl�g� and  	�bl � � � by

de�nition� ���	�c follows directly from ���	�b�

Obviously ���	�a equals � for y � B�g�� Consequently� the �rst summation in ���	�a can be

extended to all states� Thus we get for y � Rl�g��

 	�y �
X
x�X



��x
 z�x

� �X
t��

B�g��P
g�
�x
fXt � yg 




��bl
 z�bl

� �X
t��

B�g��P
g�
�bl
fXt � yg

�
X
x�X



��x
 z�x

� �X
t��

B�g��P
g�
�x
fXt � yg 




��bl
 z�bl

� �f�y� �bl� g�
�f�bl� �bl � g�

�
X
v�X

��v
X
x



�x�v
 �f�x� �v� g�

�X
t

B�g��P
g�
�x
fXt � yg

�
X
x�X



�f�x��� g�
 z�x

�X
t

B�g��P
g�
�x
fXt � yg 


��bl
 z�bl
�f�bl� �bl � g�

�f�y� �bl� g�

�
X
x�X

��xD�y� �x� g� �
X
x�X



�f�x��� g�
 z�x

�X
t

B�g��P
g�
�x
fXt � yg�

nX
v�X

��v
X
x�X



�x�v
 �f�x� �v� g�

�X
t

X
w�X

B�g��P
g�
�x
fXt � wgFRl�g����w� g�



��bl
 z�bl
�f�bl� �bl � g�

o
�f�y� �bl� g��

���	�

For the second equality we use the renewal theorem� if y �� bl� and if y � bl we use
P�

t�� B�g��P
g�
�bl
fX� �

yg � 	 � �f�y� �bl� g��
�f�bl� �bl � g�� For the �th equality we use formula ���	
 for the deviation

matrix� For y � T �g�� ���	� holds since �f�y� �bl� g� � �� The derivation of the other equalities is

similar to the foregoing ones�

Recall that 	�y �  	�y

P

x�X �x �f�y� �x� g�� So� we choose the vector � equal to

��y ��

����������
���������


 �y �
	

jRl�g�j

�X
v�X

��v
X
x�X



�x�v
 �f�x� �v� g�

�
�

�
X
t

X
w�X

B�g��P
g�
�x
fXt � wgFRl�g����w� g�


��bl
 z�bl
�f�bl� �bl � g�

�
� y � Rl�g�


 �y � �� y � T �g��

Then by virtue of ���	� and our choice of � z satis�es ���	�b for this choice of �� Moreover� ��y

is constant on each positive recurrent class� As 	�y � � by assumption� we have obtained that �

	�



satis�es the conditions of the Theorem� For transient states y�  	�y � 	�y � �� Using expression

���	�a for  	�y gives ���	�d�

The proof of the reverse implication is straightforward� Here we have to use� that
P
v
D�v� �x� g��



�y�v
 P g�

vy

�
� �y�x
 �f�y� �x� g� �cf� Kallenberg �	�� p� 
��� Spieksma �	�� p� ����

�� PROPERTIES OF THE DEVIATION MEASURE

���� Bounds

Unlike the state�action frequencies� which sum to one under any arbitrary policy� the deviation

measures are not bounded in the class of policies� This is demonstrated in the following examples�

Example �� This example shows that  r��� u� and hence Y ��� u� may be unbounded in U �

Assume that there exists a state v that is recurrent under all the stationary deterministic policies�

Consider the following set of policies fu�tg�t��� let u�t be a policy that follows one stationary

policy till time t and then switches to another one v� It follows that �F ��� u�t � f �f��� vg

and  R� �f� �� u�t � f r��� u�tg are singletons for all t� moreover j r�y� a��� u�tj grows like O�t

and is thus unbounded� Note however that for any t�  r�y� a��� u�t is �nite� This follows from

the fact that for any stationary policy u and any initial distribution ��  r�y� a��� u is �nite �and

 R��� u � f r��� ug is a singleton�

Example �� This example shows that  r��� u may be in�nite� and Y ��� u not de�ned� Let

X � fxg� and A � fa� bg� Let u be the policy that chooses a at time t with probability 	�t� Then

�F �x� a�x� u � f�g� and �rt�x� a�x� u �
Pt

s�� t
�� tends to in�nity as t�� Hence  R�x� a�x� u �

fg� Similarly�  R�x� b�x� u � f
g� and Y �x� u can thus not be de�ned�

���� Uniqueness of the deviation measure

Lemma 	� Assume that under every deterministic stationary policy there exists one recurrent

class �plus possibly a transient set�� Let u and v be two policies such that

�f��� v � �f��� u

for some �f��� v � �F ��� v and some �f��� u � �F ��� u� Assume moreover that there are some �nite

 r��� u �  R� �f��� u� �� u and  r��� v �  R� �f��� v� �� v that satisfy

 r�y� a��� vP
a  r�y� a��� v

�
 r�y� a��� uP
a  r�y� a��� u

�� �ay

	�



for all y and a� Then  r�y� a��� u �  r�y� a��� v�

Proof� Let P � be the matrix whose components are given by� P �xy �
P

a �
a
xPxay� It follows then

from ���		 that

� � �f�y��� u �
X
z

 r�z��� u
�
�y�z
 P �zy

	

 ��y

�where  r�z��� u ��
P

a  r�z� a��� u� Since the same holds for v too� we obtain by subtraction�

X
z

� r�z��� u
  r�z��� v�
�
�y�z
 P �zy

	
� �

Hence � r��� u
  r��� v� is an eigenvector of the matrix fP �zyg which corresponds to the eigenvalue

	� Since P � is an irreducible stochastic matrix� it follows from the Perron ! Frobenius Theorem

�see e�g� �	� p� 

� that there exists some constant c such that  r�z��� u 
  r�z��� v � c���z

where �� is the vector of stationary distribution that corresponds to P �� But since  r�z��� u sum

to �� it follows that c � � from which the Lemma follows�

	� LINEAR PROGRAM FOR CONSTRAINED MDPs

In this Section we study the Linear Program method applied for the constrained Markov De�

cision Process ���� An alternative method based on a Lagrange approach for solving such problems

in the case of a single constraint was introduced in ��� �later extended to countable state space in

�	����	���

The aim of this Section is to generalize the formulation of the Lagrange method to several

constraints and then to use it for obtaining a new derivation of the Linear Program method of

Hordijk and Kallenberg ���� Our new derivation seems to be more natural and straightforward

than the previous method ���� where the paradigm was to introduce the LP and then to prove

that the optimal policy and optimal value of the control problem are appropriately related to the

optimal solution and value of the LP�

To de�ne the constrained problem� we de�ne a set of K �real valued cost functions dk �

X � A � R� k � 	� ����K� and de�ne the average costs associated with a policy u and with an

initial distribution � on X�

Dk
��u � lim

t��

	

t
Eu
�

�
tX

s��

dk�Xs� As

�

	�



For a given vector of real numbers Vk� k � 	� ����K we de�ne the constrained problem COP�

�nd a policy u � U that minimizes C��u subject to D
k
��u � Vk� k � 	� ����K� for a given initial

distribution ��

A policy that satis�es Dk
��u � Vk� k � 	� ����K is said to be feasible� Let C� be the optimal

value of COP� A feasible policy u that achieves C��u � C� � is said to be optimal for COP�

Introduce the Lagrange minimax problem Lminimax�

min
u

sup
���

�
C��u �

X
k

�k�D
k
��u
 Vk

�

Let Cminimax
� be the optimal value of Lminimax� It is easily seen that Lminimax is equivalent to

COP �in the sense that the optimal policy and optimal value are the same�

Next we introduce the Linear Program used for calculating the optimal value and policy for

COP ����

LPC� Find z� 	 � RjX�Aj� that minimize c � z subject to

�z� 	 � �� �

dk � z � Vk

where �� is given in Section 
� It is shown in ��� that the optimal value of COP is equal to the

optimal value of LPC� and an optimal Markovian policy is constructed from the optimal solution

of LPC�

We show below that LPC can be derived from Lminimax� We �rst note that we may restrict

the minimization in COP to the class of policies U� under which �F ��� u is a singleton� see e�g� ����

Note that this class contains the stationary policies�

De�ne Lmaximin�

sup
���

min
u�U�

�
C��u �

X
k

�k�D
k
��u
 Vk

�

Let Cmaximin
� be the optimal value of Lmaximin� It can be shown that the min and sup can

be interchanged� so that Cmaximin
� � Cminimax

� � We leave the proof to the appendix� In order to

obtain LPC we �rst consider the problem of minu�U�

h
C��u �

P
k �k�D

k
��u
 Vk

i
for a given ��

	�



It follows from ��� that an optimal stationary deterministic policy for that problem can be obtained

and the optimal value is given by LP
� �nd �y� gy� y � X� that

max

�X
y

��ygy 

X
k

�kVk

�
���	

s�t�

�y � gy � c�y� a �
X
k

�kd
k�y� a �

X
v

Pyav�v �y� a ���


gy �
X
v�X

Pyavgv �y� a ����

We may conclude that the optimal value of COP is given by solving the LP� �nd �k� k �

	� ����K� �y� and gy� y � X� that

max
g�	����

�X
y

��ygy 

X
k

�kVk

�

s�t�

�y � gy � c�y� a �
X
k

�kd
k�y� a �

X
v

Pyav�v �y� a

gy �
X
v�X

Pyavgv �y� a

The dual of this LP is LPC�

Remark� The results of this Section extend easily to the discounted criteria� even with count�

able state space� They also extends easily to the countable case under a strong ergodic assumption

�the unichain assumption� In both cases� there is no need of equation ����� and of �
�	�b and

�
�	�d� Thus we need not consider the decision variables 	 in the Linear Program �
�	� �See e�g�

�	���
���	�� for alternative derivations of such LPs�

APPENDIX

Interchanging the min and max in Section 	�

We show in this appendix that Cminimax
� � Cmaximin

� � Since we restrict to u � U� it easily

follows that

C��u �
X
k

�k�D
k
��u
 Vk �

X
y�a

�f�y� a��� u

�
c�y� a �

X
k

�k�c�y� a
 Vk

�

	�



and hence

min
u

sup
���

�
C��u �

X
k

�k�D
k
��u
 Vk

�
� min

z�L��U��
sup
���

X
y�a

�f�y� a��� u

�
c�y� a �

X
k

�k�c�y� a
 Vk

�

Since L� � L��U
� is convex and compact �this is a straightforward generalization of ��� p� ������

��� who prove it for � of the form of �x� and since the set � � � is convex and compact in the

compacti�ed space �R 	 fg�K � it follows from the minimax Theorem �e�g� �		� p� 
�� that the

min and sup can be interchanged from which it �nally follows that Cminimax
� � Cmaximin

� �
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