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Abstract

This paper deals with perturbed matrix games. The main result is that the sets of solutions

of perturbed games converge to subsets of solutions of appropriate lexicographic games. We

consider applications of these results to dynamic games. In particular, we consider applications

to repeated games with weighted discounted criteria and to finite-horizon stochastic games with

perturbed transition probabilities and rewards.

1 Introduction

This paper deals with perturbed matrix games and their applications to stochastic and repeated

games. For matrix games with continuously perturbed matrices, the values of perturbed games

converge to the value of the original game; Tijs and Vrieze [8] or Filar and Vrieze [2], Proposition

G.5. For continuous perturbations, the upper limits of the sets of optimal solutions of matrix games

belong to the sets of optimal solutions of the original game; see the same references. In the case

of a linear perturbation, the value of the game is differentiable in the direction of its perturbation

and this derivative is equal to the value of the following lexicographic game: the players play the

game with a perturbation matrix on the sets of optimal policies for the original game; Mills [5].

In this paper we study perturbations which are more general that linear perturbations. In

particular, we consider perturbations which contain a linear term plus a sum of terms proportional
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to the higher powers of the perturbation parameter. These powers may be noninteger. We show

that Mill’s [5] result also holds for these more general perturbations (Corollary 3.1). In addition,

the limits of the sets of optimal policies exist and belong to the sets of solutions of the described

lexicographic game (Theorem 3.1). For the simplest case of a linear perturbation, Example 3.1

below shows that the limit of solution sets can be strictly smaller than the set of solutions for

the appropriate lexicographic game. For perturbations of higher orders it is possible to consider

lexicographic games when the players play sequentially the games with perturbation matrixes of

higher orders on the polytopes of optimal solutions for previous lexicographic optimal policies.

Example 3.2 shows that, in the case of a quadratic perturbation, the limiting solutions of the

perturbed game may have no common points with the optimal solutions of the lexicographic game

which the players play on the sets of lexicographic solutions for the linear perturbed games with

the payoff matrix being the matrix of the second-order perturbations. Our proofs are based on the

analysis of asymptotic solutions of linear programs (see Jeroslow [4]) for perturbed matrix games.

We consider applications of these results to stochastic and repeated games. In particular, we

consider two models: (i) finite horizon stochastic games with finite state and action sets and with

perturbed transition probabilities and reward functions, (ii) repeated games with objective functions

equal to the sums of the total discounted rewards with different discount factors. In particular, for

repeated games with several discount factors we show that any limit of optimal solutions is optimal

for the following lexicographic matrix game: (a) play the game with the payoffs that correspond

to the biggest discount factor, (b) play the game with the payoffs that correspond to the second

biggest discount factor on the sets of optimal policies for the first game.

2 The model

Let Gε be a family of matrices of size m × n and ε ∈ [0, ε∗], where ε∗ is a positive number. We

denote G = G0.

Player 1 maximizes over the policies U , which are probabilities over the m rows, and player 2

minimizes over the policies V , which are the probability measures over the n columns.

We assume elements of Gε are continuous in ε. The zero-sum game with matrix Gε is called a

perturbed game, and we are interested in characterizing the limit of the values and optimal policies

of Gε.

We consider two types of perturbations:

• (P1) Gε = G + εF , where G and F be two real matrices of size m× n,
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• (P2) Gε = G + εF + ε2F1 + . . . + εL+1FL, where G, F and Fl, l = 1, . . . , L, are real matrices

of size m× n.

Unless otherwise stated, we consider the more general case (P2).

For a matrix game with a matrix H we denote by UH and VH the sets of optimal policies for

player 1 and 2 respectively. These sets are convex polytopes whose extreme points can be computed

via linear programming. We say that a policy is basic if it corresponds to a basis in the LP. For

H = Gε we sometimes write Uε and Vε instead of UGε and VGε respectively.

Since the sets of basic variables for game Gε is finite, there exists some interval I =]0, ε0] such

that for all ε in that interval, the same set of basic variables is optimal in the LP (see [4]). The

policy uε corresponding to any basis can be expressed as a rational function of ε ∈]0, ε0], i.e. the

ratio between two polynomials in ε with real coefficients (see [4]), and therefore it can also be given

as a Laurent expansion of the form

uε = u0 + εu1 + ε2u2 + ... . (1)

There are no negative powers of ε since, clearly, uε, being bounded, does not have poles. (1) implies

uε = u0 + εu1 + o(ε). (2)

The similar representation also holds for vε corresponding to a fixed basis in each one of the LPs

that are used for computing the optimal policy for the 2nd player.

As observed by Jeroslow [4], there is a finite number of basic sets in the LP and for each basic

set (P2) implies that the value of the game and the optimal policies are rational functions of ε.

Therefore for some positive ε0 there is a finite number, say K, of sets of basic variables in the LP

and each of these sets corresponds to optimal policies (uε, vε) for all ε ∈ I =]0, ε0]. In other words,

there are numbers {(uk
0, v

k
0 )| k = 1, 2, . . . ,K} such that uε, ε ∈]0, ε0[, is an optimal basic policy for

player 1 in game Gε if and only if for some k = 1, . . . ,K

uε = uk
0 + εuk

1 + o(ε) (3)

The similar representation takes place for player 2.

It follows from the above discussion and from (3) that the value of Gε can be expanded as:

val Gε = u∗0Gv∗0 + ε(u∗0Gv∗1 + u∗1Gv∗0 + u∗0Fv∗0) + o(ε), ε ∈ I, (4)

where u∗i and v∗i are the coefficients in representations (3) when an arbitrary optimal basis is fixed

for each player on the interval ]0, ε0].
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Let UG ⊂ U and VG ⊂ V be the compact sets of policies that are optimal for the two players in

the game G. Consider the game F over the restricted set of policies UG and VG, and denote by UGF

and VGF the corresponding sets of optimal policies. We call this a lexicographic game, and these

sets - the sets of lexicographic optimal policies. The value of this game is denoted by val (GF ).

3 Main results

Consider matrix games G and Gε. If limε→0 Gε = G then

lim
ε→0

val Gε = val G,

see Theorem 2.1 in Tijs and Vrieze [8] or Proposition G.5 in Filar and Vrieze [2]. If ε(l) → 0,

(uε, vε) ∈ (Uε, Vε), and (uε(l), vε(l)) → (u, v) then (u, v) ∈ (U, V ); see the same references. Under

(P2) the following stronger result holds.

Theorem 3.1 Consider the perturbed game (P2). There exist limε→0 Uε and limε→0 Vε and these

limits are polytopes. Let (uε, vε) be an optimal solution for the perturbed game (P2). Let ε(l) → 0

be any sequence along which some limits

u′ = lim
l→∞

uε(l), v′ = lim
l→∞

vε(l)

exist. Then u′ ∈ UGF , and v′ ∈ VGF . Therefore, limε→0 Uε ⊆ UGF and limε→0 Vε ⊆ VGF .

We remark that Theorem 3.1 and its proof hold for any perturbation that satisfies (3) and

Gε = G + εF + o(ε).

Proof. Formula (3) implies the convergence of Uε and that the limit of Uε is a convex hull of

{uk
0 : k = 1, . . . ,K}. The similar statement is true for player 2.

It follows from (4) that

val Gε = u∗0Gv∗0 + ε(u∗0Gv∗1 + u∗1Gv∗0 + u∗0Fv∗0) + o(ε) (5)

= inf
v

[u∗0Gv + ε(u∗1G + u∗0F )v + o(ε)] ≥ inf
v

[uGv + εuFv + o(ε)] ,

for all policies u ∈ U . Since the last inequality holds for all ε ∈ I,

inf
v

u∗0Gv ≥ inf
v

uGv,
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for all policies u ∈ U . This establishes directly the fact that u∗0 ∈ UG which also follows from

Proposition G.5 in [2]. Similarly v∗0 ∈ VG.

We thus focus on (5) for the case when u ∈ UG. In this case (5) implies

(u∗0Gv∗1 + u∗1Gv∗0 + u∗0Fv∗0) + o(1) = inf
v∈VG

[(u∗1G + u∗0F )v + o(1)] ≥ inf
v∈VG

uFv, (6)

for all policies u ∈ U .

We observe that
(u∗0G)j ≥ val G, j = 1, ..., n.

(if for some j this were not true, then the optimal response of player 2 to u∗ would yield a value

strictly smaller than val G, which contradicts the fact that u∗0 is optimal for the matrix game G).

Similarly,

(Gv∗0)i ≤ val G, i = 1, ...,m.

We further note that
v∗0(j) = 0 for any j for which (u∗0G)j > val G,

otherwise, player 1 could achieve more than val G against v∗0; this contradicts the fact that v∗0 ∈ VG.

Moreover, if v∗0(j) = 0 then v∗1(j) ≥ 0 since v∗ε is nonnegative. It then follows from an argument

similar to the one for v∗0(j) that v∗1(j) = 0. We conclude that v∗1(j) 6= 0 only if (u∗0G)j = val G.

Since
∑

j v∗1(j) = 0, this implies that

u∗0Gv∗1 = 0.

Similarly, u∗1Gv∗0 = 0. It then follows from (6) that

u∗0Fv∗0 ≥ inf
v∈VG

uFv

for any u ∈ UG, so that u ∈ UGF . We get similarly v ∈ VGF .

The following corollary follows from the proof of Theorem 3.1. Under assumption (P1) this

result was proved by Mills [5].

Corollary 3.1 Consider the perturbed game (P2). Then

lim
ε→0

val Gε − val G

ε
= val (GF ).
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A natural question is whether limε→0 Uε = UGF and limε→0 Vε = VGF when Gε = G + εF. The

following example provides the negative answer.

Example 3.1. Let

G =

(
1 1 1 0
0 0 0 1

)
, F =

(
2 1 2 0
1 2 2 0

)
.

Player 2 has three equivalent policies in game G. It is easy to see that UG = {(0.5, 0.5)t},
val G = 0.5, and

VG = {p1(0.5, 0, 0, 0.5) + p2(0, 0.5, 0, 0.5) + p3(0, 0, 0.5, 0.5)| p1 + p2 + p3 = 1, pi ≥ 0, i = 1, 2, 3}.

The game GF is equivalent to a 1× 3 matrix game with the payoff matrix (3
4 , 3

4 , 1). Therefore,

VGF = {p1(0.5, 0, 0, 0.5) + p2(0, 0.5, 0, 0.5)| p1 + p2 = 1, pi ≥ 0, i = 1, 2}.

For ε > 0 we consider a matrix game G + εF. This 2 × 4 game can be solved explicitly. We

have Uε = {(1−ε
2+ε ,

1+2ε
2+ε )t}, val (G + εF ) = 1+2ε

2+ε , and only policies 1 and 4 of player 2 are active.

Therefore, policies 2 and 3 of player 2 can be excluded. We delete columns 2 and 3 of matrix Gε

and solve the appropriate 2× 2 game. From this solution we get

Vε = {( 1
2 + ε

, 0, 0,
1 + ε

2 + ε
)}.

We have that limε→0 Vε = {(0.5, 0, 0, 0.5)} 6= VGF .

We have defined lexicographic games for two matrices G and F. However, it is possible to define

a lexicographic game for any finite sequence of m × n matrices F1, F2, . . . , Fk. If k = 1 then the

lexicographic game is F1 and the sets of optimal solutions for players 1 and 2 are polytopes. If for

some i = 1, . . . , k−1, the lexicographic game F1F2 . . . Fi id defined and the sets of optimal solutions

for players 1 and 2 are polytopes, the lexicographic game F1F2 . . . FiFi+1 is game the Fi+1 on these

polytopes. Then the set of optimal solutions of this game are polytopes too; see Altman, Feinberg,

and Shwartz [1] for details.

Let Gε satisfies (P2). In view of Theorem 3.1, a natural question is whether limε→0 Uε ⊆
UGFF1...FL

. The following example gives the negative answer to this question.

Example 3.2. Let Gε = G + εF + ε2F1, where matrices G and F have are defined in Example 3.1

and

F1 =

(
1 0 0 0
0 0 0 0

)
.
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We have from Example 3.1 that UGF = {(0.5, 0.5)t} and VGF is a convex combination of vectors

(0.5, 0, 0, 0.5) and (0, 0.5, 0, 0.5). Since the second player minimizes the payoff, we have VGFF1 =

{(0, 0.5, 0, 0.5)}.

Now we solve explicitly the 2 by 4 matrix game Gε. We have that

Uε = {( 1− ε

2 + ε + ε2
,

(1 + ε)2

2 + ε + ε2
)}, val Gε =

(1 + ε)2

2 + ε + ε2
),

and only actions 1 and 4 are active for player 2 when ε is small. We delete columns 2 and 3 from

Gε and solve the (2× 2) game. We have

Vε = {( 1
2 + ε + ε2

, 0, 0,
1 + ε + ε2

2 + ε + ε2
)}.

Thus,

lim
ε→0

Vε = {(0.5, 0, 0, 0.5)} 6= {(0, 0.5, 0, 0.5)} = VGFF1 .

4 Extensions

Our first extension is to a perturbation of the form:

• (P3) All entries of Gε are rational functions of ε (the division of two polynomials of ε with

real coefficients). We assume that Gε has no poles in 0.

It then follows that Gε can be expressed as

Gε = G + εF +
∞∑
l=1

εl+1Fl, (7)

where G, F and Fl, l = 1, ..., are real matrices of size m× n.

It follows from [4] that the set of basic coordinates that are optimal for the LP that correspond

to the matrix game is fixed for some interval I ′ = (0, ε′]. A policy uε corresponding to any fixed

set of basic coordinates can also be expressed as a rational function in ε; see Jeroslow [4].

Note that Gε is uniformly bounded on I ′. Hence both uε, vε corresponding to any basis, as well

as the value of the game can be expressed as Taylor series in ε. We may thus repeat the steps of

Sections 2, 3 and obtain the results of Theorem 3.1 and of Corollary 3.1.

7



Next, we extend the spaces of policies to infinite ones. Let U and V be some spaces and consider

the function Gε : U ×V → IR. Assume that Gε has a value for all ε sufficiently small. Consider the

following form of perturbation:

Assume that there exists optimal policies of the form

u∗ε = u0 + εu1 + o1(ε), v∗ε = v0 + εv1 + o2(ε).

The statements of Theorem 3.1 and of Corollary 3.1 still hold. The proofs extend with minor

modifications.

Our second extension is to a perturbation of the form:

• (P4) Gε = G + εF + εα1F1 + . . . + εαLFL, where F , G and Fl, l = 1, . . . , L are real matrices

of size m× n and 1 < α1 < . . . αL < ∞.

We say that a function P (ε) is an irrational polynomial if for some integer L

P (ε) = a + bε + c1ε
α1 + . . . cLεαL , (8)

where αl > 1, l = 1, . . . , L. Without loss of generality we can assume that α1 < α2 < . . . < αL.

We observe that if an irrational polynomial P is not identical to 0 then P (ε) = εα(d + o(1)),

where α ≥ 0 and d 6= 0. Therefore,

P (ε) 6= 0, ε ∈]0, ε0], (9)

for some positive ε0.

The sum and the products of two irrational polynomials are irrational polynomials. Let P and

Q be irrational polynomials and assume that Q is not identical to 0. We consider a ratio P/Q. Let

M be the set of all ratios of irrational polynomials. If R1, R2 ∈M then R1 + R2 ∈M R1R2 ∈M,

and, if R2 is not identical to 0, R1
R2
∈M.

We consider a perturbed game with matrix Gε defined in (P4). Without loss of generality we

assume that val G > 0. For game Gε we consider a standard LP that computes an optimal policy

for player 1; see for example [2]. The optimal variables of this LP are equal to uε(val G(ε))−1,

where uε is an optimal policy for player 1 in game Gε. We apply Jeroslow’s [4] approach to these

LPs. Each feasible basic solution x of an LP can be represented as x = (xb, xN ), where xb is a

vector of basic variables. Therefore, the set of all coordinates of x is partitioned into two subsets:

a subset of basic coordinates and a subset of nonbasic coordinates. This partition defines vector x.
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Let xε be the feasible basic solution of the LP for game Gε when a set of basic coordinates is fixed.

Then the elements of vector xε belong to M and fε(xε) ∈M, where fε is the objective function of

the LP for game Gε. If xε is an optimal solution of this LP then fε(xε) = (val Gε)−1.

We also observe that (9) implies that for any function R inM there is ε0 > 0 such that R(ε) > 0

for all ε ∈]0, ε0]. In particular, if we fix the set of basic coordinates, it is true for R(ε) = fε(xε).

We also observe that the difference of two functions in M belongs to M. The set of all possible

partitions into basis and nonbasic coordinates is finite. Therefore, there is a nonempty interval

I =]0, ε0[ and a finite number, say K, of sets of basic coordinates such that for all ε ∈ I each of

these sets define optimal solutions for these LPs for all ε ∈ I. We fix one of these sets of basic

coordinates. Let xε be the appropriate basic solution of the LP. Then val Gε = 1/f(xε) ∈ M and

the elements of the vector xε are in M. For the corresponding basic optimal policy uε of the game

Gε we have that uε = xε/val Gε and therefore uε ∈M. In addition, uε are probability distributions

and therefore they are bounded. Therefore uε = u0 + εu1 + o(ε), ε ∈ I, for some ui, i = 1, 2. Each

of these K sets of basic coordinates defines optimal basic policies uk
ε for the games Gε, ε ∈ I,

k = 1, . . . ,K. Therefore uε an optimal basic policy for player 1 if and only if (3) holds for some

k = 1, . . . ,K. This implies that Theorem 3.1 and corollary 3.1 hold for the perturbed game (P4).

We also remark that Theorem 3.1 holds for a more general perturbation Gε = G+ εα0F +
L∑

l=1
εαLFl,

where 0 < α0 < α1 . . . < αL < ∞. In this case, we can substitute εα0 with a new variable and apply

Theorem 3.1 for (P4).

5 Application to perturbed stochastic games

Consider a perturbed Markov game with a finite state space X and finite action spaces A and B.

We assume without loss of generality that A and B are the same for all states. We assume that

the transitions are controlled only by player 2, i.e. the probability to go from state x to y in one

step is only a function pε
xby of the action b of player 2. It is given by the transition probability

pε
xby :=

L∑
l=0

εlpxby(l), (10)

where L is some integer. We allow for subprobability measures, i.e.
∑

y∈X pε
xby < 1.

A behavioral policy u in the policy space U is described as u = {u1, u2, ...}, where the decision

rule ut, applied at time epoch t, is a probability measure over A conditioned on the whole history
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of actions and states prior to t, as well as on the state at time t. A behavioral policy for which all

measures ut are concentrated on a single action are called pure behavioral policies.

We shall consider the infinite horizon case. A mixed stationary policy u is a probability measure

of the set of pure stationary policies.

Given an initial distribution β on X, each policy pair u induces a probability measure denoted

by P u,v
β,ε on the space of sample paths of states and actions (which serves as the canonical sample

space Ω). The corresponding expectation operator is denoted by Eu,v
β,ε . On this probability space

the state and action processes, xt, at, bt, t = 1, 2, ..., N are defined, as well as the history process

ht = (x1, a1, b1, ..., xt).

Let rl : X×A×B→ IR, be (real valued) reward functions, l = 0, . . . , L, and consider the total

expected reward function:

Rε
β(u, v) = Eu,v

β,ε

N+1∑
s=1

rε(xs, as, bs), (11)

where ε > 0 and

rε(x, a, b) =
L∑

l=0

εlrl(x, a, b). (12)

The set of pure stationary policies is finite. Thus when considering the game over the set of

mixed pure stationary policies, we are in the framework of (finite) matrix games described in the

Section 4. We note that this game has indeed a saddle point within the mixed pure stationary

policies, as well as among the set of stationary randmoized policies, and there exists a simple

equivalence between these two classes of policies (see [6] Thm. 3.1).

Clearly the game is of the form of (P2), so we may apply the main results of Theorem 3.1 and

Corollary 3.1:

Theorem 5.1 Consider the perturbed stochastic game. Then

(i) The values of Rε
β converge to that of R0

β, and

lim
ε→0

val Rε
β − val R0

β

ε
= val (GF ).

(ii) Let (uε, vε) be optimal (randomized stationary or mixed pure stationary) for the ε stochastic

game. Let ε(l) → 0 be any sequence along which some limits

u′ = lim
l→∞

uε(l), v′ = lim
l→∞

vε(l)
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exist. Then u′ ∈ UGF , and v′ ∈ VGF .

Note: it is only for the mixed policies that we have the representation of the stochastic game

as a matrix game. In order to obtain the results for the behavioral policies, we have to use the

equivalence between the behavioral and mixed policies, as well as the fact that we can select a

continuous mapping between them. If {uε(l)}l and u are behavioral, then the corresponding mixed

policies also converge. Since the limit of the mixed policies is in UGF , it follows that so is u′.

Theorem 5.1 extends results in [7] where it was shown that limε→0 val Rε
β − val R0

βε = val A,

and that u′ ∈ UG, and v′ ∈ VG. We also remark that Theorem 5.1 holds if instead of perturba-

tions of type (P2) of the transition probabilities and reward functions we consider a more general

perturbation of type (P4) of these objects.

Consider finally the more general case where the transition probabilities pε
xaby may depend on

the acations of both players, and consider a finite horizon of N steps. One can now study the

convergence of perturbed stochastic games with finite horizon through the dynamic programming

equation

vt(x) = valab

[
r(x, a, b) +

∑
y

pε
xabyvt−1(y)

]
, t > 0, (13)

v0(x) = valabr0(x, a, b).

A saddle point (u, v) can be obtained for both players in Markov policies by using at time N − t

the argument that achieves the value in the tth equation above (as function of x). At each stage

t we are faced with a perturbed matrix game. Note that the value v0(x) may be expressed as a

an infinite sum v0(x) =
∑∞

s=0 εsvs
0(x) and need not be polynomial, so we are in the framework of

Section 4 for the next stage. However, we can show by induction that the perturbation at each

stage is of the form (P3) presented in Section 4, so the results there hold.

Indeed, since r0(x) is polynomial in ε, its value v0(x) is analytic functions in ε in a neighborhood

of 0, as it follows from the argument above (3) (note that we are in the framework of Problem (P2)).

Now, making the inductive hypothesis that vt−1(x) is analytic in ε in a neighborhood of 0 for all x,

it follows that the term in square brackets in (13) is analytic in ε in some neighbrohood of 0. We

are thus in the framework of Problem (P3), and by the argument below (7) we conclude that vt(x)

is analytic in ε in a neighborhood of 0 for all x. Hence for any t there is a neighborhood of 0 such

that vt(x) is analytic in ε in that neighborhood.
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6 Application to repeated zero-sum games with weighted dis-

counted payoffs

Let us consider a zero-sum repeated game with finite action sets A and B for players 1 and 2 respec-

tively. There are L payoff matrices F1, F2, . . . , FL and there are L discount factors β1, β2, . . . , βL

where 1 > β1 > β2 . . . βL > 0. The payoff function is

G(u, v) = Eu,v
L∑

l=1

∞∑
n=0

βn
l Fl(an, bn).

Finding an optimal randomized Markov policy for this game is equivalent to finding optimal

policies for the sequence of games

Gεn = F1 + εnF2 +
L∑

l=3

(εn)αlFl

with εn = (β2

β1
)n, n = 0, 1, . . . , and αl = log β2

β1

βl
β1

.

Filar and Vrieze [2] proved the existence of ε-optimal ultimately stationary policies for zero-

sum stochastic games with weighted discounted payoffs and with finite sets of states and actions.

Altman, Feinberg, and Shwartz [1] proved the existence of optimal policies, which are Markov and

ultimately stationary, for such games with perfect information. Example 6.1 in [1] shows that

optimal ultimately stationary policies may not exist for general Markov games when there is no

perfect information assumption. The statement in the previous paragraph implies that, for repeated

games with several different discount factors, all limits of optimal actions as the time parameter

tends to ∞ are optimal for the lexicographic game defined by payoff matrices corresponding to two

largest discount factors. We conjecture that this result holds for stochastic games with weighted

discounted payoffs and with finite state and action sets; see Altman, Feinberg, and Shwartz [1].

We remark that for stochastic games with perfect information the sets of optimal solutions coin-

cide from some step N onward with the set of optimal solutions for the lexicographic game; Altman,

Feinberg, and Shwartz [1]. Example 3.1 implies that, without the perfect information assumption,

the limiting sets of optimal solutions can be strictly smaller than the sets of appropriate solutions

for the lexicographic game even in the case of two discount factors. Example 3.2 demonstrates

that, in the case of three or more different discount factors, the limiting sets of optimal solutions

may have no common points with the sets of optimal solutions of the lexicographic game defined

by the payoff matrices corresponding to three largest discount factors.
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