
Optimal Control of Epidemic Evolution
M.H. R. Khouzani

ESE, University of Pennsylvania
Email: khouzani@seas.upenn.edu

Saswati Sarkar
ESE, University of Pennsylvania

Email: swati@seas.upenn.edu

Eitan Altman
INRIA, Sophia Antipolis, France

Email: altman@sophia.inria.fr

Abstract—Epidemic models based on nonlinear differential
equations have been extensively applied in a variety of systems
as diverse as infectious outbreaks, marketing, diffusion of beliefs,
etc., to the dissemination of messages in MANET or p2p
networks. Control of such systems is achieved at the cost of
consuming the resources. We construct a unifying framework
that models the interactions of the control and the elementsin
systems with epidemic behavior. Specifically, we considernon-
replicative and replicative dissemination of messages in a network:
a pre-determined set of disseminators distribute the messages in
the former, whereas the disseminator set continually growsin the
latter as the nodes that receive the patch become disseminators
themselves. In both cases, the desired trade-offs can be attained
by activating at any given time only fractions of disseminators
and selecting their dissemination rates. We formulate the above
trade-offs as optimal control problems that seek to minimize a
general aggregate cost function which cogently depends on both
the states and the overall resource consumption. We prove that
the dynamic control strategies have simple structures: (1)it is
never optimal to activate a partial fraction of the disseminators
(all or none) (2) when the resource consumption cost is concave,
the distribution rate of the activated nodes are bang-bang with at
most one jump from the maximum to the minimum value. When
the resource consumption cost is convex, the above transition is
strict but continuous. We compare the efficacy and robustness of
different dispatch models and also those of the optimum dynamic
and static controls using numerical computations.

I. I NTRODUCTION

a) Motivation: Epidemic behavior emerges whenever
interactions among a large number of individual entities affect
the overall evolution of the encompassing system. Mathemati-
cal models based on nonlinear differential equations have been
developed and applied in a variety of systems as diverse as
infectious outbreaks [1] and information diffusion in a human
society [2], to the dissemination of messages in MANET [3]
or p2p networks [4]. What a resource manager of such systems
is interested in is to control the evolutions of the states. Most
often, exertion of a control incurs a cost, either directly as the
control may consume restricted resources, or indirectly asit
may introduce adverse side effects. Much work has been done
in modeling and validating the epidemic models, relatively
less, however, is known about optimal control of such systems.
This constitutes the focus of this paper.

Dynamic optimal control is of paramount importance in the
networking context. One important example is in countering
the spread of a malware in a MANET, a wireline p2p, or a
client-server network. Worms spread frominfective nodes to
vulnerable but not yet infected, i.e.susceptible nodes, when
such a pair communicates, or as we will refer to, when
they contact. Hence, spread of malware behaves as per an
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epidemic. Note that a contact may entail physical proximity,
as in the case of MANETs, or may represent an opportunity
of infiltration, as in the case of server-client networks. Worms,
as malicious self-replicating codes, can disrupt the normal
functionalities of the hosts, steal their private information,
and/or use them to eavesdrop on other nodes. The worm
can also render the host dysfunctional, e.g. by deliberately
draining its battery as in the case of Cabir worm [5] in a
cellular network, or by executing a pernicious code that incurs
irretrievable critical hardware or software damage say by re-
fleshing the BIOS corrupting the bootstrap program required
to initialize the OS [6]. Such dysfunctional nodes are referred
to asdead. Software patches canimmunize susceptible nodes
against future attacks, by rectifying their underlying vulner-
ability, or heal the infectives and render them robust against
future attacks. Nodes which have been immunized or healed
are denoted asrecovered. Such patches can be distributed by
mobile agents and/or downloaded from designated servers,
but patch distribution consumes both energy and bandwidth
(critical in wireless networks), and thereby incurs a cost that
depends on both the number of active agents/servers and the
transmission rates they use. The incident of Welchia [7], which
was designed as a counter-worm to defeat Blaster, demon-
strated how unrestrained spread of security patches can indeed
create substantial network traffic and rapidly destabilizeeven
the well-provisioned network of Internet. This adverse effect
of application of countermeasures is likely to be aggravated
in wireless networks, where due to inherent properties such
as interference, intermittent links, limited battery,etc., the
resource limitations are more stringent.

The security patches can be distributed in anon-replicative
or replicative manner (fig.1). In the former, a number of
(mobile or stationary) agents, referred to asdisseminators, are
pre-loaded with the patch, and other nodes receive it from
them. In the replicative model, the receptors, i.e., the recovered
nodes, in addition, become disseminators of the security patch
themselves - hence the disseminatorsreplicate. The replicative
method immunizes nodes more rapidly, as it has a growing
number of disseminators, but at the expense of consuming
increasingly larger amounts of limited underlying resources.
Thus, the choice between the two, and the differences in their
controls are not a priori clear. The overall system cost depends
on (i) the number of infectives and dead nodes, and (ii) the re-
source consumption in distribution of countermeasures. Inboth
scenarios, dynamic optimal control of the fraction of activated
disseminators and the distribution rates of activated nodes can
minimize the overall cost and thereby attain desired trade-offs
between network security and resource consumption.

A special case of the epidemic evolution in fig.1 also



captures propagation of messages in Delay Tolerant Networks
(DTNs). A server may seek to broadcast a message to as many
nodes as possible, before a deadline, by employing minimal
resources such as energy and bandwidth. In this case, suscep-
tibles are the nodes that are yet to receive the message, and the
recovered are the ones which have received it. Dissemination
of the message may either be performed in non-replicative or
replicative manner. Infectives and dead nodes are absent inthis
problem. The overall ‘cost’ is (i) decreasing in the number
of recovered (i.e., recipient) nodes, and is (ii) increasing in
the transmission rates of the activated disseminators. Again,
dynamic optimal control can be utilized to resolve a problem
of practical importance in the context of networking.

The epidemiological evolution has natural analogues in the
spread of a contagious disease in a human society, with the
caveat that the inoculation and healing processes are non-
replicative. The cost is aggregation of infective and dead
individuals and the overall human-hour of trained staff [8].
Application of the optimal control of epidemiological evolu-
tion in social context is, however, not restricted to the contain-
ment of contagious diseases. Another noteworthy problem is
dynamic management of advertising resources in adoption of
a new technology. We discuss two practical examples which
we refer to asReclamation and Rivalry cases, respectively.
First, consider a simple scenario where (at least initially)
most individuals in a society are subscribed to a specific
technology through incumbent company A (e.g., Comcast for
cable TV in Philadelphia) - they are the susceptibles. A new
technology/company B (e.g., DTV) aims to capture the market.
They win over some customers, who constitute the converts
(infectives). Social exchanges (contacts) between infectives
and susceptibles (converts and subscribers) may convert the
latter. CompanyA seeks to regain the share of the market,
by recapturing (healing) the infectives and re-confirming (im-
munizing) the susceptibles, say via offering lucrative long-
term contracts (patches) - the resulting pledged subscribers
constitute the recovered. New contracts are long-term and thus
the recovered are immune to further change in subscription.
The reclamation occurs through the efforts of advertising
agents (disseminators) who communicate to the infectives and
susceptibles through tele-marketing, e-marketing and/orword
of mouth. The disseminators may either be from an initial pool
(non-replicative dispatch), or may include the recovered nodes
as well, e.g. by offering pledged subscribers additional service
discounts through referral rewards,etc. (replicative dispatch).
There is however no “death” in this setting. The overall ‘cost’
for companyA is (i) increasing in the number of infectives, as
they are the only lost subscribers toA, and is (ii) increasing in
the number of active agents and the amount of discounts they
offer in order to make the contracts appealing. Thus, optimal
(dynamic) control of activating agents and selecting discount
rates maximizes the net profit for companyA, where profit
equals the income generated through subscription minus the
cost incurred in marketing/advertising over time.

For the second case (Rivalry), suppose that both competing
companies enter the market for a new technology at around
the same time. Now, susceptibles are those who are yet to
choose either, infectives encompass those who have chosenB
(the rival), and recovered are those who have chosenA. Both

infectives and recovered may convert susceptibles (the unde-
cided) to their respective groups whenever the respective pairs
contact, e.g., through social communications - the dispatch is
therefore replicative. It is also possible that some infectives
can not be healed as both companies may offer long-term
contracts. The overall cost for companyA is similar, except
that it is now decreasing (hence the revenue is increasing) in
the number of recovered, as only recovered are subscribed to
companyA in this case.

b) Contributions and Road-map: First, we formulate the
minimization of the aggregate cost associated with epidemic
state evolution as an optimal control problem. The cost repre-
sents a trade-off between desirability/harmfulness of thestate
and the cost of consuming resources in order to manage the
state. We demonstrate the extent of generality of our model
through different examples. We consider both replicative and
non-replicative dispatch scenarios and minimize the overall
costs by dynamically selecting the activation of the dissemi-
nators and their distribution rates. We develop a framework
for solving this non-linear optimal control problem using
Pontryagin’s Maximum Principle [9], [10].

Next, in both non-replicative and replicative settings, we
prove that the optimal policies have the following simple
structure: when the resource consumption cost is concave,
until a certain time, all disseminators are activated and they
distribute patches at the maximum possible rate, and subse-
quently no disseminator is activated until the end of the system
operation period (§§III-A and IV-A). Optimality of a bang-
bang control (that is the property that it assumes only either
its minimum or maximum possible values at any given time)
and quantifying the maximum possible number of jumps to
be one are despite the facts that the network state evolutions
do not constitute monotonic functions of time, involve non-
linear dynamics, the cost functions are not assumed to be
linear and the control (activation fraction, transmissionrate) is
a two-dimensional function. When the resource consumption
cost is convex, the optimal activation fraction function has
the same structure. The optimal transmission rate functionhas
similar behavior except that its potential transition fromthe
maximum to minimum values is strict, but continuous rather
than abrupt. The generality of the model allows for a unified
theoretical framework for optimizing a sundry of problems of
practical importance in networking. Moreover, the simplicity
of the structure of the optimal controls makes them amenable
to implementation in practice.

Finally, using numerical evaluation, we assess the relative
efficacy of the replicative and non-replicative dispatch and
static and dynamic optimal controls (§V). We demonstrate
that in general, optimal dynamic controls incur significantly
lower aggregate costs than optimum static controls in both
replicative and non-replicative settings. Also, in presence
of dynamic optimal control, replicative dispatch of security
patches incurs substantially lower aggregate costs than non-
replicative dispatch.

c) Related Literature: Optimal control has been ex-
tensively used to find the best deployment of resources in
treating infectious epidemics [11], [12], advertising andmar-
keting [10], [13], [14] and recently in securing communication
networks against malware outbreaks [15]–[17]. An extensive



overview of the existing work is beyond the scope of this
article. In what follows, we mention and differentiate from
some of the most related works.

Optimal control in treatment of infectious epidemics is
mostly applied to systems where only vaccination or heal-
ing/quarantining is present, the cost is linear in the treatment
rate and there is no mortality among infectives [11], [12].
In contrast, our system integrates both vaccination and heal-
ing/quarantining, the cost of treatment is any general concave
or convex function, and it depends on both infective and
the deceased as well. Moreover, there is no equivalent of
replicative immunity in the case of infectious diseases.

Also, our work generalizes the existing treatment of models
is advertising and marketing [10], [13], [14] which mostly con-
sider only either public advertisement or word-of-mouth ad-
vertisement with linear benefits, and optimizations are mostly
with respect to the steady state behaviour of the market, rather
than the transitional patterns, which is the salient feature of
the diffusion of new technologies.

In the context of security in communication networks, [17]
investigates a different counter-measure: that of reduction of
reception gain of wireless nodes for slowing down the spread
of malware in wireless networks. Our work differs from [16]
in that we consider (i) both replicative and non-replicative
patching, (ii) more general network state evolution dynamics
in that the counter-measure involves both immunization and
healing, moreover the worm may cause mortality, and (iii) cost
functions which are only assumed to be either concave or
convex and therefore more general than quadratic functions
in [16]. Also unlike [16] we do not use any linearization of
the system which can be very poor in the context of epidemic
behaviour. Investigation of optimal solutions in our context
thus require different analytical arguments. [15] considers
only a one-dimensional control of bandwidth. That model is
thus not suitable for capturing the cost related to the total
consumed energy, which is more critical than bandwidth in
DTN networks. Moreover, the cost function does not include
the benefit of recovered, which is essential for applicationin
marketing or DTN settings.

Optimal forwarding of packets emanating from a single
source in a delay tolerant energy-constrained wireless network
is studied in [18], [19] and it is shown that optimal strategy
follows a threshold-based structure. [18], [19] analytically
rely on some simplifying assumptions that will make them
as special cases in our context. Specifically, [18] considers
only networks that use two-hop routing, and therefore, the
resulting dynamics of the number ofrecovered (i.e. nodes that
have received the packet) follows our non-replicative model
with no infective or dead. Also, [19] investigates amonotonic
epidemic model, which arises when none of the nodes that
have received a desired packet lose it, which is mapped to a
special case of our replicative case with no infective or dead.
Our model, unlike those two works, considers a general cost
function that involves a general reward for number of recipient
nodes and any (concave-linear-or convex) power function, and
is therefore, a generalization of works in [18], [19].

II. SYSTEM MODEL

We first present the state evolution and formulate the cost
minimization goal as an optimal control problem at an abstract

level. In particular, we use terms such asinfectives, suscep-
tibles, recovered, dead and disseminating, immunization and
healing. Later, in§II-C, we motivate the model by instantiating
each of these terms in the different settings discussed in the
introduction (§I-A).

A. Dynamics of Non-Replicative Dispatch

A system consists ofN entities, and at timet, a number
of nS(t), nI(t), nR(t) and nD(t) of them are respectively
in infective, susceptible, recovered and dead state. Let the
corresponding fractions beS(t) = nS(t)/N, I(t) = nI(t)/N,
R(t) = nR(t)/N, and D(t) = nD(t)/N. Thus, for all t,
S(t)+I(t)+R(t)+D(t) = 1.A pre-determined set of entities,
referred to as disseminators are pre-loaded with the patches
that immunize and/or heal. These disseminators constitute
an R0 fraction of the the total populationN , that is, their
number isNR0 where 0 < R0 < 1. We assume that the
disseminators can not be infected and hence they are recovered
right from the beginning. At timet = 0, let 0 ≤ S(0) < 1,
0 ≤ I(0) = I0 ≤ 1, 0 < R(0) = R0 ≤ 1, D(0) = 0. Thus,
S(0) = 1− I0−R0. When infectives do not exist,I0 = 0. No
entity is aware of the state of other entities, except that they
know who the disseminators are.

A susceptible is infected whenever it is in contact with an
infective. We assume homogeneous mixing, that is, an infec-
tive is equally likely to contact with any other entity and with
the same inter-meeting delay distribution. Hence an infective
meets with each susceptible at the same rate, sayβ̂. We later
partially relax this assumption using simulations (§V). At any
given t, there arenS(t)nI(t) infective-susceptible potential
pairs. Susceptibles are therefore transformed to infectives at
rate β̂nS(t)nI(t).

The system manager controls the resources consumed in dis-
tribution of thepatches by dynamically activating a fraction of
the disseminators, as well as determining the distributionrates
of the activated disseminators. Let the fraction of activated
disseminators at timet beε(t), and each transmits at rateu(t).
The disseminators distribute their patches to infectives and sus-
ceptibles upon contact, which has similar connotations as for
the spread of infection. The patches immunize the susceptibles,
and thus susceptibles recover at rateβ̃ε(t)NR0nS(t)u(t) at
eacht. Clearly,

0 ≤ ε(t) ≤ 1, 0 ≤ u(t) ≤ 1 at eacht. (1)

The last upper bound follows by normalization ofβ̃.
The efficacy of the patch may be lower for infectives

than for susceptibles. We capture the above possibility by
introducing a coefficient0 ≤ π ≤ 1: π = 0 occurs when
the patch is completely unable to heal the infectives and
only immunizes the susceptibles, whereasπ = 1 represents
the other extreme scenario where a patch can equally well
immunize and heal susceptibles and infectives. If the patch
heals an infective, its state changes to recovered, otherwise, it
continues to remain an infective. Thus, the infectives recover
at rateπβ̃NR0ε(t)u(t)nI(t) at eacht.

Each infective dies at rate δ, where δ ≥ 0, and the
overall death rate isδnI(t) at each t. Note that δ = 0
corresponds to systems without death. Letβ0 := limN→∞Nβ̂
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Fig. 1: State transitions for non-replicative case. The only difference
in the replicative case is that transition rates fromS to R is at rate
β1εuRS and fromI to R at rateπβ1εuRI instead.

andβ1 := limN→∞Nβ̃ are limits of the respective R.H.S.1

If the total number of entities (N ) is large, thenS(t), I(t)
andD(t) converge to the solution of the following system of
differential equations:2

Ṡ(t) = −β0I(t)S(t)− β1R0ε(t)u(t)S(t) (2a)

İ(t) = β0I(t)S(t)− πβ1R0ε(t)u(t)I(t) − δI(t) (2b)

Ḋ(t) = δI(t) (2c)

with initial constraints:

I(0) = lim
N→∞

nI(0)/N = I0, 0 < S(0) < 1−I0, D(0) = 0,

(3)
and which also satisfy the following constraints at allt:

0 ≤ S(t), I(t), D(t) and S(t) + I(t) +D(t) ≤ 1. (4)

Thus, (S(.), I(.), D(.)) constitutes the system state function
and (ε(.), u(.)) constitutes the (2-dimensional) control func-
tion.3 Henceforth, wherever not ambiguous, we drop the
dependence ont and make it implicit. Fig.1 illustrates the
transitions between different states of nodes and the notations
used.

1These limits exist as long as the node densitylimN→∞N/A exists for
largeN . To see an example, [20] shows that the rate of inter-meetingtimes
β̂ and β̃ are inversely proportional toA : the total 2-D area on which the
nodes roam, where the coefficient of relation is a function ofthe transmission
range, average relative speed and the mobility model of the nodes. Hence,
N × β̂, e.g., hasN/A multiplied by some constants, which are not functions
of N . Hence taking the limit, as log asN/A, i.e., the node density, exists,
β0 is well-defined.

2Throughout the paper, variables with dot marks (e.g.,Ṡ(t)) will represent
their time derivatives (e.g., time derivative ofS(t)).

3Formally, under some technical assumptions, specifically,if the inter-
contact times and the killing delays are exponentially distributed, then the
evolution of the system is governed by a continuous time Markov chain.
Then according to the results of [21, p.1], the convergence is in the following
sense:

∀ ǫ > 0 ∀ t > 0, lim
N→∞

Pr{sup
τ≤t

|
nS(τ)

N
− S(τ)| > ǫ} = 0,

and likewise forI(t) andD(t). The exponential distribution of time between
consecutive contacts of a specific pair of nodes in mobile wireless networks
is established by Groeneveltet al. in [20] for a number of mobility models
such as the random waypoint and random direction model [22].In addition,
epidemic models similar to (2) and (5) have been validated through experi-
ments as well as network simulations to provide an acceptable representation
of the spread of malware and messages in networks (see e.g. [23]).

B. Dynamics of Replicative Dispatch

In the replicative model, all recovered nodes become dis-
seminators, and hence the fraction of disseminators grows
to R(t) at time t, whereas in the non-replicative model, the
fraction of disseminators continue to beR0 at all times. The
dynamics in (2) hence needs to be modified. First, since
S(t) + I(t) + R(t) + D(t) = 1 at any given time, we can
represent the system using any three of the above states. In
the non-replicative case we chose(S(t), I(t), D(t)), whereas
in the replicative case we adopt(S(t), I(t), R(t)) instead. The
specific choices make the analyses more convenient in each
case.

Ṡ(t) = −β0I(t)S(t)− β1ε(t)u(t)R(t)S(t) (5a)

İ(t) = β0I(t)S(t)− πβ1ε(t)u(t)R(t)I(t)− δI(t) (5b)

Ṙ(t) = β1ε(t)u(t)R(t)S(t) + πβ1ε(t)u(t)R(t)I(t) (5c)

with initial constraints:I(0) = I0, R(0) = R0, S(0) = 1 −
I0−R0, and as before,0 ≤ I0 ≤ 1, 0 < R0 < 1, I0+R0 < 1.
Also similarly, 0 ≤ S(t), I(t), R(t) andS(t) + I(t) +R(t) ≤
1.If δ = 0, the latter holds as an equality.

The following lemma, which we prove next, shows that
the state constraints in both non-replicative and replicative
models hold for any control-pair that satisfies (1) - thus, these
constraints can be ignored henceforth, i.e., we can deal with
optimal control problems with no state constraints.

lemma 1: (A) In non-replicative case, for any control func-
tion pair (ε(.), u(.)) that satisfies (1),((S(t), I(t), D(t))) ,
satisfies the state constraints for the non-replicative case in
the [0, T ] interval, i.e.,0 ≤ S(t), I(t), D(t) andS(t)+ I(t)+
D(t) ≤ 1. Moreover, (i)S(t) > 0 for all t ∈ [0, T ], (ii) if
I0 > 0, I(t) > 0 for all t ∈ [0, T ], and (iii) if δ > 0, D(t) > 0
for all t ∈ [0, T ].
(B) Similarly, in the replicative case, for any control function
pair (ε(.), u(.)) that satisfies (1),((S(t), I(t), R(t))) , satisfies
the state constraints for this case, i.e.,0 ≤ S(t), I(t), R(t)
andS(t) + I(t) + R(t) ≤ 1 in the [0, T ] interval. Moreover,
(i) R(t), S(t) > 0 for all t ∈ [0, T ], (ii) if I0 > 0, I(t) > 0
for all t ∈ [0, T ], and (iii) if δ = 0, S(t) + I(t) +R(t) = 1.

Proof: We provide the proof for the non-replicative case.
The proof for the replicative case follows almost identically.

First, let δ > 0. Since 0 < I0 + R0 < 1, I0, R0 > 0
the initial conditions in (3) ensure that all constraints (4) are
strictly met at t = 0, except thatD(0) = 0. The lemma
follows if we show that all constraints in (4) are strictly
satisfied in(0, T ]. All S(.), I(.) andD(.), resulting from (2)
are continuous functions of time. Thus, sinceS(0), I(0) > 0
andS(0)+I(0)+D(0) = 1−R0 < 1, there exists an interval
(0, t0) of nonzero length on which bothS(t) and I(t) are
strictly positive andS(t) + I(t) +D(t) < 1. Thus, from (2)
and (3), Ḋ(t) > 0 in [0, t0). Thus, from (3),D(t) > 0 in
(0, t0). Thus, (4) is strictly satisfied in[0, t0).

Now, suppose that the constraints in (4) are not strictly
satisfied in(0, T ]. Then, there exists a timet1 which is the first
time aftert = 0 at which, at least one of the constraints in (4)
becomes active. That is, we have (i)S(t1) = 0 OR (ii) I(t1) =
0 OR (iii) D(t1) = 0 OR (iv) S(t1) + I(t1) + D(t1) = 1
AND throughout(0, t1), we have0 < S(t), I(t), D(t) and
S(t)+I(t)+D(t) < 1. Thus, for0 ≤ t < t1 from (2), (3), (1)



and sinceR0 < 1, we haveṠ(t) ≥ −(β0 + β1)S(t). Hence,
S(t) ≥ S(0)e−(β0+β1)t for all 0 ≤ t < t1. Since S(.) is
continuous,S(t1) ≥ S(0)e−(β0+β1)t0 . Similarly, we can show
that I(t1) ≥ I(0)e−(β1+δ)t0 . Thus, sinceS(0) > 0, I(0) > 0,
(i) and (ii) are ruled out. Next, from (2),̇D(t) > 0 in (0, t1).
Thus, from the continuity ofD(.) and sinceD(t) > 0 in
(0, t1), (iii) is ruled out. Again, d

dt
(S(t) + I(t) +D(t)) ≤ 0

in (0, t1). Thus, from the continuity ofS(.), I(.), D(.) and
sinceS(t) + I(t) + D(t) < 1 in (0, t1), (iv) is ruled out as
well. This negates the existence oft1. Thus, by contradiction,
the constraints in (4) are strictly satisfied in(0, T ].

If δ = 0, from (2) and (3),D(t) = 0 for all t ∈ [0, T ].
Using similar arguments we can show thatS(t), I(t) > 0 and
S(t) + I(t) < 1 for all t ∈ [0, T ]. The lemma follows.

C. Motivation of the models and Instantiation

In the introduction section (§I), we described the motiva-
tions for the models presented in previous section through
different examples from which interpretation of each of the
corresponding states is straightforward. Here, and we add more
comments on the nature of interactions in each example. First
thing to point out is that, except for the case of infectious dis-
ease, replicative and non-replicative scenarios are conceivable.

Network Security: In a client-server based, p2p or cellular
network, node A contacts (i.e., communicates with) node
B if A knows the (ID or) address of B, and have the
right permissions or infiltrates it. The homogeneous mixing
assumption can represent worm propagation in 3G and 4G
cellular networks (peer-to-peer, resp.) where infective mobiles
(peers, resp.) try to infect randomly and uniformly generated
(IDs or) addresses. Note that in any such mobile to mobile
communication, irrespective of the locations of the mobiles,
there are two wireless communications between access points
and mobiles and the rest of the communications are through
the backbone network where the delays and congestions are
relatively limited. Similarly, peers communicate throughthe
backbone network where delays are limited. Thus, in both
p2p and cellular networks, the inter-meeting times have the
same distribution irrespective of the location of the pairs.
In a MANET, a contact occurs only when two nodes move
into communication range of each other. Under mobility
models such as random waypoint or random direction model
(explained in [22]), Groeneveltet al. [20] has established the
homogeneous mixing property for such contact processes in
a highly mobile network. Security patches are distributed by
mobile or stationary agents (in MANETs) or base stations
(in AP and cellular networks) or a set of central servers
(in wired networks). In replicative case, each recipient also
forwards the security patch to nodes it contacts in future. The
rates of contacts are determined by system specific parameters
such as address scanning rates of infectives, communication
rates, mobility, communication rangesetc. The worm may
completely prevent the download or installation of the patch
in an infective node. This case corresponds toπ = 0.

Delay Tolerant Networks (DTNs): Contact occurs when
two nodes roam into communication range of each other. There
is no infective or dead nodes. This can be modeled by setting
I0 = D0 = 0 in our system dynamics equations.

Marketing-Reclamation/Rivalry: There is no dead state
in these cases. Here, contacts constitute social interactions

such as meetings, phone communications or email exchanges.
The non-replicative case arises when only agents of the
incumbent/rival attempt to persuade the customers, while in
the replicative mode, each convert/subscriber advertisesfor
the service through word of mouth as is incentivised by
referral-based rewards/discounts.π = 0 represents the case
in which customers are also pledged to the competitor and
cannot be claimed by the incumbent/rival. Intermediate values
of π corresponds to different resistance (inertia) of customers
to switch.

D. The Objective Function

We seek to minimize the overall cost in a time window
[0, T ], whereT is a parameter of choice. At any given time
t, the system incurs costs at the rates off (I(t)), g (D(t))
and benefit at the rate ofL (R(t)) wheref(.), g(.), L(.) are
non-decreasing and differentiable functions such that (WLoG)
f(0) = g(0) = L(0) = 0. In addition, each activated dis-
seminator charges, or consumes resources at the rateh (u(t))
at time t since it uses a distribution rate ofu(t), andε(t)R0

fraction of the nodes are the activated disseminators at time
t. Here,h(x) is a twice-differentiable and increasing function
in x such thath(0) = 0 andh(x) > 0 whenx > 0. Note that
the assumptions onf(.), g(.), h(.) are mild and natural, and
a large class of functions satisfy them. The aggregate system
cost therefore is

J =

∫ T

0

f (I(t)) + g (D(t)) − L (R(t)) + ε(t)R0h (u(t)) dt

+κII(T ) + κDD(T )− κRR(T ).
(6)

ReplacingR0 with R(t) in (6) gives the overall cost for
the replicative case, as here, activated disseminators at time
t constituteε(t)R(t) (instead ofε(t)R0) fraction of the total
nodes. For both cases, at least one of the functionf, g or L
is not the null function, andh is either a concave, linear or a
convex function ofu.

Problem Statement: The system seeks to minimize the
aggregate cost in (6) by appropriately regulatingε(.), u(.) at
all t subject to (1), when the states evolve(A) as per (2) for
non-replicative, and (B) as per (5) for replicative dispatch, and
satisfy the respective initial state conditions.

Here we briefly motivate the cost model for each of our
different settings. Our cost model in (6) (and its replicative
counterpart) is general enough to capture all of the cases.

Network Security: In communication networks,each acti-
vated disseminator consumes power and/or bandwidth at rate
h (u(t)) at timet for transmission of patches. The total number
of activated disseminators at timet is respectivelyNε(t)R0

and Nε(t)R(t) for non-replicative and replicative dispatch.
Infective and dead (dysfunctional) nodes incur accumulative
costs to the network as well (represented byf andg functions
respectively). AlsoκI and κD respectively represent the
(scaled) cost per infective and dead node at the end of the
network operation (i.e., timeT ). In this case,L(R) ≡ 0 and
κR = 0.

Delay Tolerant Networks (DTNs): Similarly, activation
and transmission of disseminators consume power, which is
especially critical in energy constrained DTNs. Here, there



are no infective ot dead nodes and hence,f = g ≡ 0 (also
κI = κD = 0). There is reward associated with increasing
the total number of nodes which have received a copy of
the disseminated message. Also, the sooner the message is
disseminated, the better, hence the integration ofL(R(t)) over
time (note that the negative sign convert the minimization
problem to a maximization one). [24, appendix-A] directly
relates the integral over time of the fraction of recovered nodes
to the probability that a message is delivered to a sink before
deadlineT . Hence the minimum delay problem is transferred
to maximization of

∫ T

0 R(t) dt, which corresponds to the
special case of linearL(x) = −x in our setting (also ref. [18],
[19]). If T , as in [18], [19], [24], represents the deadline before
the disseminated message reaches a (set of) destination(s), then
κR = 0. If however, the objective is broadcasting a message
by timeT to many nodes, thenκR represents the scaled benefit
per node which has received the message at timeT .

Marketing-Reclamation: The optimizer in this case is the
incumbent who incurs a cost ofJ . Here,g, L ≡ 0, as infectives
are the only group of customers who are not subscribed to the
incumbent. That is, the incumbent incurs a cost only through
infectives, since their converting away results in reduction of
revenue (cessation of their subscription fee) over time. This
loss is captured by integration off(I) over time. Among the
individuals who are contacted, only those who are persuaded
by the offers will switch back. The cost for advertisement,
captured by integration of the term involvingh(.), is associated
with the amount of discount offers and rewards provided to
lure the customers back. The incumbent seeks to minimize
its overall loss due to the entrance of the competitor, by
dynamically determining the fraction of the individuals who
should be selected for a special offer and how much discount
should be provided, which in turn determines the efficacyu
of the switch to the incumbent. Here,κD = κR = κI = 0.

Marketing-Rivalry: The optimization here, is from the
viewpoint of one of the rivals. There is no dead state in this
model, hence, similar to the reclamation case,g ≡ 0. However,
f ≡ 0 instead ofL, since only recovered are those customers
who subscribe to the company of the optimizer (susceptibles
are not subscribed to either). The revenue comes from the
subscription fee of the recovered nodes, and is represented
through integration of theL(R) function over time. The cost
for advertisement is similar to the Reclamation case. Here,
κI = κD = κR = 0.

III. O PTIMAL NON-REPLICATIVE DISPATCH

We apply Pontryagin’s Maximum Principle to obtain a
framework for solving the optimal control problem as posed
in Problem Statements (A) and (B). Let ((S, I,D), (ε, u)) be
an optimal solution to the problem posed in problem state-
ment (A) in the previous section, consider theHamiltonian H ,
and correspondingco-state or adjoint functionsλS(t), λI(t)
andλD(t), defined as follows:

H = f(I) + g(D)− L(R) + εR0h(u) + (λI − λS)β0IS

−β1R0εuλSS − πβ1R0εuλII + (λD − λI)δI.
(7)

whereR = 1− S − I −D.

λ̇S = −
∂H

∂S
= −L′(R)− (λI − λS)β0I + β1R0εuλS

λ̇I = −
∂H

∂I
= −L′(R)− f ′(I)− (λI − λS)β0S + πβ1R0εuλI

− (λD − λI)δ

λ̇D = −
∂H

∂D
= −L′(R)− g′(D). (8)

along with thetransversality conditions:

λS(T ) = κR, λI(T ) = κI+κR, λD(T ) = κD+κR. (9)

Then according to Pontryagin’s Maximum Principle (e.g., [9,
P. 109, Theorem 3.14]), there exist continuous and piecewise
continuously differentiable co-state functionsλS , λI andλD,
that at every pointt ∈ [0 . . . T ] whereε andu is continuous,
satisfy (8) and (9). Also,

(ε, u) ∈ arg min
ε,u admissible

H(~λ, (S, I,D), (ε, u)). (10)

A. Structure of the Optimal Non-replicative Dispatch

We establish that the two-dimensional optimal controls of
patching in the non-replicative case have simple structures:

Theorem 1: In the problem statement (A), for either one
of the following two cases: (i)L ≡ 0 and f(.) is convex,
(ii) δ = 0, an optimal control(ε(.), u(.)) has the following
simple structure:

1) When h(.) is concave,∃ t1 ∈ [0 . . . T ] such that
(a) u(t) = 1 for 0 < t < t1, and (b) u(t) = 0 for
t1 < t < T.

2) Whenh(.) is strictly convex,∃ t0, t1, 0 ≤ t0 ≤ t1 ≤ T
such that (a)u(t) = 1 on 0 < t ≤ t0, (b) u(t) strictly
and continually decreases ont0 < t < t1, and (c)u(t) =
0 on t1 ≤ t ≤ T.

In both cases, for allt ∈ (0, T ), except possibly fort = t1
whenh(.) is strictly concave,ε(t) = 1 if and only if u(t) > 0,
andε(t) = 0 otherwise.

Proof: Let functionϕ(t) be defined as follows:

ϕ := β1(λSS + πλII) (11)

ϕ(.) is thus a continuous function of time, which according
to (9) has the following final value:

ϕ(T ) = β1(κRS(T ) + κRI(T ) + κII(T )). (12)

Also, as we prove in§III-B:
lemma 2: ϕ(t) is a strictly decreasing function oft for t ∈

[0, T ).
We can rewrite the Hamiltonian in (7) as:

H = f(I) + g(D)− L(R) + (λI − λS)β0IS

+(λD − λI)δI + εR0(h(u)− ϕu). (13)

From (10), for each admissible control(ε, u) and for all t ∈
[0, T ],

ε(t) (h (u(t))− ϕ(t)u(t)) ≤ ε(t) (h (u(t))− ϕ(t)u(t))

=⇒ (ε(t), u(t)) ∈ arg min
x∈[0,1]

y∈[0,1]

x (h (y)− ϕ(t)y) . (14)



Since(ε, u) ≡ (0, 0) is an admissible control, we have for
all 0 ≤ t ≤ T :

ε(h(u)− ϕu) ≤ 0. (15)

Note that whenever eitheru or ε is zero, irrespective of the
other,εu = 0, and sinceh(0) = 0, εh(u) = 0. Thus, the state
dynamics and the instantaneous cost incurred do not depend
on the value of the other control function at these epochs.
Thus, whenever one control function assumes a zero value,
we can, WLoG, choose zero value for the other.

Next, consider at at which the minimizer ofh (y)− ϕy in
y ∈ [0, 1] is unique. If this unique minimizer is0, thenε = u =
0 at t. In order to show this, we only need to show thatu = 0
at t. Otherwise, if att, u > 0, thenε > 0 at t, andh(u)−ϕu >
h(0)−ϕ0 = 0. This contradicts (24). If this unique minimizer
is positive, then att, miny∈[0,1] (h (y)− ϕy) < 0, and thus
from (14), ε = 1 andu equals this unique minimizer. Thus,
at anyt at which the minimizer ofh (y)− ϕy in y ∈ [0, 1] is
unique,ε = 1 if and only if u > 0, andε = 0, otherwise.

For establishing the structure of optimalu, we separately
consider the cases of concave and strictly convexh(.).

1) h(.) concave: When h(.) is concave (i.e.,h′′ ≤ 0), at
each timet, h(x)−ϕ(t)x is a concave function ofx, and thus,
for any timet such thatϕ(t) 6= h(1), the unique minimum is
either atx = 0 or x = 1. Then,

ε(t)u(t) =

{

0, ϕ(t) < h(1)

1, ϕ(t) > h(1).
(16)

Following lemma 2, there can be at most onet at whichϕ(t) =
h(1) in [0, T ]. Moreover, lemma 2 implies that if sucht exists,
say t1, thenϕ(t) > h(1) for t ∈ [0, t1), andϕ(t) < h(1) for
t ∈ (t1, T ]. The theorem follows from (16).

2) h(.) strictly convex: Sinceh(.) is strictly convex (i.e.,
h′′ > 0), the minimizer ofh (y)−ϕ(t)y in y ∈ [0, 1] is unique
irrespective oft. Thus, ε(t) = 1 if and only if u(t) > 0,
and ε(t) = 0, otherwise. Whenh(.) is strictly convex (i.e.,
h′′ > 0), (14) implies that, if ∂

∂x
(R0h (x)− ϕ(t)x)|x=y = 0

at ay ∈ [0, 1], thenu(t) = y, elseu(t) ∈ {0, 1}. Then,

u =











0, ϕ ≤ R0h
′(0)

h′−1( ϕ
R0

), R0h
′(0) < ϕ ≤ R0h

′(1)

1, R0h
′(1) < ϕ.

(17)

Thus, from continuity ofϕ andh′, u is continuous at allt ∈
[0, T ]. Sinceh(.) is strictly convex,h′(.) is a strictly increasing
function - hence,h′(0) < h′(1). Thus, following lemma 2,
there existt0, t1, 0 ≤ t0 ≤ t1 ≤ T , such thatϕ > h′(1) on
0 < t ≤ t0, h′(0) < ϕ ≤ h′(1) on t0 < t < t1, andϕ ≤ h′(0)
on t1 ≤ t ≤ T. The theorem follows from (17).

B. Proof of lemma 2

Proof: The state and co-state functions, and hence theϕ
function, are differentiable at each timet ∈ [0, T ) at which
the (ε, u) function is continuous. Since(ε, u) is piecewise
continuous, the lemma follows if we can show thatϕ̇ is
negative at each sucht. Noting that β1 > 0, at each such

t ∈ [0, T ) we have:

ϕ̇

β1
=

1

β1

d

dt
ϕ = λ̇SS + λSṠ + πλ̇II + πλI İ

= −λIβ0IS + πλSβ0IS − πf ′(I)I − πλDδI

−L′(R)(S + πI) = −(λI − λS)πβ0IS − (1− π)λIβ0IS

−πλDδI − πf ′(I)I − L′(R)(S + πI)
(18)

The right hand side is negative at eacht ∈ [0, T ) sinceI, S >
0 at all t ∈ [0, T ] (lemma 1-A),β0 > 0, δ ≥ 0, 0 ≤ π ≤ 1
andf ′(x), L′(x) ≥ 0 for all x (sincef(.) andL(.) are non-
decreasing functions), and because:

lemma 3: For all 0 ≤ t < T, we haveλD ≥ 0, λI > 0,
and (λI − λS) > 0.
We prove lemma 3 in Appendix A.

IV. OPTIMAL REPLICATIVE DISPATCH

Similar to the non-replicative case, we define the Hamilto-
nian as:

H = f(I) + g(D)− L(R) + εRh(u) + (λI − λS)β0IS

−(λS − λR)β1εuRS − (λI − λR)πβ1εuRI − λIδI.
(19)

whereD = 1−(S+I+R). The system of co-state differential
equations is as:

λ̇S = −
∂H

∂S
= −(λI − λS)β0I + (λS − λR)β1εuR+ g′(D)

λ̇I = −
∂H

∂I
= −f ′(I)− (λI − λS)β0S + (λI − λR)πβ1εuR

+ λIδ + g′(D)

λ̇R = −
∂H

∂R
= (λS − λR)β1εuS + (λI − λR)πβ1εuI − εh(u)

+ g′(D) + L′(R).
(20)

and the transversality conditions as:

λS(T ) = 0, λI(T ) = κI , λR(T ) = −κR. (21)

Then, according to Pontryagin’s Maximum Principle ( [9,
P. 109, theorem 3.14]), there exist continuous and piece-wise
continuous functionsλS(t) to λR(t) that satisfy (20) and (21)
at anyt at which (ε(t), u(t)) is continuous, and the optimal
(ε, u) satisfies:

(ε, u) ∈ arg min
(ε,u) admissible

H(~λ, (S, I,D), (ε, u)). (22)

The above framework can be used for numerically comput-
ing the optimum control and the minimum aggregate cost.

A. Structure of the Optimal Replicative Dispatch

Theorem 2: Consider an optimal control(ε(.), u(.)) to the
problem posed in problem statementB.The same structural
properties as in Theorem 1 (i.e., for the non-replicative case)
also holds here.

The above results are somewhat surprising in that the acti-
vation fractionε(.) is completely specified byu(.), and hence
the two-dimensional control is reduced to a one-dimensional



solution. The practical implication is that the activationscheme
is all or none, and it is not optimal to activate a portion of
the dispatchers. Whenh(.) is strictly concave, the optimum
transmission range, and hence the entire solution, is bang-bang
and has at most one jump from1 down to0, and it is optimal
to patch as aggressively as possible early on (as soon as the
infection is detected and the patch is produced) and halt the
patching after a certain time. Whenh(.) is strictly convex,ε(.)
continues to be bang-bang and has at most one jump from1
down to0, but u(.) has a strict but continuous descent to0.

In the rest of the subsection, we prove Theorem 2.
Proof: Considerϕ as defined in the following:

ϕ := (λS − λR)β1RS − (λI − λR)πβ1RI

Now from (22) and referring to (19), for each admissible
control (ε, u), and for all t ∈ [0, T ],

ε(t) (R(t)h (u(t))− ϕ(t)u(t)) ≤ ε(t) (R(t)h (u(t)) − u(t)ϕ(t))

=⇒ (ε(t), u(t)) ∈ arg min
x∈[0,1]

y∈[0,1]

x (R(t)h (y)− ϕ(t)y) . (23)

Since(ε, u) ≡ (0, 0) is an admissible control, we have for
all 0 ≤ t ≤ T :

ε(Rh(u)− ϕu) ≤ 0. (24)

The optimality of theε(t) as stated in Theorem 2 follows
by similar argument following (15). We prove the structure
of u separately for the cases of strictly concave and strictly
convexh(.), using the following lemma, which we prove in
§IV-B.

lemma 4: Let ψ(t) = ϕ(t)
R(t) . Then,ψ(t) is a strictly decreas-

ing function of t for t ∈ [0, T ).
1) h(.) concave: Since h(.) is concave (i.e.,h′′ < 0)

and R > 0 by lemma 1-B, no y ∈ (0, 1) attains
miny∈[0,1] (Rh (y)− ϕy) . Thus, if at timet, ϕ−Rh(1) < 0,
then y = 0 is the unique minimizer ofRh (y) − ϕy in
y ∈ [0, 1]. Thus,ε = u = 0 at any such time. Ifϕ−Rh(1) > 0,
y = 1 is this unique minimizer. Thus,ε = u = 1 at any such
time. Thus:

(ε, u) =

{

(0, 0) ϕ−Rh(1) < 0

(1, 1), ϕ−Rh(1) > 0
(25)

Using lemma 4, we conclude thatϕ/R = h(1) at at most
one time epoch in(0, T ), say t1, andϕ/R > h(1) in (0, t1)
and, if such t1 exists, thenϕ/R < h(1) in (t1, T ). The
theorem follows from (25).

2) h(.) strictly convex: Sinceh(.) is strictly convex (i.e.,
h′′ > 0), the minimizer ofR(t)h (y) − ϕ(t)y in y ∈ [0, 1] is
unique irrespective oft. Thus,ε(t) = 1 if and only if u(t) > 0,
and ε(t) = 0, otherwise. Thus, we only need to prove the
requisite properties ofu. This minimizer, and henceu, is:











0, ϕ
R

≤ h′(0)

h′−1(ϕ
R
), h′(0) < ϕ

R
≤ h′(1)

1, h′(1) < ϕ
R
.

(26)

Now, sinceϕ,R, h′ are continuous,h′ is strictly increasing,
R > 0 at all t ∈ [0, T ], u is continuous at allt ∈ [0, T ].
R(t) > 0 at all t ∈ [0, T ] by lemma 1-B, andh′(x) ≥ 0 for

all x. The proof follows if we can show thaṫu < 0, when
h′(0) < ϕ

R
≤ h′(R). Now, for h′(0) < ϕ

R
≤ h′(R), we have

u = h′−1(
ϕ

R
) ⇒ u̇ =

d
dt
(ϕ
R
)

h′′(u)

According to lemma 4, this is negative.

B. Proof of lemma 4

Proof: We prove this lemma using lemma 5 which we
state next and prove in Appendix B.

lemma 5: For all 0 ≤ t < T, we have(λI − λS) > 0,
(λS − λR) > 0 andλR ≤ 0.
(proof in Appendix B)

Since(ε, u) is piecewise continuous andh(.) is continuous,
εu, εh(u) are piecewise continuous as well. Thus, from con-
tinuity of ϕ,R, we need to show thaṫψ < 0 at anyt ∈ [0, T )
at which (ε, u) is piecewise continuous. Now, at such at,

ϕ̇ = (λ̇S − λ̇R)β1RS + (λ̇I − λ̇R)πβ1RI

+(λS − λR)β1ṘS + (λI − λR)πβ1ṘI

+(λS − λR)β1RṠ + (λI − λR)πβ1Rİ

= −πβ1β0RISλR − β1β0RISλI

+β1β0RISλR + πβ1β0RISλS − πβ1f
′(I)RI + πβ1RIδλR

−L′(R)Rβ1(S + πI) + εRh(u)β1(S + πI)

→ ±β0β1RISλS and re-arrangement→

= −β0β1(1− π)RIS(λS − λR)− β0β1RIS(λI − λS)

−πβ1f
′(I)RI + πβ1RIδλR

−L′(R)Rβ1(S + πI) + εRh(u)β1(S + πI)

= {negative term}+ εRh(u)β1(S + πI).
(27)

The expressions denoted as{negative term} is negative at each
t ∈ [0, T ) owing to lemma 5 and sinceβ0, β1 > 0, δ ≥ 0, 0 ≤
π ≤ 1 by assumption andS, I, R > 0 by lemma 1-B. At any
sucht,

ψ̇(t) =
d

dt
(
ϕ

R
) =

ϕ̇− ϕ
R
Ṙ

R
(28)

=
{negative term}+ εRh(u)β1(S + πI)− Ṙ ϕ

R

R

=
{negative term}+ ε (Rh(u)− ϕu)β1(S + πI)

R

≤
negative term

R
(29)

The last inequality follows from (24), lemma 1-B and since
β1 > 0, π ≥ 0. The lemma follows since the right hand side
is negative at eacht ∈ [0, T ).

V. NUMERICAL COMPUTATIONS

First, with the intention of illustrating the theorems, we
depict the optimal controls for the general case, i.e., when
all of the states exist, and the cost is in the general form. The
parameters used are stated in the caption of the fig.10. The
figures on the right side are related to a concaveh(u) function
and and the ones on the right figures are according to a convex
h(u) (for both replicative and non-replicative cases).
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Fig. 2: Illustration of the theorems. The common parameters areδ = 0.01, β = 0.15, I0 = 0.2, R0 = 0.25, D0 = 0, T = 60, f(I) = 5I ,
g(D) = 10D, L(R) = 5R. For concaveh(u) (fig.2(a)) we have usedh(u) = 10u, and for convexh(u) (fig.2(b)) we have usedh(u) = 10u2.
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Fig. 3: Comparison of costs for four policies for variousI0. Dynamic
replicative policy achieves the best performance amongst the four.
The parameters used (except for the parameter in the horizontal axis)
are the same as in fig.10

Next, we have depicted a comparison of the aggregate costs
that is incurred as a result of applying each of these four
different policies: optimal replicative dispatch, optimal non-
replicative dispatch, best static replicative dispatch, best static
non-replicative dispatch. The aim is to explore the efficacyof
the replicative dispatch over the non-replicative dispatch and
dynamic control over static control. For the static policies,
the control assumes a fixed value throughout the interval of
[0 . . . T ]. We have then varied this fixed value and selected
the one that leads to the least cost (hence, the ’best static’).
For different values ofI0, as we can see in fig.3, under each
dispatch model, the optimal dynamic control will incur lower
aggregate cost than the best static control. This is because
the set of feasible solutions for a dynamic control is a strict
superset of that for a static control - the former can always
choose the immunization rate function as a constant, whereas
the latter can never vary the immunization rate as a function
of time. The difference is more emphasized for the case of
replicative dispatch where optimal dynamic policy achieves
50 to 100% better cost values compared to the best static
policies. Also, the optimal dynamic replicative dispatch incurs
lower aggregate cost than its non-replicative counterpart, since
the replicative dispatch can emulate non-replicative: onecan
always activate only a fraction of the dispatchers in the

replicative setting so that it equals the number of active
dispatchers in non-replicative case.
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Fig. 4: InaccurateI0, Non-replicative.

Fig. 5: Robustness of dynamic policy. The parameters used are the
same as in the caption of fig.10 (except for the variable in the
horizontal axis, and thatR0 = 0.2). The increase in the overall cost,
as a result of 50% inaccuracy in the estimation of the value ofI0
andβ is less than 5%.

In the end, we illustrate the robustness of dynamic poli-
cies. A practical issue in implementing the dynamic polices
in this paper is that the parameters of the system are not
always accurately known, and only rough estimate is available.
Therefore, it is important to investigate the sensitivity of the
efficacy of the defense to these inaccuracies. Let’s say that
the initial fraction of the infective nodes is estimated to be
I0 = 0.15, however with potential inaccuracy of 50%. We
apply the dynamic and static policies that are calculated based
on this estimation to systems in which the actual values were
off from this estimate (up to 50%), assuming other parameters
are fixed. Then we depict the increase in the total cost due
to applying these sub-optimal policies, that is, the cost when
the sub-optimal policy (the dynamic and static optimal control
calculated based on the inaccurate estimateI0 = 0.15) minus
the cost when the actual optimal dynamic policy for the
accurate value ofI0 is applied. As fig.6 shows, the increase
in the total damage for the optimal dynamic policy due to
inaccurate estimation ofI0 is significantly low, showing the
robustness of the non-replicative dynamic policies with respect
to erroneous estimation ofI0. Similar behaviour is observed
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Fig. 6: InaccurateI0, Non-replicative.
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Fig. 10: Robustness of dynamic policy with respect to erroneous estmations ofI0, β for both replicative and non-replicative policies, and
for π = 0 andπ = 1.

for estimation ofβ and replicative policy (fig.7 through 9).
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APPENDIX A: PROOF OF LEMMA 3

Statement: For the non-replicative case, for all0 ≤ t <
T, we haveλD ≥ 0, λI > 0, and (λI − λS) > 0.

Proof: First, we note thatλD(T ) = κD + κR ≥ 0 and
at any t ∈ [0, T ] at which (ǫ, u) is continuous,λ̇D(t) =
−g′(D(t)) − L′(R(t)) ≤ 0. Thus, since(ε, u) is piecewise
continuous,λD(t) ≥ 0 for all 0 ≤ t ≤ T. For proving
the other two inequalities, we first state two simple real
analysis properties which we prove in Appendices C and D
respectively.

Property 1: Let ψ(t) be a continuous and piecewise differ-
entiable function oft. Let ψ(t1) = L andψ(t) > L for all
t ∈ (t1 . . . t0]. Then4 ψ̇(t+1 ) ≥ 0.

4For a general functionψ(x), the notationsψ(x+
0
) andψ(x−

0
) are defined

as limx↓x0
f(x) and limx↑x0

ψ(x), respectively.



Property 2: For any convex and differentiable function,
υ(x), which is 0 at x = 0, υ′(x)x − υ(x) ≥ 0 for all x ≥ 0.

In the rest of the proof for simplicity, we consider the case
in which κI = κD = κR = 0.

We proceed in the following two steps:
Step-1. λI(T ) = 0 and (λI(T ) − λS(T )) = 0. λ̇I(T ) =
(λ̇I(T ) − λ̇S(T )) = −f ′(I(T )) < 0. Therefore,λI(t) and
(λI(t) − λS(t)) are positive in an open interval of nonzero
length ending atT.
Step-2. Proof by contradiction. Lett∗ ≥ 0 be the last time
beforeT at which (at least) one of the other two inequality
constraints is active, i.e.,

λI(t) > 0, (λI(t)− λS(t)) > 0 for t∗ < t < T ,

and λI(t
∗) = 0 OR λI(t

∗)− λS(t
∗) = 0

First, suppose thatλI(t∗) = 0 and thus(λI(t∗)−λS(t∗)) ≥ 0.
Now,

λ̇I(t
∗+) = −L′(R)− f ′(I)− (λI − λS)β0S − λDδ [∵(8)]

(30)

we thus observe thatd
dt
λI(t

∗+) < 0. This contradicts Prop-
erty 1 for function λI(t). Hence, λI(t∗) > 0. Now let
λI(t

∗)− λS(t
∗) = 0. Then, from (8),

(λ̇I(t
∗+)− λ̇S(t

∗+)) =

−f ′(I) + πβ1R0εuλI − (λD − λI)δ − β1R0εuλS [∵(8)]

= −f ′(I)− (1− π)β1R0εuλI − (λD − λI)δ (31)

For the case ofδ = 0, since we showedλI(t∗) > 0, the
remaining terms are negative, which contradicts Property 1
for the functionλI − λS , and hence negates the existence of
t∗ and lemma follows. For the case ofδ > 0 we need a more
elaborate argument, as follows. The system isautonomous,
i.e., the Hamiltonian and the constraints on the control (1)do
not have an explicit dependency on the independent variable
t. Thus, [25, P.236]

H(S(t), I(t), D(t), (ε(t), u(t)), λS(t), λI(t), λD(t)) ≡ constant
(32)

Thus, from (9) and recalling that for the case ofδ > 0, we
assumedL(R) ≡ 0, we have:

H = H(T ) = f(I(T )) + g(D(T )) + ε(T )R0h(u(T )).

Also, Ḋ = δI ≥ 0, andg(.) is a non-decreasing function, thus
g(D(T )) ≥ g(D(t)) for all t ∈ [0 . . . T ]. Hence:

H − g(D(t)) ≥ f(I(T )) +R0ε(T )h(u(T )) ≥ 0. (33)

The positivity follows since according to lemma 1-A and the
assumptions onf, h: (i) I(T ) > 0 and hencef(I(T )) > 0
and (ii) R0ε(T )h(u(T )) ≥ 0.

Therefore:

(λ̇I(t
∗+)− λ̇S(t

∗+)) =

= −f ′(I) + πβ1R0εuλI − (λD − λI)δ − β1R0εuλS

−
H

I
+
f(I)

I
+
g(D)

I
−
L(R)

I

+
εR0

I
(h(u)− ϕu) + (λD − λI)δ [∵(13)]

=
1

I
[f(I)− f ′(I)I] −

H − g(D)

I

−(1− π)β1R0εuλI +
εR0

I
(h(u)− ϕu) (34)

From the supposition ont∗ and continuity ofλI(t), λI(t∗+) ≥
0. Recall that for the case ofδ > 0, we assumedf to be a
convex increasing function. Now,f(I)−f ′(I)I ≥ 0 following
Property 2, sincef(x) is convex andf(0) = 0 and I > 0 at
all t by lemma 1-A. Thus, from lemma 1-A and (1), (24),
(31), and (33), and sinceπ ≤ 1, β1, R0 > 0, we observe that
d
dt
(λI − λS)|t∗+ < 0. This again contradicts Property 1 for

functionλI − λS and lemma follows.

APPENDIX B: PROOF OF LEMMA 5

Statement: For the replicative case, for all0 ≤ t < T,
we have(λI − λS) > 0, (λS − λR) > 0 andλR ≤ 0.

Proof: First, from (20) and lemma 1-B, at eacht at which
(ε, u) is continuous,

λ̇R(t) =
ε(ϕu−Rh(u))

R
+ g′(D(t)) + L′(R(t)) (35)

Hence, from lemma 1-B, (24) and sinceg(.) and L(.) are
non-decreasing functions,λ̇R ≥ 0 for all 0 ≤ t ≤ T. Thus, by
piecewise continuity ofε, u and the continuity ofh, λR(t) ≤ 0
for all 0 ≤ t ≤ T.

We prove the other two inequalities as follows:
Step-1. This step is identical toStep-1 in the proof of
lemma 3.
Step-2. Proof by contradiction. Lett∗ ≥ 0 be the last time
beforeT at which (at least) one of the other two inequalities
is violated, i.e.,

(λI − λS)(t) > 0, (λS − λR)(t) > 0, for t∗ < t < T ,

and (λI − λS)(t
∗) = 0 OR (λS − λR)(t

∗) = 0.

First, suppose thatλI(t∗) = λS(t
∗). Now, similar to the

derivation for (31), using (20) we obtain:

λ̇I(t
∗+)− λ̇S(t

∗+) =

−f ′(I) + (λI − λR)πβ1εuR+ δλI − (λS − λR)β1εuR

= −f ′(I)− (λS − λR)β1εuR(1− π) + δλI
(36)

For the case ofδ = 0, all of the remaining terms are
negative.



For the case ofδ > 0, noting that the corresponding
assumptions are convexf(.) andL ≡ 0, we can write:

λ̇I(t
∗+)− λ̇S(t

∗+) =

= −f ′(I)− (λS − λR)β1εuR(1− π) + δλI

−
H

I
+
f(I)

I
+
g(D)

I
+
ε

I
(Rh(u)− ϕu)− δλ2

=
1

I
[f(I)− f ′(I)I] +

ε

I
(Rh(u)− ϕu)

−
H − g(D)

I
− (λS − λR)(β1 − πβ1)ϑR.

We can show, (i)[f(I) − f ′(I)I] ≤ 0 using Property 2, and
(ii) analogous to (33),H − g(D) > 0 at all t. Also, from the
definition of t∗, (λS −λR)(t∗+) ≥ 0. Now, sinceβ1 > 0, π ≤
1, from lemma 1-B, and (24),̇λI(t∗+) − λ̇S(t

∗+) < 0. This
contradicts Property 1. Hence,(λI(t∗)− λS(t

∗)) > 0.
Now, let λS(t∗) = λR(t

∗). Thus, from (20), (35) and (11):

λ̇S(t
∗+)− λ̇R(t

∗+) = −(λI − λS)β0I − ε
ϕu−Rh(u)

R
− L′(R)

From (24), lemma 1-B, and sinceβ0 > 0, and since we show
that (λI(t∗) − λS(t

∗)) > 0, λ̇S(t
∗+) − λ̇R(t

∗+) < 0. This
contradicts Property 1, and thereby negates the existence of
t∗. The lemma follows.

APPENDIX C: PROOF OFPROPERTY1.

Proof: Proof by contradiction. Suppose that Property 1
did not hold, thus

ψ(t1) = L, ψ̇(t+1 ) < 0

⇒∃δ1 ∈ (0 . . . t0 − t1) such thatψ̇(t) < 0 ∀t ∈ (t1, t1 + δ).

However, by integratinġψ from t1 to t1+δ, we obtainψ(t1+
δ) < L. This contradicts the assumption thatψ(t) > L for all
t1 < t < t0.

APPENDIX D: PROOF OFPROPERTY2.

Proof: Defineξ(x) = υ′(x)x − υ(x). Clearly, ξ(0) = 0.
Also,

ξ′(x) = υ′′(x)x + υ′(x) − υ′(x) = υ′′(x)x.

The convexity ofυ(.) implies thatξ′(x) ≥ 0 for all x ≥ 0.
Thus, sinceξ(0) = 0, ξ(x) ≥ 0 at all x ≥ 0. The property
follows.


