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Abstract

The purpose of this paper is to study the loss probabilities of messages in anM/M/1/K queueing system where in addition
to losses due to buffer overflow there are also random losses in the incoming and outgoing links. We focus on the influence
of adding redundant packets to the messages (as in error correction coding, e.g. Reed–Solomon code, etc.). In the first part
we use multi-dimensional probability generating functions for solving the recursions which generalize those introduced by
Cidon et al. [IEEE Trans. Inform. Theory 39 (1) (1993) 98] for computing the loss probabilities and derive analytical formulae
for a special case. In the second part of the paper we use combinatorial arguments and Ballot theorem results to alternatively
obtain the loss probabilities. The analytical results allow us to investigate when does adding redundancy decrease the loss
probabilities.
© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

The loss probability of packets in queueing networks is an important performance measure in telecom-
munication networks and some other applications. Rapid progress in the development of fiber optics
allows to achieve a bit error rate of 10−14; information loss is then essentially due to congested nodes and
buffer overflow. However, in wireless networks random losses of packets also occur in the channels/links
apart from congestion losses.

Often, when a message is divided into several packets, the loss of one packet results in the loss of the
whole message. In order to reduce the loss probabilities, one may add redundant packets, so that lost
packets can often be reconstructed. Indeed, there exist erasure recovery codes that, by addingk redundant
packets to a message, enable to reconstruct up tok losses (see[5,7–9]and references therein). We note,
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however, that by adding redundant packets, the workload increases and thus the loss probability of a packet
may increase[1]. Alternatively, if redundancy is added in such a way that the total workload remains
unchanged then this will result in a decrease in the throughput of useful information transmitted by the
source. Thus there are two types of tradeoffs to be studied (according to whether we want to keep the total
transmitted throughput the same, or only the throughput corresponding to useful transmitted information).

In this paper we are concerned with studying the loss probabilities of messages in queueing systems
where in addition to losses due to buffer overflow there are also random losses on the incoming and outgo-
ing links to the bottleneck node. In particular, we study the tradeoffs mentioned in the previous paragraph.

The problem of analyzing loss probabilities due to congestion losses in the presence of redundant pack-
ets has been addressed in earlier works[5,4,7,8]. In [7], the authors have used an approximation based
on the assumption of independence between consecutive losses, and have shown that redundancy results
in a decrease of loss probabilities by 10–100. Exact numerical methods based on recursions in[5] led to
an opposite conclusion, i.e., adding redundancy causes an increase in the loss probabilities. Explicit ex-
pressions for the losses have then been developed in[4,8] and references therein which allowed to obtain
regions of parameters in which forward error correction (FEC)1 is useful. In particular, in[4] information
theoretical type of channel capacity has been obtained for channels with congestion losses (and general
service and inter-arrival times). All these references studied models where losses are only due to conges-
tion. Such models are useful in fiber-optic networks, where the main source of losses in the network is
indeed overflow of the bottleneck buffer(s). There are however other situations in which non-negligible
amount of losses may also occur at the links, such as in wireless and in satellite communications.

The goal of this paper is therefore to determine the role of redundant packets in networks in which
losses may be due to both phenomena: link losses (which we callrandom losses) and losses due to buffer
overflow (which we callcongestion losses). We obtain expressions that permit us to study two scenarios
for adding FEC. In the first, we assume that the global transmission rate is unchanged, so that when
adding FEC we reduce the rate of useful information. We then analyze how does the received rate of
useful information depend on the FEC. In the second scenario we keep the rate of useful information
unchanged; adding FEC then increases the congestion and hence the losses, but on the other hand allows
one to recover some lost packets. It should be noted that not only is our model a generalization of the
previous work[4,5,8] in considering both congestion as well as random losses, but also the first scenario
that we investigate has not been considered earlier even in the context of congestion losses only[4,5,7,8].

The paper is structured as follows. InSection 2we present our model and its motivation. InSection 3
we present our main results derived using an algebraic approach involving multi-dimensional generating
functions; the proof is provided inAppendix A. In Section 4we provide numerical examples and discuss
the region where adding redundancy improves the performance. InSection 5we employ a combinatorial
approach using Ballot theorems to obtain explicit expressions for loss probabilities employing techniques
developed in[8]. Finally, we conclude inSection 6with directions for further work.

2. The model and its motivation

We consider networks consisting of a noisy link (in which random losses occur) followed by a bottleneck
buffer, or more generally, of a buffer that is in-between two noisy links. The latter is a suitable model

1 The technique of transmitting redundant information with original information is called FEC.
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Fig. 1. A motivational scenario: FEC for satellite communication.

for satellite connections (seeFig. 1) in which there is a noisy uplink and a noisy downlink connection
with further losses that may be due to congestion inside the satellite (in which the buffer sizes are
typically much smaller than in the terrestrial networks). We assume throughout that a packet that is
corrupted before it arrives to the bottleneck queue is discarded and thus does not occupy any space in the
buffer.

In the analysis below we shall model random losses in the incoming link (uplink) and congestion
losses at the node. We consider anM/M/1 queue with a finite buffer of sizeK (including the packet in
service). We assume that losses can be caused either by a buffer overflow or randomly with probability
r in the incoming link. The arrival process from the source is assumed to be Poisson with rateλ and the
service times of packets is exponentially distributed with rateµ. Hence, the effective arrival process to
the system (buffer) can be assumed to be Poisson with rateλe


= (1 − r)λ. Definer̄

= 1 − r, ρ


= λe/µ,
andρr


= ρ/r̄. We present a recursive scheme for computingP(j, n) which is the probability ofj losses
(including random losses in the incoming link and congestion losses at the node) amongn consecutive
packets in such a model.

Remark 1. The case when there are losses in both the incoming and outgoing links can be analyzed
once we haveP(j, n). For example, let the random loss probability in the outgoing link beu and letPj,n
be the probability ofj losses amongn consecutive packets of a message when there are random losses
with probabilityr in the incoming link, congestion losses due to buffer overflow at the node and random
losses with probabilityu in the outgoing link. Then

Pj,n =
j∑

w=0

(
n− j + w

w

)
uw(1 − u)n−jP(j − w, n).

Thus knowingP(j, n), which is the loss probability in the model we consider (i.e., random losses in the
incoming link and congestion losses at the node) one can obtain the loss probabilities for the case when
random losses can occur both in the incoming and the outgoing links.
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3. Approach using generating functions: main results

For the system with Poisson arrivals with rateλe and exponential transmission rateµ, in steady state,
the probability of findingi packets in the system at an arbitrary epoch is given by

Π(i) = ρi∑K
l=0 ρ

l
. (1)

DefineQi(k) to be the probability thatk packets out ofi leave the system during an inter-arrival epoch.
We have

Qi(k) = ραk+1, 0 ≤ k ≤ i− 1, Qi(i) = αi, where α := (1 + ρ)−1. (2)

Denote byPai (j, n) the probability ofj losses in a block ofn consecutive packets, given that there arei

packets in the system just before the arrival of the first packet in the block. Since the first packet in the
block is arbitrary, we have

P(j, n) =
K∑
i=0

Π(i)Pai (j, n). (3)

The recursive scheme for computingPai (j, n) is then

Pai (j,1) =



r̄, j = 0,

r, j = 1,

0, j ≥ 2,

i = 0,1, . . . , K − 1, (4)

PaK(j,1) =
{

1, j = 1,

0, j = 0, j ≥ 2.
(5)

Forn ≥ 2 we have

Pai (j, n) = r̄

i+1∑
k=0

Qi+1(k)P
a
i+1−k(j, n− 1)+ r

i∑
k=0

Qi(k)P
a
i−k(j − 1, n− 1), 0 ≤ i ≤ K − 1,

PaK(j, n) =
K∑
k=0

QK(k)P
a
K−k(j − 1, n− 1). (6)

Next, we state the main results, whose detailed proofs are given in the next section. Define the probability
generating function (PGF)

q(y, z)

=

∞∑
j=0

∞∑
n=1

yjzn−1P(j, n).

Let x1(y, z) andx2(y, z) be the solutions inx of x2 − (1 + ρ − rρyz)x+ r̄ρz) = 0:

x1(y, z) = 1 + ρ − rρyz+
√
(1 + ρ − rρyz)2 − 4r̄ρz

2
,

x2(y, z) = 1 + ρ − rρyz−
√
(1 + ρ − rρyz)2 − 4r̄ρz

2
.
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We shall often write simplyx1 andx2 for x1(y, z) andx2(y, z). Define, for allk ≥ 1, δk = xk1 − xk2,
φk = (r̄ + ry)zδk−1 − δk. LetRK = (

∑K
l=0 ρ

l)−1.

Proposition 1. The PGF q is given by

q(y, z)= RK

1 − (r̄ + rρy)z

× [(r̄ + ry)R−1
K−1 + yρK + zρ(αρ)K(r̄(y − α)− αρy)A(y, z)+ rzy(αρ)KB(y, z)], (7)

whereA(y, z) andB(y, z) solve(
zρα(αx1)

K+1(y(r̄ − αx1)− r̄α) zα2(r̄(x1 − ρ)+ rx1y(αx1)
K)

zρα(αx2)
K+1(y(r̄ − αx2)− r̄α) zα2(r̄(x2 − ρ)+ rx2y(αx2)

K)

)(
A(y, z)

B(y, z)

)

= (−1)



(1 − αx1)αx

K+1
1 y + (1 − αx1)αx1(ry + r̄)

(
1 − xK1

1 − x1

)

(1 − αx2)αx
K+1
2 y + (1 − αx2)αx2(ry + r̄)

(
1 − xK2

1 − x2

)

 . (8)

Fory = 0, Proposition 1simplifies to

q(0, z) = r̄
RK

1 − r̄z
[R−1

K+1 − zρKA(0, z)]. (9)

Having obtained the probability generating function, the explicit expressions for the required probabilities
can be obtained by invertingq(y, z). In particular we shall focus onPρ(> j, n), the probability of losing
more thanj packets out ofn. We investigate, in particular, the cases ofj = 0,1, in order to be able to
decide whether adding a redundant packet to each message results in a decrease of the loss probability.

To stress the dependence of the different quantities (such as the PGFq) on the random loss parameter
r and onλ, we shall sometimes addr andλ explicitly to the notation as subscript (e.g. we shall write
qλr (y, z)). The next corollary shows that there is a simple product form expression for the probability
of no losses amongn consecutive packets. In this product, the first term corresponds to the probability
of no random losses (in a system that has no congestion losses), and the second one corresponds to the
probability of no congestion losses (in a system that has no random losses, and in which the arrival rate
is reduced tōrλ).

Corollary 1. The following holds:

(i) qλr (0, z) = qr̄λ0 (0, r̄z)r̄,
(ii) Pλr (0, n) = r̄nP r̄λ0 (0, n).

Proof. From(9) we have

qλr (0, z) = r̄
RK

1 − r̄z
[R−1

K+1 − zρKAλr (0, z)], (10)
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where

Aλr (0, z) = (1 − αx1)αx1[(1 − xK1 )/(1 − x1)]

z2r̄α2(ρ(αx1)K+1(x2 − ρ)+ ρ(αx2)K+1(x1 − ρ))
.

Now

qr̄λ0 (0, z) = RK

1 − z
[R−1

K+1 − zρKAr̄λ0 (0, z)],

where

Ar̄λ0 (0, z) = (1 − αx1)αx1[(1 − xK1 )/(1 − x1)]

z2α2(ρ(αx1)K+1(x2 − ρ)+ ρ(αx2)K+1(x1 − ρ))
.

Thus,

qr̄λ0 (0, r̄z) = RK

1 − r̄z
[R−1

K+1 − r̄zρKAr̄λ0 (0, r̄z)] = RK

1 − r̄z
[R−1

K+1 − zρKAλr (0, z)].

Hence (i) follows. Now,

Pλr (0, n) = 1

(n− 1)!

∂n−1qλr (0, z)

∂zn−1

∣∣∣∣
z=0

= 1

(n− 1)!
r̄n
∂n−1qr̄λ0 (0, r̄z)

∂(r̄z)n−1

∣∣∣∣
z=0

from which (ii) follows. �

Proposition 1yields the following corollary.

Corollary 2. The probability of losing one packet out of n consecutive packets, i.e., P(1, n) is given by

P(1, n) = [zn−1]
∂q(y, z)

∂y

∣∣∣∣
y=0

= [zn−1]F1(z)+ [zn−1]F2(z)

with

F1(z) = RK

1 − r̄z
r̄[R−1

K−1 − z(αρ)K+1A(0, z)]

(
−1 + zrρ

1 − r̄z

)
,

F2(y) = RK

1 − r̄z
[R−1

K−1 + ρK − z(αρ)K+1r̄Ȧ(0, z)+ rz(αρ)KB(0, z)],

whereA(0, z) andB(0, z) are values aty = 0 ofA(y, z) andB(y, z) defined inProposition 1andȦ(0, z)
is the derivative ofA(y, z) with respect to y, evaluated aty = 0.

One can derive expressions forA(0, z), B(0, z), Ȧ(0, z) from (8) and hence an explicit expression for
P(1, n) by looking for the corresponding coefficients in the Taylor’s expansions ofF1 andF2. But finding
Taylor’s expansions may be computationally involved. InSection 5we provide an alternative approach
for directly evaluatingPρ(> j, n), ∀j,0 ≤ j ≤ n− 1. Of course forj = n, Pρ(> n, n) = 0.
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4. Numerical examples

In this section we compare the loss probabilities of a whole group ofn consecutive packets, which
we call a block, with and withoutj additional redundant packets. The group of packets that include the
original block plus the additional redundant packets (if these are added) is called a frame. If at leastn

packets out of these consecutiven+ j packets reach the destination then no loss of frame occurs. In this
section we restrict ourselves to the case ofj = 0, i.e., no redundancy andj = 1, one redundant packet per
n packets. Without loss of generality, we may scale the time so that the service rate is unity:µ = 1. In the
numerical examples we are looking only at the random losses in the incoming link with probabilityr and
congestion losses. We takeK = 25. When we numerically comparedPρ(> 0, n) with Pρ(> 1, n + 1)
we always obtainedPρ(> 1, n + 1) < Pρ(> 0, n), which should be of no surprise: this observation
means that if redundancy is added in such a way thatthe total load on the system remains unchangedthen
indeed redundancy improves performance in terms of loss probabilities. However, the assumption that
the total load remains the same means that the throughput of theusefulinformation decreases (in real time
applications this would mean that a higher compression rate should be used before transmission). This
type of comparison (keeping the total load unchanged) has not been performed previously in[4,5,7,8]
even for the case of congestion losses only. For example, if we addk redundant packets ton (which gives
frames ofn+ k) and if the load is unchanged, then this means that the throughput of useful information
carried by a frame has decreased by a factor ofn/(n + k). Yet we have less losses of packets. Thus the
question that needs to be addressed is whether we gain ingoodputin this case. Let us define the goodput
as the throughput arriving well to the destination. Then this is given by

(input rate of blocks)× n

(n+ k)
× Pρ(≤ k, n+ k).

So a meaningful thing to compare isPρ(0, n) with (n/(n+ 1))Pρ(≤ 1, n+ 1) for fixedλ. In Fig. 2, we
plot the relative gain, i.e.,

(n/(n+ 1))P(≤ 1, n+ 1)− P(0, n)

P(0, n)
. (11)

FromFig. 2we observe that the benefits of adding FEC grows as the amount of random losses increases,
and also asn increases. Also for very lowr (very close to 0) and very lown (as compared to buffer size)
we loose by adding FEC.Fig. 3plots the same curve forλ = 0.99. We observe that curves forλ = 0.3
andλ = 0.99 are identicalr ≥ 0.1 and largern and forr close to 0 the difference is very small.

Remark 2. Consider a scenario in which there are only random losses (with probabilityr) and no
congestion losses. Then we have

Pρ(0, n) = (1 − r)n, Pρ(1, n) = nr(1 − r)n−1. (12)

If we want to study the effect of adding FEC on recovering from different type of losses we can compare
the relative gain defined in(11) for the cases whenr = 0 (congestion losses but no random losses) to the
case when there are no congestion losses but only random losses with loss probabilities given by(12).
We plot this comparison inFig. 4and observe that FEC is more helpful in recovering from random losses
than congestion losses.

Next we look at the case where the transmission of useful information is kept unchanged when adding
redundancy. This implies that the total packet arrival rate increases due to adding redundancy. We assume
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Fig. 2. [(n/(n+ 1))P(≤ 1, n+ 1)− P(0, n)]/P(0, n) as a function ofn for varyingr with λ = 0.3.

that the rate at which frames arrive is the same for the two cases and is given byx. In the case of no
redundancy, the rate at which packets arrive isλ = ρ = nxand in case of redundancyλ = ρ = (n+ 1)x.
A frame is lost in the latter case if more than one packet is lost out ofn+ 1 consecutive packets. We are
thus interested in the differenceD = Pnx(> 0, n)− P(n+1)x(> 1, n+ 1). If D > 0 then the redundancy
decreases the loss probability of messages. Observe that

D= 1 − Pnx(0, n)− [1 − P(n+1)x(0, n+ 1)− P(n+1)x(1, n+ 1)]

=P(n+1)x(1, n+ 1)+ P(n+1)x(0, n+ 1)− Pnx(0, n). (13)

We next plot the relative gainD/Pnx(> 0, n) as a function ofn for x = 0.03 (this means the loadnx,
varies from 0.03 (forn = 1) to 0.75 (forn = 25)) inFig. 5and forx = 0.4 (load varying from 0.4 to 10)
in Fig. 6. The curves show that for fixedr, there exists a value of the frame size at which the gain obtained
by adding FEC as defined in(13) is maximum. These figures can thus be used in order to optimize the
size of blocks to which we should add FEC.

Remark 3. FromFig. 5we observe that forr = 0.1, adding one redundant packet for a block size of 10
packets will result in the maximum gain inD. The redundant packet can be constructed as follows: let
the packet sizes be sayM bits. Then theith, 1 ≤ i ≤ M, bit of the redundant packet is obtained by an
XOR operation on theith bits of all the 10 packets.
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Fig. 3. [(n/(n+ 1))P(≤ 1, n+ 1)− P(0, n)]/P(0, n) as a function ofn for varyingr with λ = 0.99.

All the above curves establish that we benefit from adding redundancy whenr is not very small, and
this is a valid remark or observation at any load. However when the random loss probability is very low
(close to 0) we may loose by adding redundancy.

5. Combinatorial approach using ballot theorems

We next employ combinatorial arguments together with the Ballot theorems[6] to alternatively ob-
tain explicit expressions for all the probabilities of the previous section. In particular, we shall find the
probabilityPai (j, n). Let us denote the loss probabilities in a system with no random losses but only
congestion losses and Poisson arrival process with parameterr̄λ by P̄ai (j, n), 0 ≤ j ≤ n. Observe that
these probabilities can be obtained from[8].

Consider the case whenj2 losses consist ofjr(0 ≤ jr ≤ j) random losses andjc(0 ≤ jc ≤ j)

congestion losses. Forn = 1 we have,Pai (j, n) from (4) and (5). We shall now deal withn ≥ 2. For
jr = 0, we havePai (j, n) = (1− r)nP̄ai (jc, n)with jc = j andP̄ai (jc, n) given from[8]. We next consider

2 Observe that here we are looking at the case when the random losses (if any) occur before the frame enters the buffer. The
complementary case of random losses occurring after the frame leaves the node can be handled as discussed inRemark 1. And
then one can obtain the loss probabilities for the case when random losses can occur both in the outgoing and in the incoming
link.
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Fig. 4. Gain [(n/(n+1))P(≤ 1, n+1)−P(0, n)]/P(0, n) as a function ofn for r varying from 0.1 to 0.99 for the scenario when
there are no congestion losses. Also shown is the gain when there are no random losses (r = 0) and only congestion losses with
λ = 0.3 and 0.99. Observe that the curves forr = 0 andλ = 0.3 and 0.99 have negligible differences.

the case forjr ≥ 1. The number of ways in whichjr random losses can occur amongj losses is(jjc ). We
calculate the probability of one such outcome. The probability depends on the position of the lost packets
in the frame. Let us denote byri the position of theith random loss, 1≤ i ≤ jr in the original frame.
Also i ≤ ri ≤ n− (jr − i). Thusr1 = 1, when the first packet was lost by random loss andrjr = n, when
the last packet was lost by random loss.

The following analysis is for the case ofjr ≥ 2, r1 �= 1, rjr �= n andjr = 1, r1 �= 1 or n. We shall
supplement the analysis with the other cases at appropriate places. Observe that the random losses can
be isolatedor they can occur in burst. In fact since our message length is finite (n), the probability that
all the random losses occur in a burst is>0.3 Also observe that only the packets of the original message
which are not subject to random losses have thepotentialsof getting lost at the queue due to congestion
(as we have assumed these are the only packets that actually reach the queue). Thus we shall look at
the packets of the original message between consecutiverandom loss events. A random loss event is
formed of consecutive random losses. Say that consecutive packets actually coming to the queue and
are not corrupted due to link losses form aninterval. Let T be the number of such intervals. ThusT
includes

3 Although bursty loss occurrence is more a characteristic of congestion losses.
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Fig. 5.D/Pnx(> 0, n) as a function ofn for differentr andx = 0.03. Observe that the load changes withn also.

• The interval consisting of packets coming to the queue before the first random loss event
(if r1 �= 1).

• The interval consisting of packets coming to the queue after the last random loss event (ifrjr �= n).
• The interval consisting of packets coming to the queue between two random loss events.

Let ki be the number of consecutive random losses in theith random loss event.

Remark 4. The value ofT depends onn, jr and the position of random losses. For example, forn = jr,
T = 0, for n = jr + 1, T = 1, etc.

Define

z(t) :=
t∑

h=1

kh.

We now distribute thejc congestion losses in theT intervals of lengthsr1 − 1, r1+k1 − rk1 − 1, r1+k1+k2 −
rk1+k2 −1, . . . , n−rz(T−1)−1. Letny be the number of congestion losses in theyth such interval. Observe
that (for 2≤ y ≤ T − 1)

0 ≤ ny ≤ min(r1+z(y−1) − rz(y−1) − 1, jc).
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Fig. 6.D/Pnx(> 0, n) as a function ofn for differentr andx = 0.4.

Fory = 1, 0≤ ny ≤ min(r1 − 1, jc) and fory = T , 0 ≤ ny ≤ min(n− rz(T−1) − 1, jc). Also,ny satisfy∑T
y=1 ny = jc. Now the number of ways in whichny losses can occur in theyth interval is(

r1+z(y−1) − rz(y−1) − 1

ny

)
for 2 ≤ y ≤ T − 1

and (
r1 − 1

n1

)
for y = 1,

(
n− rz(T−1) − 1

nT

)
for y = T.

We shall calculate the probability of one such event. We shall look at three types of intervals:A-starts
with the first arrival after a random loss event and ends with the last arrival before a random loss event;
B-starts with the arrival of the first packet of the message (ifr1 �= 1) and ends with the last arrival before
the first random loss event;C-starts with the first arrival after the last random loss event and ends with
the arrival of the last packet of the message (ifrjr �= n).

In a sample path withjr ≥ 2, r1 �= 1, rjr �= n, and withAi an interval of typeA, the order of
occurrence of the intervals isB → A1 → A2 · · · → AT−2 → C. For jr ≥ 2, r1 = 1, rjr �= n, the order
is A1 → A2 · · · → AT−1 → C and no interval of typeB. For jr ≥ 2, r1 �= 1, rjr = n, the order is
B → A1 · · ·AT−1 and no interval of typeC. Similarly, for jr ≥ 2, r1 = 1, rjr = n, there will be no
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interval of type eitherB or of typeC. Forjr = 1, there can either be intervalsB → C orC orB and no
interval of typeA can occur. Let the queue length at the beginning of theyth interval beα and at the end
of the interval beβ.

We shall first calculate the probability of a path that starts withα packets in the buffer, ends withβ
packets in the buffer, hasny losses in it by congestion and consists ofay = (r1+z(y−1)− rz(y−1)−1) arrival
events. We employ the arguments as in[8] to evaluate this probability. However here in our analysis we
also need to know the queue length at the arrival of the last packet of an interval. We shall denote this
probability byP(α,β)(ny, ay). Letfj denote thejth lost packet. We shall decompose an interval into three
types of events as follows: (i)Vα(f1)—the first packet to be lost isf1 given that upon the arrival of the
first packet of the interval there areα packets in the buffer; (ii)S(fl, fl+1)—packetfl+1 is lost given that
packetfl was lost; (iii)U(fny , β)—packetfny is the last to be lost and the queue length at the arrival of
the last packet of the interval isβ.

Observe that an interval consists of the succession of eventsVα(f1),S(f1, f2),S(f2, f3), . . . ,

S(fny−1, fny),U(fny , β). Let vα(f1), s(fl, fl+1) andu(fny, β) be the probabilities of the eventVα(f1),

S(fl, fl+1) andU(fny , β), respectively. Thus

P(α,β)(ny, ay) =
ay−ny+1∑
f1=1

ay−ny+2∑
f2=f1+1

· · ·
ay∑

fny=fny−1+1

vα(f1)s(f1, f2) · · · s(fny−1, ny)u(fny, β).

The computation of the probabilitiesvα(f1) ands(fl, fl+1) is similar to that in[8]. However the com-
putation ofu(fny, β) requires some combinatorial arguments. We shall, for completeness summarize the
results in the following proposition and shall provide the proof for the expression foru(fny, β).

Proposition 2. The probabilitiesvα(f1), s(fl, fl+1) andu(fny, β) are given as

vK(f1) =
{

1, f1 = 1

0, o.w.
,

vα(f1) =



0, f1 ≤ K − α,
ρ

ρ + 1
φ2f1−K+α−3(α+ 1,K), o.w.,

, α �= K, (14)

s(fl, fl+1) = ρ

ρ + 1
φ2(fl+1−fl−1)(K,K), (15)

u(fny, β) =



φ2(ay−fny )+K−β(K, β), fny < ay,

1, fny = ay and β = K,

0, fny = ay and β �= K,

(16)

whereφη(α, β) is defined as the probability of a path that starts withα packets in the buffer, ends withβ
packets in the buffer and consists ofη events(arrivals and departures) and is defined as

φη(α, β) = εη(α, β)+
H∑
r=1

WαY
r−1ZT, (17)
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where, for α ≥ 1,β ≥ 1

εη(α, β) =
∑
Υ




 η

η+ α− β

2
− Υ(K + 1)


−


 η

η− α− β

2
− Υ(K + 1)






×
(

ρ

1 + ρ

)(η−α+β)/2( 1

1 + ρ

)(η+α−β)/2
,

Wα = (εα(α,0), εα+2(α,0), . . . , εα+2(H−1)(α,0)),

Z = (εη−α(0, β), εη−α−2(0, β), . . . , εη−α−2(H−1)(0, β)),

Y =




0 ε2(0,0) ε4(0,0) . . . ε2(H−1)(0,0)

0 0 ε2(0,0) . . . ε2(H−2)(0,0)
...

...
...

...
...

0 0 0 . . . ε2(0,0)

0 0 0 . . . 0



, H = 1 + η− α− β

2
(18)

and εη(0, β) = εη−1(1, β), β ≥ 1, εη(α,0) = (1/(1 + ρ))εη−1(α,1), α ≥ 1, εη(0,0) = (1/(1 +
ρ))εη−2(1,1) where−∞ < Υ < ∞ takes on values in the sum in the definition ofεη(α, β) in (18) so
that the binomial coefficients are proper, e.g. in the first sum in(18) (η + α − β)/2 > Υ(K + 1) and
η > (η+ α− β)/2 − Υ(K + 1).

Proof. For proofs ofEqs. (14) and (15)see[8]. We shall here provide a proof forEq. (16). Observe that
for fny = ay, β = K, u(fny, β) = 1. Forβ �= K, u(fny, β) = 0. We look at the casefny < ay. Observe
that after thefny th packet there areay − fny more packets to come. And at the loss offny th packet, the
buffer is full, that is queue length isK. Thus we need the probability of a path that starts when there are
K packets in the buffer ends withβ packets, consists of 2(ay − fny)+K− β events (arrivals and service
completions) andno packets are lost. This is nothing but the probabilityφ2(ay−fny )+K−β(K, β) from the
definition in(17). �

We also need the probability of the evolution of a path after the end of intervalAi and before the start of
intervalAi+1 and havingki(≥ 1) packets lost by random losses. Observe that the duration of this random
loss event has the distribution of the sum ofki + 1 independent exp(λ) distributed random variables, i.e.,
Erlang(ki + 1, λ). LetXi be the number of service completions exp(µ) in an interval with distribution
F ∗ F ∗ · · · (k-times) = F ∗k whereF ∼ exp(λ) and∗ denotes the convolution operation. Then the
probability thatAi ends withβ1 packets (including the last arrival in the intervalAi) in the buffer and
Ai+1 starts withβ2 packets (not including the first arrival in the intervalAi+1) in the buffer and haski
random losses can be written as

P(Xi = β1 − β2, ki) =




∫∞
0

e−µs(µs)(β1−β2)

(β1 − β2)!
dF ∗(ki+1)(s), if 0 < β2 ≤ β1,

∑∞
m=β1

∫∞
0

e−µs(µs)m

m!
dF ∗(ki+1)(s), if β2 = 0,

0, β2 > β1.

(19)
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Remark 5. Indeed, the end of service times are a Poisson process with intensityµ. The PGF of the
number of such points during a fix intervalT isG(z) = exp(−µ(1− z)T). If T is a random interval then
it isG(z) = E[exp(−µ(1− z)T ] = T ∗(µ(1− z) whereT ∗(s) is the Laplace–Stieltjes transform ofT . If
T were exponential (λ) then this would give

G(z) = λ

λ+ µ(1 − z)
= 1

z

θz

1 − (1 − p)z
, where θ = λ

λ+ µ
= ρ

1 − ρ
.

We see thatG(z) is the PGF ofY = X − 1 whereX has a geometric distribution with parameterθ, so
P(Y = n) = (1− θ)nθ. The number of points in an Erlang(ki + 1, λ) RV, sayXi, has thus the distribution
of the convolution ofki + 1 copies ofY , which gives

P(Xi = n) =
∑

y1+···+yn=ki+1

(ki + 1)!

y1!y2! · · · yn! θ
n(1 − θ)ki+1.

This can now be used to for the expressions in(19).

We will now consider a path in which the first packet (out ofn packets in a frame) seesi packets
in the buffer, and out ofn packets in a frame,jr packets are lost by random lossesjc packets are lost
by congestion losses,jc + jr = j with T intervals. Letri be the position of theith random loss. Let
Pip(jc, jr, T, n) be the probability of such a path.4 Then forr1 �= 1 andrjr �= n, jr ≥ 2 and forjr = 1 and
r1 �= 1 orn:

Pip(jc, jr, T, n)= rjr (1 − r)n−jc
βg=K∑

βg=0,0≤g≤T−1

αh=K∑
αh=1,0≤h≤T−1

n−jr∑
r1=2

jr∑
k1=1

jr−k1∑
k2=1

· · ·
jr−

∑T−3
h=1 kh∑

kT−2=1

×
n−jr−a1∑
a2=1

n−jr−
∑2

i=1 ai∑
a3=1

· · ·
n−jr−

∑T−2
i=1 ai∑

aT−1=1

min(a1,jc)∑
n1=0

min(a2,jc−n1)∑
n2=0

· · ·
min(aT−1,jc−

∑T−2
h=1 nh)∑

nT−1=0

×C(n1, a1)P(i,β0)(n1, a1)P(X1 = β0 − α1, k1)C(n2, a2)P(α1,β1)(n2, a2)

×P(X2 = β1 − α2, k2) · · ·C(nT−1, aT−1)P(αT−2,βT−2)(nT−1, aT−1)

×P(XT−1 = βT−2 − αT−1, kT−1)C(nT , aT )P(αT−1,βT−1)(nT , aT ), (20)

where
∑i

k=1 fk = 0 for i ≤ 0 anda1 = r1 − 1, aT = n − jr − ∑T−1
i=1 ai, kT−1 = jr − ∑T−2

h=1 kh,
nT = jc −∑T−1

h=1 nh. AlsoC(n, a) = a!/(a− n)!n!. We now consider the other cases:

• jr = 1, r1 = 1: hereT = 1 andk1 = 1. For this case we can writePip(jc, jr, T, n) as r(1 −
r)n−1∑i

β0=0P(X0 = i − β0,1)P̄aβ0
(jc, n − 1) with P̄aβ0

(·, ·) obtained as[8] andP(X0 = ·, ·) having
same distribution as(19).

4 We use the subscriptp to distinguish the notation fromSection 3.
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• jr = 1, r1 = n: here againT = 1 andk1 = 1. We can writePip(jc, jr, T, n) asr(1− r)n−1P̄ai (jc, n− 1)
with P̄ai (·, ·) obtained as in[8].

• jr ≥ 2, r1 = 1, rjr �= n: we have

Pip(jc, jr, T, n) = rjr (1 − r)n−jr
jr∑
k1=1

i∑
β0=0

P(X0 = i− β0, k1)P
β0
p (jc, jr − k1, T, n− k1).

with Pβ0
p (·, ·, ·, ·) given as in(20).

• jr ≥ 2, r1 �= 1, rjr = n: we have

Pip(jc, jr, T, n)= rjr (1 − r)n−jc
βg=K∑

βg=0,0≤g≤T−1

αh=K∑
αh=1,0≤h≤T−1

n−jr∑
r1=2

jr∑
kT=1

jr−kT∑
kT−1=1

· · ·
jr−

∑T
h=3 kh∑

k2=1

×
n−jr−a1∑
a2=1

n−jr−
∑2

i=1 ai∑
a3=1

· · ·
n−jr−

∑T−2
i=1 ai∑

aT−1=1

min(a1,jc)∑
n1=0

min(a2,jc−n1)∑
n2=0

· · ·
min(aT−1,jc−

∑T−2
h=1 nh)∑

nT−1=0

×C(n1, a1)P(i,β0)(n1, a1)P(X1 = β0 − α1, k1)C(n2, a2)P(α1,β1)(n2, a2)

×P(X2 = β1 − α2, k2) · · ·C(nT−1, aT−1)P(αT−2,βT−2)(nT−1, aT−1)

×P(XT−1 = βT−2 − αT−1, kT−1)C(nT , aT )P(αT−1,βT−1)(nT , aT ). (21)

where
∑i

k=1 fk = 0 for i ≤ 0 anda1 = r1 − 1, aT = n − jr − ∑T−1
i=1 ai, k1 = jr − ∑T

h=2 kh,
nT = jc −∑T−1

i=1 nh.
• jr ≥ 2, r1 = 1, rjr = n: we have

Pip(jc, jr, T, n) = rjr (1 − r)n−jr
jr∑
k1=1

i∑
β0=0

P(X0 = i− β0, k1)P
β0
p (jc, jr − k1, T, n− k1)

with Pβ0
p (·, ·, ·, ·) in last equation given by(21).

Having obtained the expressions we have (with appropriate range for values ofT )

Pip(jc, jr, n) =
∑
T

Pip(jc, jr, T, n) and Pip(j, n) =
(
j

jc

)
Pip(jc, jr, n).

And finally,

Pp(j, n) =
K∑
i=0

Π(i)Pip(j, n),

whereΠ(i) is defined inEq. (1). The probabilityPp(j, n) here is the same as the probabilityP(j, n) in
Section 3.
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6. Conclusion and scope of further research

We have studied the steady state loss probabilities of messages in anM/M/1/K queue where
there are both random losses and congestion losses using an algebraic approach involving generat-
ing functions and a second approach based on ballot theorems. The explicit expressions we obtained
allowed us to investigate numerically when it is profitable to add FEC, and what should the opti-
mal block size be when we add a single redundant packet per block (e.g. using an XOR
operation).

Our method can easily be generalized to include multiple sessions (by generalizing the recursions
in [4] to include random losses also). Also instead of fixed random loss probabilities, we can include
the case where loss probabilities are dependent on the state of the channel, e.g. one can employ the
Gilbert loss model for channels[2] or its generalization[3]. We can write recursions for the steady
state loss probabilities as a function of channel state, sayPai (j, n, s), i.e., conditioned on the states of
the channel upon arrival. If we assume that during the arrival of a message the channel state remains
unchanged, says (this is the case when the time scale of the Markov chain describing the channel is
considerably slower than the duration it takes for a message to be served) the unconditional loss probability
Pai (j, s) is

Pai (j, n) =
S∑
s=1

Pai (j, n, s)Pc(s),

whereS is the total number of possible channel states andPc(s) is the steady state probability that
the channel is in states. Another interesting direction will be to model bursty sources. The source can
be modeled as an Interrupted Poisson process and again recursive equations can be written for loss
probabilities.

Appendix A. Proof of Proposition 1

Define

πj,n(x)

=

K∑
i=0

xiPai (j, n), n ≥ 1, j ≥ 0.

It follows from (6) for n ≥ 2,

πj,n(x)= r̄

K−1∑
i=0

xi
i+1∑
k=0

Qi+1(k)P
a
i+1−k(j, n− 1)+ r

K−1∑
i=0

xi
i∑

k=0

Qi(k)P
a
i−k(j − 1, n− 1)

+ xK
K∑
k=0

QK(k)P
a
K−k(j − 1, n− 1).

We substitute(2) in the last equation, introduceπj,n(x) and also use the facts thatπj,n(0) = Pa0(j, n) and
1 − ρα = α. We then obtain forn ≥ 2, j ≥ 1
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πj,n(x)= r̄

K−1∑
i=0

xi

(
i∑

k=0

ραk+1Pai+1−k(j, n− 1)+ αi+1Pa0(j, n− 1)

)

+ r
K−1∑
i=0

xi

(
i−1∑
k=0

ραk+1Pai−k(j − 1, n− 1)+ αiPa0(j − 1, n− 1)

)

+ xK
(
K−1∑
k=0

ραk+1PaK−k(j − 1, n− 1)+ αKPa0(j − 1, n− 1)

)

= r̄

K−1∑
i=0

xi

(
i∑

k=0

ραk+1Pai+1−k(j, n− 1)+ αi+1Pa0(j, n− 1)

)
+ r

1 − (αx)K

1 − αx
πj−1,n−1(0)

+ r ρα

1 − αx
(πj−1,n−1(x)− πj−1,n−1(0)− xKPaK(j − 1, n− 1))

− rρα(αx)
K

1 − αx
(πj−1,n−1(α

−1)− πj−1,n−1(0)− α−KPaK(j − 1, n− 1))

+ xK
(
K−1∑
k=0

ραk+1PaK−k(j − 1, n− 1)+ αKPa0(j − 1, n− 1)

)

= r̄ρα2

1 − αx

(
1

αx
πj,n−1(x)− (αx)Kπj,n−1(α

−1)

)
− r̄ρα2

1 − αx

(
1

αx
− (αx)K

)
πj,n−1(0)

+ r̄α1 − (αx)K

1 − αx
πj,n−1(0)+ r

ρα

1 − αx
(πj−1,n−1(x)− (αx)Kπj−1,n−1(α

−1))

+ rα1 − (αx)K

1 − αx
πj−1,n−1(0)+ αρ(αx)Kπj−1,n−1(α

−1)+ α(αx)Kπj−1,n−1(0). (A.1)

Define, with some abuse of notation, the generating function ofPai (j, n)

π(x, y, z)

=

∞∑
j=0

∞∑
n=1

yjzn−1πj,n(x). (A.2)

When we fixy and|z| < 1, the above generating function is polynomial inx, and therefore an analytic
function. In order to use(A.1), which holds only forn ≥ 2 andj ≥ 1, we note that

∞∑
j=1

∞∑
n=2

yjzn−1πj,n(x)= π(x, y, z)−
∞∑
n=1

zn−1π0,n(x)−
∞∑
j=0

yjπj,1(x)+ π0,1(x)

= π(x, y, z)− π(x,0, z)− π(x, y,0)+ π(x,0,0).

From(4) and (5)we get

π(x,0,0) = r̄
1 − xK

1 − x
(A.3)
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and

π(x, y,0) = r̄
1 − xK

1 − x
+ yr

1 − xK

1 − x
+ yxK. (A.4)

In (A.3) and (A.4), as well as in the rest of the paper, we understand that forx = 1 and for allK,
(1 − xK)/(1 − x) = K. Thus we obtain

π(x, y, z)− π(x,0, z)

= yxK + r
1 − xK

1 − x
y + r̄

ρα2

1 − αx

z

αx
[π(x, y, z)− π(x,0, z)]

− r̄ρα2

1 − αx
(αx)Kz[π(α−1, y, z)− π(α−1,0, z)]

− r̄ρα2

1 − αx

(
1

αx
− (αx)K

)
z[π(0, y, z)− π(0,0, z)] + r̄α

1 − (αx)K

1 − αx
z[π(0, y, z)− π(0,0, z)]

+αρ(αx)Kzy

[
π(α−1, y, z)+ 1

ρ
π(0, y, z)

]
+ rρα

1 − αx
yz(π(x, y, z)− (αx)Kπ(α−1, y, z))

+ rα1 − (αx)K

1 − αx
yzπ(0, y, z)

= yxK + r
1 − xK

1 − x
y + r̄

ρα2z

(1 − αx)αx
[π(x, y, z)− π(x,0, z)]

+ rραyz

1 − αx
π(x, y, z)+ ρα(αx)K

(
y − r̄α+ ry

1 − αx

)
z

[
π(α−1, y, z)+ 1

ρ
π(0, y, z)

]

+ r̄α2(x− ρ)

(1 − αx)αx
z[π(0, y, z)− π(0,0, z)] + r̄ρα2(αx)K

1 − αx
z

[
π(α−1,0, z)+ 1

ρ
π(0,0, z)

]

+ rαyz

1 − αx
(αx)Kπ(0, y, z). (A.5)

We note that in order to establish the proof ofProposition 1, it follows from (3) that it suffices to obtain
π(x, y, z) atx = ρ, since

q(y, z) = RKπ(ρ, y, z). (A.6)

From(A.5), we have

[π(ρ, y, z)− π(ρ,0, z)](1 − (r̄ + rρy)z)

= yρK + r
1 − ρK

1 − ρ
y + z

(
y − r̄ − ry

α

)
(ρα)K+1

[
π(α−1, y, z)+ 1

ρ
π(0, y, z)

]

+ zr̄(ρα)K+1

[
π(α−1,0, z)+ 1

ρ
π(0,0, z)

]
+ rρyz

[
π(ρ,0, z)+ (αρ)K

ρ
π(0, y, z)

]
.

To compute the functionπ(ρ, y, z) it suffices to compute the functions in the square brackets as well
asπ(ρ,0, z). To do that, we first computeπ0,n by proceeding in the same manner as in(A.1). Since
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PaK(0, n) = 0 we have forn ≥ 2,

π0,n(x)= r̄
ρα2

1 − αx

1

αx
π0,n−1(x)− r̄

ρα2

1 − αx
(αx)Kπ0,n−1(α

−1)+ r̄α
1 − (αx)K

1 − αx
π0,n−1(0)

− r̄ ρα2

1 − αx

(
1

αx
− (αx)K

)
π0,n−1(0).

By taking the generating function of both sides of the above equation and substituting(A.3), we can write

(1 − αx)αxπ(x,0, z)= r̄
1 − xK

1 − x
(1 − αx)αx+ r̄ρα2zπ(x,0, z)

− r̄ρα2(αx)K+1z

[
π(α−1,0, z)+ 1

ρ
π(0,0, z)

]
+ r̄α2(x− ρ)zπ(0,0, z).

(A.7)

From(A.5), we have

((1 − αx)αx− ρα2r̄z)[π(x, y, z)− π(x,0, z)]

= (1 − αx)αyxK+1 + (1 − αx)αxr
1 − xK

1 − x
y + zρα(αx)K+1[(y(1 − αx)− (r̄α+ ry)]

×
[
π(α−1, y, z)+ 1

ρ
π(0, y, z)

]
+ r̄ρα2(αx)K+1z

[
π(α−1,0, z)+ 1

ρ
π(0,0, z)

]
+α2rρxyzπ(x, y, z)+ α2r̄(x− ρ)z[π(0, y, z)− π(0,0, z)] + α2rxyz(αx)Kπ(0, y, z). (A.8)

Substituting(A.7) in (A.8) yields

((1 − αx)αx− ρα2(r̄z+ rxyz))π(x, y, z)

= (1 − αx)αyxK+1 + (1 − αx)αx(ry + r̄)
1 − xK

1 − x
+ zρα(αx)K+1(y(r̄ − αx)− r̄α)

×
[
π(α−1, y, z)+ 1

ρ
π(0, y, z)

]
+ zα2(r̄(x− ρ)+ rxy(αx)K)π(0, y, z). (A.9)

For eachi = 1,2, whenx = xi(y, z), the term that multipliesπ(x, y, z) in the left-hand side ofEq. (A.9)
vanishes. Sinceπ(x, y, z) is polynomial inx and therefore analytic inx, the left-hand side of(A.9)
vanishes atx = xi(y, z). Thus by substitutingxi for x into (A.9), we obtain two equations (Eq. (8))
with two unknowns:A(y, z) = [π(α−1, y, z) + (1/ρ)π(0, y, z)] andB(y, z) = π(0, y, z). Eq. (7)of the
proposition, finally, follows from(A.9) with x = ρ and(A.6).
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