To appear in Annals of the International Society of Dynamic Games

WEIGHTED DISCOUNTED STOCHASTIC
GAMES WITH PERFECT INFORMATION

Eitan ALTMAN Eugene A. FEINBERG
INRIA, B.P.93 Harriman School for Management and Policy
2004 Route des Lucioles SUNY at Stony Brook
06902 Sophia-Antipolis Cedex, France Stony Brook, NY 11794-3775, U.S.A.

Adam SHWARTZ
Department of Electrical Engineering
Technion—Israel Institute of Technology
Haifa 32000, Israel

Abstract

We consider a two-person zero-sum stochastic game with an infinite time horizon. The payoff
is a linear combination of expected total discounted rewards with different discount factors.
For a model with a countable state space and compact action sets, we characterize the set of
persistently optimal (sub-game perfect) policies. For a model with finite state and action sets
and with perfect information, we prove the existence of an optimal pure Markov policy, which is
stationary from some epoch onward, and we describe an algorithm to compute such a policy. We
provide an example which shows that an optimal policy, which is stationary after some step, may
not exist for weighted discounted sequential games with finite state and action sets and without
the perfect information assumption. Another example illustrates the same phenomenon for the

case of non zero-sum stochastic games with weighted discounted cost and perfect information.

1 Introduction

Several problems in finance, project management, budget allocation, production, and management
of computer systems lead to sequential decision problems where the objective functions are linear

combinations of the total expected discounted rewards, each with its own discount factor. Some of

these problems are described in [4, 5, 11].

Markov Decision Processes with weighted criteria have been studied in [3, 4, 5, 7, 11]. Even

in this case, when there is just one player, the results for problems with weighted discounted



rewards differ significantly from the results for standard discounted models. For example, stationary
optimal policies may not exist for weighted discounted problems with finite state and action sets [4].
However, in the case of one player, there exist optimal pure Markov policies which are stationary

from some epoch onward [4].

Stochastic two-person zero-sum weighted discounted games have been studied in [8] where
the existence of e-optimal policies which are stationary from some epoch onward is proved. The

existence of a value was established in [4, 8].

This paper deals with a two-person zero-sum stochastic game with weighted discounted payoffs.

The main goal is to study finite state and action models with perfect information.

Perfect information means that at any state either the action set of player 1 or the action set of
player 2 is a singleton (see [9]). We show that for each player there exists an optimal pure Markov
policy which is stationary from some epoch onward. We also provide an algorithm that computes
such a policy in a finite number of steps. An optimal policy which is stationary after some step

may not exist for standard weighted discounted games with finite state and action sets.

The paper is organized in the following way. The model definition and the notation are given in
Section 2. Section 3 introduces and studies lexicographical games. In section 4 we describe general
results on countable state weighted discounted games. Section 5 deals with finite state and action
stochastic games with perfect information. We prove the existence of an optimal pure Markov
policy which is stationary from some step onward, describe the sets of all optimal policies, and

formulate an algorithm for their computation. Section 6 deals with counterexamples.

As counterexamples in [4] and in Section 6 show, the main results of the paper, presented in
Section 5, hold just for games with perfect information, with finite state and action sets, and a
zero-sum assumption on the costs. The results on lexicographical games and on the existence of
optimal Markov strategies, presented in Sections 3 and 4, hold for countable state games with

compact action sets introduced in Section 2.

2 Definitions and Notation

Consider a two-person zero-sum stochastic game with a finite or countable state space X, two metric
spaces of actions A and B for players 1 and 2 respectively, and transition probabilities p(-|z, a, b) on
X. Here p(y|z, a,b) stands for the probability to go to state y given state z, and given that actions
a and b are chosen by the players. Let A(z) and B(x) denote the set of actions available for players
1 and 2 at state z. We assume that for each z € X the sets A(z) and B(z) are compact, and that



for each z,y € X, probabilities p(y|z, a, b) are continuous functions in a and b. We also assume that
>yex p(ylz,a,b) = 1forall z € X, a € A(z), and b € B(z). In contrast with standard discounted
stochastic games that deal with a single payoff function that player 2 pays player 1,and one discount
factor, here we have K payoff functions r, : X X AxB = R, k=1,..., K, and K discount factors
Br € [0,1[, k=1,..., K, where K is a given finite positive integer. We assume that for every z € X
each function r(z,a,b), k = 1,..., K, is bounded, upper semi-continuous in a € A(z), and lower
semi-continuous in b € B(z). We shall assume without loss of generality that 81 > 82 > ... > (k.
(If the discount factors are not ordered, we may reorder them; if §; = ; then we can replace the
K payoffs r1,...,rx with K — 1 payoffs, by setting r; := r; + r;, eliminating the sth component,
and obtain a model with K — 1 payoff functions and K — 1 discount factors). Define histories
hy = xo, ag, by, T1,a1,b1,...,24, where t =0,1,... . Let U and V be the set of (behavioral) policies
available to players 1 and 2 respectively. Policies u € U and v € V are sequences u = ug, Uy, . . .
and v = vg,v1,... , where u; and v; are probability distributions respectively on A (z;) and B(x;)

conditioned on h;. The randomizations used by the two players are assumed to be independent.

A (randomized) Markov policy for player 1 is a policy for which at any time ¢, u; depends

only on the current state z;. A Markov policy is called stationary if it is time homogeneous, i.e.

up = u1 = .... A policy u for player 1 is called pure if the distribution u;(-|h;) is concentrated at
one point us(h) for each history hy, t = 0,1,.... We also consider pure Markov and pure stationary
policies. Pure stationary policies are called deterministic. For N =0,1,..., a pure Markov policy

u for player 1 is called (N, oo)-stationary if uy = uy for all £ > N. The notions of (0, c0)-stationary
and deterministic policies coincide. Various special classes of policies for player 2 are defined in the

same way as the above definitions for player 1.

Given an initial state z, each pair of policies (u,v) defines a probability measure P*" on the

set of trajectories xg, ag, b, z1,a1,b1,... . We denote by E¥" the expectation with respect to this
measure.

The discounted payoff associated with the one-step payoff r;, and discount factor S for an initial
state z, where the players use policies v and v, is defined to be
o
Vk(x,u,v) = EZEL’U Z(,Bk)t'f'k((l}t,at,bt). (1)

t=0

The weighted discounted payoff corresponding to the initial state z, and strategies u and v is then

given by

K
V((II,U,U) = Z Vk(xauﬂv)' (2)
k=1



Player 1 wishes to maximize V (z,u,v), and player 2 wishes to maximize it.

Remark 2.8 in [4] reduces this game to a game with one discount factor and with a countable
state space. Countable state discounted games with compact action sets have values; see e.g. [6],
[14], or Theorem 3.1. Therefore, countable state games with compact action sets and with weighted
discounted payoffs have values as well. A reduction to a game with one discount factor but with a
continuous state space was described in [8]. Define V() to be the value of the weighted discounted

game and, for k =1,..., K, let Vi(z) denote the value of the game with criterion Vi(x,-, ).

A policy u* is said to be optimal for player 1 in game (2) iff for any u € U, inf, V (z,u,v) <
inf, V(z,u*,v) (where the latter is equal to V(z)) for all z € X. Optimality of a policy for the

second player is defined similarly.

For a policy u € U and a history h, = Z0,a0,00,. . .,%n,Gn,bn € (X x A x B)"tL p =

0,1,..., we define the shifted strategy hnu as the strategy which uses, in response to a history
hm = x0,a0,b0,-..,Tm, the action that u would use at epoch (n + m) if the history Bnhm =
F0, G0, 00, - - - s s Gy B 0, @0, - - - » T, 15 Observed. A similar definition holds for v € V. We

will also use formal notations h_ju = u and h_jv = v. For a Markov policy u of any player

ﬁnu = (Up+1, Unt2,--.) and it does not depend on lNLn If u is stationary, lNLnu = u.

We define the total expected weighted discounted rewards incurred from epoch (n + 1), n =

0,1,..., onward if the players use policies u, v, a history hy, took place and z, 1 = z,
K
V(ZB, n+ 13 u, 1)) = (ﬁl)_(n—i—l) Z(Bk)n—'_lvk(xa ﬂ, ,6)3 (3)
k=1

where @ = hnu, © = hpv. We also set V(z,0,u,v) = V(z,u,v). We introduce the normalization
)

constant (£1)~™ in (3) just in order to have Vi(z) = V(z,n) + o(1).

So any history &, defines a new stochastic game that starts at epoch (n+1). Let V(z,n) be the
value of the zero-sum game that starts at epoch n = 0,1, ... with the payoffs (3). The existence of
this value follows from Remark 2.8 in [4]. Since both players know the history and therefore they
have the same information about the past, this value does not depend on the history before epoch
n. A policy u* (v*) for player 1 (2) is called persistently optimal, see [4], if it is optimal and for any
by € (X x A"t n=0,1,2,..., the policy hnu (Env) is optimal (with respect to the cost (3)) as
well. We will apply the definition of persistent optimal policies to both criteria Vi, k =1,..., K,
and V.



The main objective of this paper is to study games with perfect information which are a special
case of stochastic games (see e.g. [9, 12]). We say that a game is with perfect information if there
exist two sets of states Y and Z such that: (i) YUZ =X, (ii) YNZ = 0, and (iii) the sets A(z) and
B(y) are singletons for all z € Z and for all y € Y. In particular, if p(Yly,a,b) = p(Z|z,a,b) =0
forally € Y,z€Z,a € A, and b € B in a game with perfect information, then the players make

their moves sequentially.

A particular, important example is a stochastic game where the players make their moves
simultaneously, but player 2 knows the decision of player 1 at each epoch [12]. In other words, v;
may depend on (hy,a), not just on hy. In this game, all definitions of special policies should be
modified by replacing x; with (2, a;) in all conditional distributions v;. Let us define an equivalent

game with perfect information.

All objects in this new model are marked with~ Let Y =X, Z = X x A, X = YU Z, and
A(z) = A(z), B(z,a) = B(z), A(z,a) = {a}, and B(z) be any singleton, where z € X and a € A.
We define transition probabilities p and payoff functions 7 which do not depend on the action of

player 1 (2) on Z (Y). For a € A and b € B we set

1 ifz=z€X, g=(z,a),
ﬁ(m‘fi‘aaab): p(y|x,a,b) 1f:i:(ac,a) eEXxA,gy=yeX,
0 otherwise,

and

_ | re(z,a,b) it E=(z,a) € X XA,

(2, a,b) = { 0 otherwise.
Each step in the original model corresponds to two sequential steps in the new one. In order to
get the same total payoffs for initial states from X, we set Bk = /B It is easy to see that, for all
initial points from X, there is a one-to-one correspondence between policies in these two models
and Vi(z,u,v) = Vi(x,u,v) and therefore V(z,u,v) = V(x,u,v) for all policies u, v and for all

states x € X.

3 Lexicographical Stochastic Discounted Games

For a metric space E we denote by B(FE) the Borel o-field on E and we denote by P(FE) the set of
probability distributions on (£,B(E)). On P(E) we consider the weak topology. If E is compact
then P(E) is compact in this topology [15]. If ¢ is a bounded upper semi-continuous function on

E then [ g(e)p(de) is a bounded upper semi-continuous function on P(E); see p.17 in [2].



Let E and C be two compact metric spaces and g(e, ¢) be a bounded function on E x C' which
is upper semi-continuous in e and lower semi-continuous in ¢. Let g(e) = min.g(e,c) and let
c(e) satisfy g(e,c(e)) = g(e). For e, — e we have g(e) = g(e,c(e)) > limsup,,_,., g(en,ce)) >
limsup,,_,~ g(en,c(e,)) = limsup,, ,. g(en). Therefore g(e) is upper semi-continuous. Similarly

g(c) = max, g(e, c) is lower semi-continuous.

Let f(xz,a,b) be a bounded function on X x A x B which is upper semi-continuous in a on
A(z) and lower semi-continuous in b on B(z) for each z € X. Then the function f(z,p,q) =
JA @) JB(2) f (%, a,b)p(da)q(db) is upper semi-continuous on P(A(z)) and it is lower semi-continuous
on P(B(z)). In addition, f(z,p,q) is convex in p and concave in ¢ (actually, it is linear in each of

these coordinates).

For each z € X let A(z) in P(A(z)) and B(z) in P(B(z)) be nonempty convex compact subsets.
In particular, one may consider A(z) = P(A(z)) and B(z) = P(B(z)).

We denote by U4 (Vi) the set of policies for player 1 (2) such that ui(-|hs) € A(zy) (vi(-|he) €
B(z)) for all hy = xg,a0,bp,-..,2¢ t = 0,1,... . We notice that U = Uy iff A(z) = P(A(z)) for
all z € X. Similarly, V = V3 iff B(z) = P(B(z)) for all z € X.

By Theorem 3.4 in Sion [18]

i b) b) — i b) b) 4
max, qrerg(r;)f(w D, q) Join, pglj(};)f(w D, q) (4)

and the appropriate minimums and maximums exist in (4). We denote

val f(z,A,B) = qrerga) Jmax, f(z,p,q). (5)
Let
Pz, f,A,B) ={p € A(z) : min f(z,p,q) = val f(z)}, (6)
qeB(z)
Q(z, f, A,B) = {q € B(z) : max f(z,p,q) =val f(z)}. (7)
pEA(T)

When A(y) = P(A(y)) and B(y) = P(B(y)) for all y € X we use the notation val f(z) =
val f(z, A, B), P(z, f) = P(z, f, A, B), and Q(z, f) = Q(z, f, A, B).

Since min, f(z,p,q) is upper semi-continuous in p, P(z, f, A, B) are nonempty and compact.

In addition, they are convex; see Lemma 2.1.1 Karlin [10] for the proof of a similar statement.



Similarly, Q(z, f,.A, B) are nonempty convex compact sets. We have that p € A(x) (¢ € B(z)) is
an optimal policy for player 1 (2) in a zero-sum game with the payoff function f(z,a,b) and sets
of decisions limited to randomized decisions from A(x) and B(z) if and only if p € P(z, f, A, B)
(g € Q(z, f,A,B)). If A(z) and B(z) are finite then P(z, f) and Q(z, f) are nonempty polytopes.
This fact is known as the Shapley-Snow theorem [16], [17].

For stochastic games with one discount factor (K = 1), we omit the subscripts £ = 1 from the

notation. We shall make use of the following Theorem.

Theorem 3.1 Let K = 1. Consider a zero-sum discounted stochastic game such that the set of
policies for player 1 (2) is U (VB), where A(z) (B(x)) are nonempty convex compact subsets of
P(A(z)) (P(B(z))) defined for all z € X.

(i) The game has a value V(z) = V(z,.A, B) which is the unique bounded solution of

V(z,A,B) =val F(x, A,B), z e X, (8)
with
F(z,a,0) = r(z,a,0) + 5 Y p(2|z,a,0)V (2). (9)
zeX

(ii) A stationary policy u* (v*) for player 1 (2) is optimal if and only if u*(-|z) € P(z, F, A, B)
(*(-|z) € Q(z, F,A,B)) for all x € X.

(iii) A policy u* (v*) for player 1 (2) is persistently optimal if and only if u) (-|hyn) € P(zy, F, A, B)
(W} (-|hn) € Q(zn, F, A,B)) for all h,, = xo,a0,b0,...,2n, n=0,1,... .

Proof. (i, ii) For the case of a standard game when A(z) = P(A(z)) and B(z) = P(B(x)) for
all z € X, these statements are well-known. Indeed, (i) and the first part of (ii) are a particular
case of a corresponding results for games with Borel state spaces; see e.g. [13, 14]. Note that the
immediate costs in [13] are assumed to be continuous; however, the proof extends in a straight
forward way to our case, since it is based on minmax results that hold also in our case. Note also
that it is stated in Theorem 1 in [13] that V' is the unique the solution of (8); this is in general not
true. However, the proof of Theorem 1 in [13] shows that V' is the unique bounded solution of (8).
The “only if” part of (ii) follows from Theorem 2.3 (i) in [1] (again, continuous immediate costs

are considered, but the proof holds also under our assumptions).

If A(z) # P(A(z)) or B(z) # P(B(z)) for some z € X, we consider the game with the action sets

A(z) and B(z), x € X. Since the reward function r(z, p, ¢) is concave in p and convex in ¢, this game



has a solution in pure policies. Therefore, statements (i) and (ii) for the case A(x) = P(A(z)) and

B(z) = P(B(z)) for all z € X imply the corresponding statements for nonempty convex compact

sets A(z) and B(x), z € X.

(iii) Let u* and v* be as stated. Consider a game with a finite horizon T" and terminal cost V,
which is the unique bounded solution of (8). Consider the value of the game from time n till time
T, which we call the (n,T) game, given that a history hn_1 took place and z,, = z. It easily follows
from a backward induction argument that the value of this game is V', and that «* and v* are
optimal. Since this holds for any 7" and since the immediate cost is bounded, a standard limiting
argument shows that the value of the (n,00) game is also V', and that «* and v* are optimal for

the (n,00) game as well. This establishes the “if” part.

To show the “only if” part, consider some history hy_1 and some state z, = x, and let u be a

policy for player 1 which does not satisfy the condition on u* for that history and . Then

V(z,n,u,v*) < B r(w,An,Bn)—l—ﬁZp(z|x,An,Bn)V(z)
zeX

< wvalF(z,A,B)=V.

This establishes the “only if” part for player 1. A symmetric argument leads to the result for player
2. =

For one-step as well as for stochastic zero-sum games, let us describe the notions of lexicograph-

ical games and lexicographical values: the formal definitions are given below. Consider a game with
sets U and V; of policies for players 1 and 2 and with a vector of payoffs (Vi (z, u, v), . .., Vi (, u, v)).
We say that a vector V(z) = (Vi(z),..., Vk(z)) is a lexicographical value of this game if (i) V;(z)
is the value for the game I'y with sets of policies U; and V; for players 1 and 2 and with pay-
off Vi(z,u,v), and (ii) for k = 1,...,K — 1, Vj41(x) is the value of the game 'y, whose set of
policies consists of those policies which are optimal for the game I'y, and whose payoff function is

Vier1(z,u,v). A policy is called lexicographically optimal if it is optimal for the game T'f.

First, we give definitions for one-step games and construct the sets of lexicographically optimal
policies for players 1 and 2. Then we we shall define lexicographically persistently optimal policies

for stochastic games.

Consider K payoff functions fi,..., fx, where fx = fr(x,a,b) with a € A, b € B. All these
functions are assumed to be bounded, upper semi-continuous in a, and lower semi-continuous in

b. Given z € X, we define lexicographically optimal policies for games with these payoffs. The



sets of policies for player 1 and 2 in game I'y are respectively P(A(z)) and P(B(z)) which are
nonempty convex compact sets in the weak topology. Therefore, the sets of optimal policies for this
game with payoff f; are nonempty convex compact subsets of P(A(z)) and P(B(z)). We consider
the game T'y with these sets of policies and payoff function f. The sets of optimal policies for
this game are also nonempty, convex, and compact. By repeating this procedure, we define the
vector value of the lexicographical game and the set of optimal policies. Combining lexicographical
optimal policies for one-step games with Theorem 3.1, we shall construct the value and the sets of

persistently optimal policies for a standard stochastic discounted game.

Now we give formal definitions. We start with a one-step game. Consider an arbitrary z € X.
We denote valy fi(x) = val f(z), Pi(z, f1) = P(z, f1), and Qq(z, f1) = Q(z, f1). For fixed
k =1,...,K — 1, suppose that the value valy fi(z) and two nonempty convex compact sets

Pi(z, fr) CP(A(z)) and Qg(z, fr) C P(B(x)) are given.
Let Ag(z) = Pi(z, fr) and Bi(z) = Qi(z, fr). We define the value

valp 1 fr1(z) = val fri1(z, Ak, Bi)

and the sets of optimal policies
Pit1(z, fr+1) = P(=, fot1, Ak, Bi),

Qk+1(xa fk+1) = Q(xa fk+laAka Bk)a

which are nonempty, convex, and compact. This construction implies that (val; fx(z),...,
valx fx(z)) is a lexicographical value of the one-step game and the nonempty convex compact
sets P (z, fx) and Qg (z, fi) are the sets of lexicographically optimal policies for players 1 and 2

respectively.

Now we consider a stochastic game with K discount factors i, with K one-step payoff functions
e, k= 1,..., K, and with the payoff criterion (Vi,...,Vk) defined by (1). Here we do not need
the assumption 31 > ... > Bg. First we consider this stochastic game with the reward function rq
and discount factor 8;. In view of Theorem 3.1 (i), this game has a unique value function which we
denote by Vi(z), z € X. Let F; be defined by (9) with » = ry, 8 = (1, and V = V;. Theorem 3.1
(iii) implies that U4, and Vp, are the sets of lexicographically optimal policies for players 1 and 2
respectively where A;(x) = P(z, F1) and By (z) = Q(z, F1) for all z € X. In addition, A;(z) and

B1(x) are nonempty convex compact sets for all z € X.

For fixed k = 1,..., K — 1, suppose that the value Vi(z) and nonempty convex compact sets

Ai(x) and Bi(x) are defined for all z € X. We consider a stochastic game with a set of policies



Uy, for player 1, a set of policies Vg, for player 2, and with the payoffs Vji(z,u,v). Theorem
3.1 (i) implies that this game has a unique value function Vj,; which is a unique solution of
Vir1(z) = val Fioq(z, Ak, By) for all z € X, where Fj is defined by (9) with r = rx11, 8 = Bkr1,
and V = Viy1. We denote Agy1(z) = P(z, Fgy1, Ak, Br) and Bii1(z) = Q(z, Fry1, Ak, Br). By

Theorem 3.1 (iii), U4, ,, and Vg, , are the sets of persistently optimal policies for this game.

We say that a policy u (v) for player 1 (2) is lexicographically persistent optimal if u € U4,
(v € VB, ). The above construction and Theorem 3.1 lead to the following theorem in which we do

not assume that g; > ... > fk.

Theorem 3.2 Consider a stochastic zero-sum game with K reward functions ri,...,rg, and with

K discount factors P, ...,PBk-

(i) This game has a lexicographical value Vi,..., Vi, where Vi, k = 1,..., K, is a unique
solution of Vi(x) = valy Fy(x) with Fy(x) defined for all z € X by (9) with r = ri, V = Vi, and
with =0, k=1,..., K.

(ii) A stationary policy u* (v*) for player 1 (2) is lexicographically optimal if and only if u*(-|z) €
Px(z,Fg) (v¥(-|z) € Qr(z, Fk)) for all z € X.

(1ii) A policy u* (v*) for player 1 (2) is lexicographically persistently optimal if and only if

ut (+|hp) € Pr(zn, Fr) (v(-|hn) € Qr(zpn, Fi)) for all hy = x0,a0,bo,-..,2Tn, n=0,1,....

Now we consider a game with perfect information. Without loss of generality, we can consider
the situation that the singletons B(z) (A(z)) coincide for all x € Y (z € Z). If we write a triplet
(x,a,b), this means that {a} = A(z) for z € Z and {b} = B(z) for x € Y. For a stochastic

discounted zero-sum game with perfect information (8) can be rewritten in the following form

max,cA (z) F(z,a,b) ifz e,

V(z) =val F(z) = {

mingcg(y) F(z,a,b) if z € Z,
where F' is defined in (9).

Let
A(z,F)={a € A(z) : F(z,a,b) = val F(z)}, reY, (10)

B(z,F) ={be B(z): F(z,a,b) = val F(z)}, z € Z. (11)

10



We observe that if z € Y then Q(z, F') is a measure concentrated at the singleton B(z) and
P(z,F) =P(A(z, F)). If z € Z then P(z, F') is a measure concentrated at the singleton A(z) and
Q(z, F) = P(B(z, F)).

Since a stochastic discounted game with perfect information is a particular case of a general
stochastic discounted game, Theorem 3.2 is applicable to games with perfect information. Since the
nonempty convex compact sets of optimal policies at each step for games with perfect information
are the sets of all randomized policies on subsets of action sets, optimal pure policies exist for games

with perfect information. We get the following theorem from Theorem 3.2.

Theorem 3.3 Consider a zero-sum discounted stochastic game with perfect information.

(i) A deterministic policy u* (v*) for player 1 (2) is optimal if and only if u*(x) € A(x, F) for
alz €Y (v'(x) € B(x, F) for all z € Z).

(ii) A pure policy u* (v*) for player 1 (2) is persistently optimal if and only if uj (h;) € A(zy, F)
whenever xy € Y (vf(hy) € B(xy, F') whenever x, € Z) for all hy = xg,ap,bo, ..., x¢, t=0,1,....

Now we consider a lexicographical zero-sum stochastic discounted game with perfect informa-
tion. We define the sets A(z, F1) = A(z, F) and By (z, F1) = B(z, F) with r = r; and 8 = f;.
We also set for k=1,..., K —1

Api1(7, Fry1) = {d € Ag(2) : Fiya(2,d',0) = max )Fk+1($,a, b)}, reY, (12)
acAL(x

Bk+1((II,Fk+1) = {bl € Bk(fL‘) : Fk+1(x,a, b,) = X %H(l )Fk+1((II,G,b)}a z € Z. (13)
ebi(x

Then if z € Y we have that Qy(z, Fi) is a measure concentrated at the singleton B(z) and
Py(z, Fy) = P(Ag(z, Fy)), k=1,...,K. If x € Z then Py(z, F}) is a measure concentrated at the
singleton A(x) and Q(x, Fi) = P(Bg(z, Fy)), k=1,..., K.

For games with perfect information, lexicographically optimal policies can be selected among

pure policies. The following corollary follows from Theorem 3.2 and it does not assume that

61>...> Pk.

Corollary 3.1 Consider a stochastic zero-sum game with perfect information, with K reward func-

tions r1,...,rKx, and with K discount factors B, ..., LK.
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(i) A deterministic policy u* (v*) for player 1 (2) is lexicographically optimal if and only if
u*(z) € Ag(z,Fk) for allz € Y (v*(z) € Bg(z, Fk) for all x € Z).

(i) A pure policy u* (v*) for player 1 (2) is lexicographically persistently optimal if and only
if uf(hy) € Ag(xy, Fx) for all zy € Y (vf(hy) € Br(x, Fx) for all xy € Z) for all hy =

:Eg,ao,b[),...,xt, tZO,l,....

4 Countable State Weighted Discounted Games

As was established in Feinberg and Shwartz [4], Remark 2.8, a weighted discounted stochastic
game can be reduced to a standard discounted stochastic game with discount factor 1, state space

X =X x {0,1,...}, action sets A(z,n) = A(x) and B(z,n) = B(z), one-step payoffs

K n
7(x,n,a,b) :; (%) ri(z,a,b), n=20,1,..., (14)

and transition probabilities

ifk=n+1,
otherwise.

ﬁ((m,n),a, b, (y, k)) - { 18(377@, b,y)

Actually, the new game is equivalent to the set of original games that starts at all possible
epochs n =0,1,..., not just at n = 0. For a one-step game with a payoff function f that depends
on a parameter other than z, we also consider a notion of a value. In particular, we consider
f = f(z,n). We also can consider the sets of optimal policies P(z,n, f) and Q(z,n, f) defined by
(6) and (7) when f depends on n. The following theorem follows from Theorem 3.1 above and from

Remark 2.8 in [4].
Theorem 4.1 Consider a weighted discounted zero-sum Markov game.

(i) Each of the games that start at epochs n =0,1,... has a value V(x,n) which is the unique

solution of

V(xz,n) = val F(z,n), reX, n=0,1,..., (15)
with
F(z,n,a,b) =7(,n,0,b) + f1 Y _ p(z|,a,0)V (z,n +1). (16)
zeX
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(ii) A policy u* (v*) for player 1 (2) is persistently optimal if and only if uj(-|h) € P(x¢,t, F)
(vf (-|ht) € Q(xt,t, F)) for all hy = o, a0,bo, ..., ze, t=0,1,....

Since policies v and v may be selected to be Markov in Theorem 4.1 (ii), this theorem implies

the following result.

Corollary 4.1 In o weighted discounted zero-sum stochastic game each player has an optimal

Markov policy.

Now we consider a weighted discounted zero-sum stochastic game with perfect information.
We observe that the game with state space X is also a game with perfect information, with Y =
Y x{0,1,...} and Z = Z x {0, 1,...}. Since F depends on n, the sets of optimal actions defined in
(10) and (11) also depend on n. We write A(z,n,F) and B(x,n, F'). We notice that if z € Y then
Q(z,n, F') is a measure concentrated at the singleton B(z) and P(z,n, F) = P(A(z,n, F)). Ifz € Z
then P(z,n, F) is a measure concentrated at the singleton A(z) and Q(z,n, F) = P(B(z,n, F)).

Therefore, Theorem 4.1 implies the following result.

Theorem 4.2 Consider a zero-sum weighted discounted stochastic game with perfect information.
A pure policy u* (v*) for player 1 (2) is persistently optimal if and only if uj(hy) € A(xy,t, F)
whenever xy € Y (vy(hy) € B(xy,t, F') whenever xy € Z) for all hy = xy,a9,bo, ..., x4, t=0,1,....

Theorem 4.2 implies the following result which is similar to Corollary 4.1.

Corollary 4.2 In a weighted discounted zero-sum stochastic game with perfect information, each

player has an optimal pure Markov policy.

5 The Finite Case with Perfect Information: Main Results

This section describes the structure of persistently optimal policies in weighted discounted stochastic
games with perfect information and with finite state and action sets. By Theorem 4.2 there are
sets A(z,n, F') and B(z,n, F) such that policies for players 1 and 2 are persistently optimal if and
only if at each step they select actions from these sets. The following theorem claims that there
exists a finite integer N such that at each state the optimal sets of actions for each player coincide
at all steps n > N. Furthermore, these sets of actions for n > N are the sets of lexicographically

optimal actions described in Corollary 3.1.
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Feinberg and Shwartz [5], Definition 5.4, define a funnel as the set of all policies with the
following properties. (Note that there was a typo in that definition: in condition (ii), A, (z) should
be replaced with A (z)). Suppose we are given action sets that depend on the current state and
also on time, but for some N, the action sets do not depend on time n, whenever n > N. The
funnel (associated with these action sets) is then the set of all policies that select actions from these

action sets.

The following theorem shows that for each player the set of optimal policies is a funnel. Algo-
rithm 5.1 provides a method for computing optimal policies; by Remark 5.1, the algorithm can be
used to compute the (time dependent) optimal action sets, and thus obtain the funnel of optimal

policies. Recall the assumption 8; > fBj41, I =1,..., K — 1.

Theorem 5.1 Consider a weighted discounted stochastic game with perfect information and with
finite state and action sets. There exists a finite integer N such that A(x,n,F) = Ag(x, Fx) and
B(z,n,F) = Bg(x,Fx) for all z € X and for alln > N.

Proof. Let fork=1,..., K
Cr = sup{|ri(z,a,b)| : z € X,a € A(z),b € B(z)}. (17)

Forn =0,1,... and for { = 1,..., K — 1, we define

K n
b= (o) Y Gk (18)

k=l+1 1= B

and
K

g =B D (Be)"Ch. (19)

k=I+1

Observe that v, ; + 81641, = p, and that §,; - 0asn —ooforalll =1,..., K — 1.

First we show that there exists N ; such that A(z,t,F) C Ai(z, Fy) for all t > N;; and for

all x € X. Since all sets A(x) are singletons for all 2 € Z, we have to prove this just for z € Y.

We observe that for any z € X, any n = 0,1, ..., any couple of policies (u,v) for players 1 and
2 respectively, and for any history by = Zo, GQ, l~)0, iy 1, Qp_1, l;n_l,
|V (z,n, fbn_lu, ﬁn_lv) —Vi(x, fNLn_lu, fNLn_lv)| < p1- (20)
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Therefore, |V (z,n) — Vi(z)| < d,,1. (From (16), (9), and (14) we have that

|F($an7 a, b) - Fl(xa a, b)| < Yn,1 + ﬁ15n+1,1 = 571,,1- (21)

We recall that B(z) = {b} for z € Y and A(z) = {a} for z € Z. Let x € Y. If A(z) =
A (z, Fy), we set Ny 1(z) = 0: in particular, Ny ;(z) =0 for z € Z. If A(z) # Ay(z, F1), we set

N = min{n =0,1,...: i Vi(z) — Fi(z,a,b)} > 20,1} 22
11(w) = mingn eatin @) = Fia b)) > 20,0) (22

Then for any a € A(z) \ Ai(z, F1) and for any n > Ny 1(z),

V(z,n) — F(z,n,a,b) > V(z,n) — F(z,n,a,b) — Vi(z) + Fi(z,a,b) + 25,1 >
(V(z,n) = Vi(z)) + (Fi(z,a,b) — F(z,n,a,b)) + 26, > 0. (23)

By (23), if n > Nyi(z) and @ ¢ Ai(z,F;) then a ¢ A(z,n,F). In other words, Ai(z,F) D
A(z,n, F) for n > Ny (x).

We repeat the above construction for the second player. For z € Z such that By (z, F}) # B(z),

we define

N3 i(z) = min{n =0,1,... min {Fi(z,a,b) — Vi(z)} > 20,1} (24)

: bEB(.’t)\Bl (:E,Fl)

We set Ny (z) = 0 for all other . Then B;(z, F}) DO B(z,n,F) for all n > Ny;(z), z € X. We
define N;; = max,cx N;i(z), i =1,2.

We set Ni = max{N; 1, Ni2}. Then Ai(z,F) D A(z,n, F) and By(z, F1) D B(z,n, F) for all

n > Ny and for all z € X. We observe that for n > Ny and for any history iLn—l
Vi(z,n, hp—1u, ﬁn_lv) = Vi(x) (25)

for any policies v and v that, whenever ¢ > Nj, select actions from the sets Aj(xs, F1) and

Bl(It,Fl).

We consider our game for n > N; and with action sets A(-) reduced to A;(-, F}) and action
sets B(+) reduced to By (-, F1). Since in the new model, the component V;(z,n,u,v) of the payoff
function V' (z,n,u,v) is constant with respect to policies 4 and v that start at epoch n, we can

remove the first criterion (that is, we can set r; =0).

We thereby obtain a model with (K — 1) criteria. We repeat this procedure at most (K — 2)

times and eventually obtain a model with a single payoff function rx. At each step [ = 2,..., K,
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for each € Y such that A;_;(z, Fj_1) # Ay(z, F}), we define

Nij(z) = min{n > Nj_; : {Fi(z,a,b) = Vi(z)} > 205} (26)

min
aEAl_l(l',Fl_l)\Al(CE,Fl)

and Ny ;(z) = Nj—; for all other z. For each = € Z such that B;_i(z, Fi—1) # By(z, F}), we also

define

Ny (z) = min{n > Nj_; : Vi(z) = Fi(z,a,b)} > 25,,} (27)

min
bEBl_l(l',Fl_l)\Bl(l',Fl)

and Ny;(r) = N;_; for all other z. We also set N;; = max,.x N;;(z), where i = 1,2 and
= 2, ce ,K, and Nl = maX{Nl,l, Ng,l}.
After iteration K we have Ai(z, Fx) O A(z,n, F) and Bg(z, Fx) O B(z,n, F) for alln > Ng
and for all x € X. In addition, for any history Fn_1
. . K
V(z,n, hn-1u, hn-1v) = (1) ™" D (Be)" Vi (2) (28)

k=1

for n > N and for any policies u and v that use actions from the sets A g (s, Fx) and B (2, F)
for all ¢ > Ng. Therefore A(z,n,F) = Ak(z, Fk) and B(z,n, F) = Bi(z, Fi) for all z € X and
foralln > N =Ngk. =n

Corollary 5.1 In a weighted discounted zero-sum stochastic game with finite state and action sets,

for some N < oo each player has a persistently optimal (N, 00)-stationary policy.

Algorithm 5.1 0. Set £k = 1.

1. Compute Vi(z), Ag(z), and By (z) for all x € X. Compute Ny.

2. If Ag(z) and By(z) are singletons for all z € X or k = K, set A(z) = Ai(z) and B(z) =

B (x) all z € X and continue to the next step. Otherwise increase k by one and repeat from step 1.

3. Fix stationary policies @ and & for players 1 and 2 respectively, where @(z) € A(z) and

o(x) € B(z) for all € X.
4. Compute Fy(z) = K (8x)NVi(z, @, 0) for all z € X, where N = N.

5. Compute N-stage optimal pure Markov policies (u,v) by solving the N stage stochastic

zero-sum game with perfect information with state space X, action sets A(z) and B(z) for players

1 and 2 respectively, transition probabilities p, and rewards r; = S5, (8 )ry. Since A(z) (B(z))
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are singletons for z € Z (z € Y), ui(x) (v¢(x)) are defined in a unique way for z € Z (z € Y),
t=0,...,N—1. Fort=0,...,N — 1 the policies u,v can be defined by

Fy(z) = x| {re(w,a,b) + Y p(z]2,0,0) Fri1 (2)} = rolz, ue(2),0) + Y plz|z, ug(@),b) Fopa (2)
zeX zeX

(29)
for x € Y and by

Fy(z) = bémn {ri(z,a,b) + Zp (z|z,a,b)Fii1(2)} = r(z,a,v(z)) + Zp (z|z, a,vi(x)) Fri1(2)
zeX zeX

(30)
for z € Z.

6. (N, o0)-stationary policies v and v for players 1 and 2 are optimal, where Step 5 defines u;(-)

and v(-) for t =0,...,N — 1 and u(-) = a(-), ve(-) = 0(-) for t > N.

Remark 5.1 A minor modification of the algorithm leads to the computation of the sets of
persistently optimal policies described in Theorems 4.2 and 5.1. The algorithm computes IV,
A(z,N,Fg) = A(z), B(z, N, Fg) = B(z). A minor modification of Step 5 leads to the computa-
tion of A(z,t, F) and B(z,t, F) as sets of actions at which maximums in (29) and minimums in

(30) are attained, t =0,..., N — 1.

Remark 5.2 The number N which the algorithm computes is an upper bound for the actual
threshold after which optimal policies must take actions from the sets Ax(z, Fx) and Bg(z, Fi).
In fact, it compares the loss over one step due to an action which is non-optimal for criterion
I=1,...,K—1, to the maximum gain from the next step onward due to criteria[+1,..., K. Since
this gain decreases faster than the losses, after some step the one-step loss cannot be compensated
by payoffs with smaller discount factors. The numbers d,; provide an upper estimate for this
compensation. It is possible to sharpen this estimate by using the difference between values of MDPs
when both players maximize and minimize their payoffs. This approach was used in Algorithm 3.7
in Feinberg and Shwartz [4]. It provides a better upper estimate for N, but requires solutions of

up to K(K — 1) additional MDPs.

6 Counterexamples

The first example describes a stochastic game with weighted discounted payoffs and with finite state

and action sets in which there is no optimal policy which is stationary from some epoch onward.
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This shows that the perfect information structure is essential. The existence of e-optimal policies

with this property was proved in Filar and Vrieze [8].

Example 6.1 Consider a single state, which will be omitted from the notation below (we are thus
in the framework of repeated games). Let A = {1,2},B = {1,2}. Let ri1(a,b) = 1{a = b}, and
r9(a,b) = 1{b = 2}. Assume 1 > 1 > [ > 0, and define the total payoff:

V(u,0) = BN Biri(anb) + Y Bira(ar, be)
=0 =0

Then the optimal policy for player 1 (that controls the actions A) for all ¢ large enough is to use
action 1 with probability

(1+[B2/B1]")/2- (31)

This converges to a limit 1/2, but not in finite time.

To obtain (31), we note that for any 2 by 2 matrix game R, for which a dominating strategy
does not exist for either player, the optimal policy is the one that results in the indifference to the
other players strategy. (This is true whether player 1 minimizes or maximizes). Hence, the optimal

strategy of player 1 in the matrix game, u(1) and u(2), satisfies
Rnu(l) + R21’U,(2) = R12u(1) + R22u(2)

and hence
Ry — Rop

1) = .
u(l) Ri1 — Ri2 — Ro1 + Roo

In our repeated game, R is the matrix

In the next example, we consider a Markov Decision Process with one state, a compact set of
actions, and continuous payoffs. Example 3.16 in Feinberg and Shwartz [4] shows that optimal
(N, 00)-stationary policies may not exist under these conditions. In the next example, there is a

unique optimal Markov policy u, but the sequence u; does not have a limit.

Example 6.2 Here again we assume a single state, and the actions are A = [—1,1]. Assume

1> p1 > P2 > 0. Let ri(a) = |a.
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The single controller maximizes the expected total reward:

V(u) = E" | Biri(a) + ) fira(Ayr)
t=0 t=0

Let r9(a) = y/1 — |a|. If the component 75 did not exist, the optimal actions would be |a| = 1.
Now in the presence of 7y, since the derivative of ry at a = —1 (and @ = 1) is 0o (—o0, resp.), the
optimal policies u; satisfy |us| < 1 for all ¢. Here again the convergence to the limit optimal policy

|a| = 1 does not take finite time. Note that for any ¢, there are two optimizing actions.

Next we modify 79 slightly so as to destroy the convergence. For positive a, we replace r3(a) with
a linear interpolation of /1 — a] between points a = 1 — (2n) !, n = 1,2,.... For negative a, we
replace ro(a) with a linear interpolation of /1 — [a] between points a = 1—(2n+1) "1, n =1,2,....
As a result, for each ¢ there will be just one optimizing action, u;. We have that limy_, o |us| = 1,
but u; is going to be infinitely often close to —1, and infinitely often close to 1. Hence, it does not

converge. (Note however that in the sense of set convergence limsup, . {u:} = {—1,1}).

It is well known that non zero-sum games with perfect information need not have deterministic
equilibria policies. This was illustrated by Federgruen in [6] section 6.6. A natural question is
whether for weighted discounted stochastic games with perfect information, there exist equilibrium

policies which are stationary from some epoch n onward.

Example 6.3 The following counterexample shows that the answer is negative. Consider a game

with two players. Let the payoff function of player 7 be

WZ’(ZE,’U,,’U) = ‘/i,l(xauav) + %,Z(xauav)a (32)
where
o0
Vie = B2V (Be)'rik (1, ag, by)
t=0

with i,k = 1,2 and 31 > [o.

Let X = {1,2}, A(1) = B(2) = {1,2}, and A(2) = B(1) = {1}. We also have p(1]1,1,1) =
p(1]2,1,1) = % and p(1]1,2,1) = p(1]2,1,2) = % The one-step rewards are ro1 (1,1,1) = r11(2,1,1) =
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]_, T22(1,2, 1) = ’)”22(2, 1,2) = —1, ’)”12(2, 1, ].) = 7“12(2, ]_,2) = ’)”22(1, 1, ].) = T22(1,2, 1) =1 and all
other rewards are 0. We remark that if we remove the second summand from (32), we get an
example from Federgruen [6], section 6.6, in which there is no equilibrium deterministic policies for

a standard discounted non-zero sum game with perfect information.

Any stationary policy u (v) of player 1 (2) is defined by a probability p = u(1]1) (¢ = v(1]2)),
p,q € [0,1]. Let P(p,q) be a matrix of transition probabilities of a Markov chain defined on X by
a couple of policies (p, q),

1+p 2+4p
3 3
P(p,q) =
14q 2—q¢q
3 3

A straightforward computation leads to

3-B(2-q B2-p)
(I-BPp,q) ' =[(1-BB—-Bp—a)]"
B(l+q) 3-p6(1+p)

Let also 7 (p, q) be a one-step expected payoff vector if a couple of policies (p, q) is used,

0 2p—1
7“11(10, CI) = ) 7"21(1% Q) = )
2q—1 0
0 1
7"12(1’, Q) = ) 7“12(1% Q) =
1 0

Let there exist an equilibrium policy which is stationary from some epoch N onward. Since all tran-
sition probabilities are positive, this means that there exists a couple (p*,¢*) which is equilibrium

for any objective vector (Wi(x,n,p,q), Wa(z,n,p,q)),n=N,N+1,..., 2 € X,

n
Wi(xanapa Q) = ‘/il(xapa Q) + (%) W?(xapa Q)a
where 7 = 1, 2.

We have that W;(z,n,p,q) = Vi1 (z,p, q) and therefore (p*, ¢*) is an equilibrium pair of policies
for the standard discounted game with the payoff vector (Vii(z,p,q),Va1(z,p,q)). This game is

described in section 6.6 of Federgruen [6] and it has a unique stationary equilibrium solution

p*=q* =.5.
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We also have that

Wl(lanapa Q) = (2q - 1)f (1617p7 Q) + (%) f(ﬁ?apa q)7

WZ(lanapa Q) = (2p - l)g(ﬁlapv Q) + (%) g(ﬁ?apa Q)a

where
_ B2 —p)
1629 = T BB pr—0)
. (3-B(2-19)
9609 = T 5 G- pp—a)
We have that %jﬁwbqﬁ <0 and %{:"p’q)bqﬁ > 0.

Therefore, there is no equilibrium policy which is stationary from some epoch n onward. g
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