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Abstract

Aim: To model and characterize evolutionary games where individ-
uals have states that are described by controlled Markov chains. The
action of an individual in a local interaction with another randomly se-
lected individual determines not only the instantaneous fitness but also its
probability to move to another state. The goal of a player is to maximize
its time average fitness.

Mathematical methods: The main mathematical tool is occupation
measures (expected frequencies of states and actions). This tool is a
central one in the theory of Markov Decision Processes. We make use
of the geometric properties of the set of achievable occupation measures.

Key assumption: Under any pure stationary policy of an individual,
its Markov chain has a single ergodic class of states.

Results: We define and characterize a new concept of Evolutionarily
Stable Strategies based on the concept of Occupation Measures. We relate
this set to the concept of Evolutionarily stable set (ESSet). We present a
way to transform the new type of evolutionary games into standard ones.
Applying this novel framework to energy control in wireless networks, we
show existence of an Occupation Measure ESS (OMESS).

Keywords: evolutionary games, occupation measure evolutionarily sta-
ble strategy, Markov decision process, energy control in wireless networks.
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Introduction

Evolutionary games have been introduced to model the evolution of population
sizes as a result of competition between them that occurs through many local
pairwise interactions, i.e. interactions between randomly chosen pairs of indi-
viduals (see Fisher 1930, Hamilton 1963,1964, Maynard Smith 1972). Central
in evolutionary games is the concept of Evolutionarily Stable Strategy (ESS)
introduced by Maynard Smith & Price in 1973. ESS is a distribution of (deter-
ministic or mixed) actions such that if used, the population is immune against
penetration of mutations. This notion is stronger than that of Nash equilib-
rium as ESS is robust against a deviation of a whole fraction of the population
where as the Nash equilibrium is defined with respect to possible deviations of
a single player (Nash, 1951 ). A second foundation of evolutionary games is the
replicator dynamics that describes the dynamics of the sizes of the populations
as a result of the fitness they receive in interactions. Maynard Smith formally
introduced both, without needing an explicit modeling of stochastic features.
We shall call this the deterministic evolutionary game.

Randomness is implicitly hinted in the requirement of robustness against mu-
tations, that we may view as random deviations. But the assumption of a very
large population tends to hide this source of randomness since that randomness
tends to average out. The deterministic evolutionary games may provide an
interpretation in which the deterministic game is a limit of games with finitely
many players who may take random actions. Such an interpretation can be
found in (Corradi and Sarin, 2000).

Yet, other sources of randomness have been introduced into evolutionary
games. Some authors have added small noise to the replicator dynamics in order
to avoid the problem of having the dynamics stuck in some local minimum, see
(Benäım et al, 2007; Foster & Yong, 1990; Imhof, 2005) and references therein.
The ESS can then be replaced by other notions such as the Stochastic Stable
Equilibrium (Foster & Young, 1990) .

In this paper we introduce another class of stochastic evolutionary games,
which we call ”Markov Decision Evolutionary Games” (MDEG). There are again
many local interactions among individuals belonging to large populations of
players. Each individual stays permanently in the system; from time to time
it moves among different individual states, and interacts with other users. The
actions of the player along with those with which it interacts determine not
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only the immediate fitness of the player but also the transition probabilities to
the next state it will have. Each individual is thus faced with a MDP (Markov
Decision Process) in which it maximizes the expected average cost criterion.
Each individual knows only the state of its own MDP, and does not know the
state of the other players it interacts with. The transition probabilities of a
player’s MDP are only controlled by that player. The local interactions between
players can be viewed as a cost-coupled stochastic game (Altman et al, 2007;
2008) which suggests the sufficiency of stationary strategies.

A simple application of an MDEG to mobile communications has been in-
troduced in (Altman & Hayel, 2008a) for the case in which individual mobile
terminals have finite life time and the criterion that is maximized is the total
expected fitness during the individual’s life time. Mobile terminals transmit
packets occasionally. Their destination occasionally may receive simultaneously
a transmission from another terminal which results in a collision. It is assumed
however that even when packets collide, one of the packets can be received
correctly if transmitted at a higher power. The immediate fitness rewards suc-
cessful transmissions and penalizes energy consumption. Each mobile decides
at each slot what its power level will be. This decision is allowed to depend on
the depletion level of the battery, which serves as the ”individual state”. The
battery is considered to be either in the state ”Full” (F) in which case there are
two power levels available, or ”Almost Empty” (AE) in which only the weak
power level is available, or at the empty state E. Transmission at high power
at state F results in a larger probability of moving to state AE. When at state
E, the battery is replaced by a new one at some constant cost. We extend this
model and adapt it to the average expected fitness criterion. We shall use the
long-term average reward criterion in order optimize the expected fitness that
an individual can have during its lifetime (which can be very large). The anal-
ysis of MDEG with the total expected fitness criterion has been proposed in
Altman & Hayel 2008b. An interesting application of MDEG is the repeated
game version of the well known Hawk and Dove game in which some of the
features of MDEG are already present in (Houston and McNamara 1988,1991;
McNamara et al, 1991).

The paper is organized as follows. The next section recalls notions of equi-
libria in evolutionary games (EG) and the link with Nash equilibrium. We then
present the model and we define the new notion of occupation measure based
ESS (OMESS). We propose a method to compute the OMESS based on a trans-
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formation of the MDEG into a standard EG. Finally we apply the last method
to an energy control problem and we conclude the paper.

Reminder on (standard) Evolutionary Games

Consider a large population of players. Each individual needs occasionally to
take some action. We focus on some (arbitrary) tagged individual. Occasionally,
the action of some N (possibly random number of) other individuals interact
with the action of that individual. We define by J(p, q) the expected payoff for
our tagged individual if it uses a strategy (also called policy) p when meeting
another individual who adopts the strategy q. This payoff is called “fitness” and
strategies with larger fitness are expected to propagate faster in a population.
p and q belong to a set K of available strategies. In the standard framework for
evolutionary games there are a finite number of so called ”pure strategies”, and
a general strategy of an individual is a probability distribution over the pure
strategies. An equivalent interpretation of strategies is obtained by assuming
that individuals choose pure strategies and then the probability distribution
represents the fraction of individuals in the population that choose each strategy.
Note that J is linear in p and q.

The basic equilibrium concept is the equilibrium strategy or a Nash equilib-
rium.

Definition 1 The strategy q is a Nash equilibrium if for any strategy p,

J(q, q) ≥ J(p, q). (1)

An ESSet is a set of Nash equilibria which have the following special prop-
erties (see Cressman, 2003).

Definition 2 A set E of symmetric Nash equilibrium is an evolutionarily stable
set (ESSet) if, for all q ∈ E, we have J(q, p) > J(p, p) for all p 6∈ E and such
that J(p, q) = J(q, q).

Note that for all strategies p and p′ in an ESSet E, we have J(p′, p) =
J(p, p). The concept of ESSet is stronger than Nash equilibrium and there are
some simple matrix games in which such an equilibrium set does not exist (see
Weibull, 1995, page 48 example 2.7).

In (Thomas, 1985), the author defines Evolutionary Stable Sets and presents
an example of ESSet containing a continuum of (Nash) equilibrium strategies,
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none of which can be an Evolutionarily Stable Strategy (ESS). Another example
is of an ESS, a special case of an ESSet restricted to one point.

The ESSet is robust against perturbation by a strategy which is outside the
ESSet, but any strategy in the set need not to be robust against perturbation
by another strategy within the ESSet. ESSet is asymptotically stable for the
replicator dynamic (Cressman, 2003). Every ESSet is a disjoint union of Nash
equilibria.

The stronger notion of equilibrium from evolutionary game theory is the
Evolutionarily Stable Strategy (ESS). The concept of ESSets generalize the ESS
as it is a one-element ESSet. Suppose that the whole population uses a strategy
q and that a small fraction ε (called “mutations”) adopts another strategy p.
Evolutionary forces are expected to select against p if

J(q, εp + (1− ε)q) > J(p, εp + (1− ε)q) (2)

Definition 3 A strategy q is said to be ESS if for every p 6= q there exists some
εp > 0 such that (2) holds for all ε ∈ (0, εp).

In fact, we expect that if

∀p 6= q, J(q, q) > J(p, q) (3)

then the mutations fraction in the population will tend to decrease (as it has
a lower reward, meaning a lower growth rate). Thus the strategy q is then
immune to mutations. If it does not but if still the following holds,

∀p 6= q, J(q, q) = J(p, q) and J(q, p) > J(p, p) (4)

then a population using q are “weakly” immune against a mutation using p since
if the mutant’s population grows, then we shall frequently have individuals with
strategy q competing with mutants; in such cases, the condition J(q, p) > J(p, p)
ensures that the growth rate of the original population exceeds that of the
mutants. We shall need the following characterization:

Theorem 1 (Hofbauer and Sigmund,1998, Theorem 6.4.1, page 63) A strategy
q is ESS if and only if ∀p 6= q one of the following conditions holds:

J(q, q) > J(p, q), (5)

or

J(q, q) = J(p, q) and J(q, p) > J(p, p). (6)
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Corollary 1 Relation (3) is a sufficient condition for q to be an ESS. A nec-
essary condition for it to be an ESS is relation (1).

The conditions on ESS can be related and interpreted in terms of a Nash
equilibrium in a matrix game. The situation in which an individual, say player
1, is faced with a member of a population in which a fraction p chooses strategy
A is then translated to playing the matrix game against a second player who
uses mixed strategies (randomizes) with probabilities p and 1− p, respectively.

Model

We use a hierarchical description of the system composed of a model for the
individual player and a global model for aggregating individual’s behavior.

Model for Individual player

A player arrives at some random time t0. It has a clock that dictates the times
at which interactions with other players occur. It is involved in interactions that
occur according to a Poisson process with rate λ. After a random number of
time periods, the player leaves the system and is replaced by another one. This
will be made precise below. During the player’s life time, each time the timer
clocks, the player interacts with another randomly selected player.

We associate with each player a Markov Decision Process (MDP) embedded
at the instants of the clocks.

The parameters of the MDP are given by the tuple {S,A, Q} where

• S is the set of possible individual states of the player

• A is the set of available actions. For each state s, a subset As of actions
is available.

• Q is the set of transition probabilities; for each s, s′ ∈ S and a ∈ As,
Qs′(s, a) is the probability to move from state s to state s′ taking action
a.

∑
s′∈S Qs′(s, a) is allowed to be smaller than 1.

Define further

• The set of policies is U . A general policy u is a sequence u = (u1, u2, . . .)
where ui is a distribution over action space A at time i. The dependence
on time is a local one: it concerns only the individual’s clock or individual
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time; a player is not assumed to use policies that make use of some global
clocks. A policy is an individual decision which defines the sequences of
action which will be taken by the individual at each individual’s clock.

• The subset of mixed (respectively pure or deterministic) policies is UM

(respectively UD). We define also the set of stationary policies US where
such policy does not depend on time.

Occupation measure. Often we encounter the notion of individual states
in evolutionary games; but usually the population size at a particular state is
fixed. In our case the choices of actions of an individual determine the fraction
of time it would spend at each state. Hence the fraction of the whole population
that will be at a given state may depend on the distribution of strategies in the
population. In order to model this dependence we introduce next the occupation
measure corresponding to a policy u.

Let IPη,u(Xt = s,At = a) be the probability for a user to be in state s, at
time t, using action a under policy u when the initial state has a probability
distribution η. The expected fraction of time units till time t, during which a
user is at state s and chooses action a, is given by:

f t
η,u(s, a) =

1
t

t∑
r=1

IPη,uXt = s,At = a).

Denote f t
η(u) := {f t

η,u(s, a)}. Define by Φu
η the set of all accumulation points of

f t
η,u as t → ∞. Whenever Φu

η contains a single element, we shall denote it by

fη,u.
Define the expected lifetime of a player corresponding to a given η and u as

Tη,u =
∑

s fη,u(s). We shall assume throughout that for a given η, supu∈U Tη,u

is finite. We know from Kallenberg (1983) that supu∈U Tη,u = maxu∈UD Tη,u,
so the assumption is equivalent to requesting that Tη,u is finite for all u ∈ UD.

We shall assume throughout that under any pure stationary policy, St is
unichain: it is a Markov chain that has a single ergodic class of states.

Interactions and System model

We have a large population of individuals. As in standard evolutionary games,
there are many pairwise interactions between randomly selected pairs.
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Let r(s, a, s′, b) be the immediate reward that a player receives when it is at
state s and it uses action a while interacting with a player who is in state s′

that uses action b.
Denote by α(u) = {α(u; s, a)} the system state: α(u; s, a) is the fraction of

the population at individual state s and that use action a when all the population
uses strategy u. We shall add the index t to indicate a possible dependence on
some time. We denote also by r(u; s, a) the immediate reward that a player
receives when it is at state s and it uses action a while interacting with a player
using the policy u. Then, we have

r(u; s, a) =
∑

s′,a′
α(u; s′, a′)r(s, a, s′, a′).

Consider an arbitrary tagged player and let St and At be its state and action
at time t (as measured on its individual clock). Then his expected immediate
reward conditionned on its state being St and its action being At is given by

Rt(u) =
∑

s′,a′
αt(u; s′, a′)r(St, At, s

′, a′) := r(St, At, αt(u)).

Assume now that a player arrives at the system at time 1. The global
expected fitness when using a policy v is then

Fη(v, u) = lim inf
t→∞

1
t

t∑
m=1

Eη,v[Rm(u)],

where Eη,v[Rm(u)] is the expectation of the reward at time m considering the
initial distribution η, the policy v of an individual against the policy u of the
population. When η is concentrated on state s we write with some abuse of
notation Fs(v, u) = Fη(v, u). We shall often omit the index η (in case it is taken
to be fixed).

Unless stated differently, we shall make throughout the following assumption.
Introduce the following assumptions.
A1: When the whole population uses a policy u ∈ US

⋃
UM , then at any

time t which is either fixed or is an individual time of an arbitrary player, αt(u)
is independent of t and is given by

αt(u; s, a) = fη,u(s, a) = π(s)u(a|s)
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for all s, a where fη,u(s, a) is the single limit of f t
η,u(s, a) as t →∞ and π is the

stationary distribution of the chain.
The validity of the Assumption depends on the way the infinite population

model is obtained by scaling a large finite population model. This aspect is
beyond the scope of this paper. Denote the set of all policies for which Φu

η is a

singleton by U∗. For u ∈ U∗, the following holds:

F (v, u) = inf
z∈Φv

η

∑
s,a

z(s, a)
∑

s′,a′
fη,u(s′, a′)r(s, a, s′, a′), (7)

where Φv
η is the set of occupation measures corresponding to the policy v and

initial distribution η. The set of occupation measures will be shown to be a
polytope whose extreme points correspond to strategies in UD (Altman 1999).
This will allow us to transform the MDEG to a standard EG.

Note that for any u ∈ UM , and for any strategies v and w,

Φv
η ⊂ Φw

η implies F (v, u) ≥ F (w, u). (8)

This, together with the fact that for any policy u and z ∈ Φu
η there exists a

stationary policy v ∈ U∗ satisfying fη,v = z, will allow us to limit ourselves to
policies in U∗.

When both u and v are in U∗, the global expected fitness simplifies to

F (v, u) =
∞∑

t=1

Eη,v[Rt(u)] =
∑
s,a

fη,v(s, a)
∑

s′,a′
fη,u(s′, a′)r(s, a, s′, a′). (9)

Assumption A1 would not hold if the policy of a player could depend on
the absolute time or on the behavior (i.e. the actions) of other players. For
example, in the standard replicator dynamics, the policy of a player adapts to
the instantaneous fitness which depends also on the actions of the other players
in the population. Thus A1 does not hold there. On the other hand, since
players of a given class are undistinguishable, and since the lifetime distribution
of a player depends only on his local time, we may expect Assumption A1 to
hold. Checking A1 is beyond the scope of the paper.

Definition 4 We shall say that two strategies u and u′ are equivalent if the
corresponding occupation measures are equal. We shall write u =e u′. The set
of occupation measures equivalent to u is denoted by e(u) := {v|v =e u}.
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Note that if u and u′ are equivalent policies for a given player then for any
v used by the rest of the population, the fitness under u and under u′ are the
same.

Defining the Occupation Measure ESS

With the expression (9) for the fitness, we observe that we are again in the
framework of standard evolutionary game model and can use Definition of The-
orem 1 for the Occupation Measure based ESS (OMESS) in the MDEG:

Definition 5 (i) A strategy u ∈ U∗ is an equilibrium for the MDEG if and only
if it satisfies

F (u, u) ≥ F (v, u). (10)

(ii) A strategy u ∈ U∗ is a Occupation-measure ESS (OMESS) for the MDEG
if and only if

• it is an equilibrium, and

• for all v ∈ U∗ such that v 6=e u that satisfy F (u, u) = F (v, u), the following
holds: F (u, v) > F (v, v).

We could use the following as an equivalent Definition of OMESS for MDEG.

Theorem 2 A strategy u is said to be OMESS if for every v 6=e u there exists
some εv > 0 such that the following holds for all ε ∈ (0, εv):

F (u, εu + (1− ε)v) > F (u, εu + (1− ε)v) (11)

In equation (11) we use a convex combination of two policies. We delay the
definition of this to the next section (see Remark 1).

The following result links between the OMESS and the ESSets.

Proposition 1 If u is an OMESS, then e(u) is an ESSet.

Proof Let u be an OMESS. We take a measure v 6∈ e(u). By definition of
equivalent classes, one of the following condition holds:

• F (u, u) > F (v, u),
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• F (u, u) = F (v, u) and F (u, v) > F (v, v).

Thus each w ∈ e(u) is a Nash equilibrium. The second condition implies that for
every w ∈ e(u) and v 6∈ e(u) such that F (w,w) = F (v, w), we have F (w, v) >

F (v, v). This implies by Definition 2 that e(u) is an ESSet.

In the following, we show that an ESSet is a weaker notion than OMESS: a
problem with no OMESS may still have a non empty ESSet.

Consider a single state s and two actions h or l. Assume that the reward
does not depend on the action. two pure stationary policies are u and v where
u consists on playing always h and the policy v is to play always l. Then,

• the ESSet of the Markov game is all the feasible policies,

• u and v are not in the same equivalence class,

• F (u,w) = F (w,w), ∀w ∈ e(v)c 6= ∅. v is not an OMESS.

• the game has no OMESS

Application to Energy Control in Wireless Networks

We next illustrate the MDEG setting with a problem that arises in dynamic
power control in mobile networks. A special case of this framework (where a
choice between several control actions exists in one state only) has been studied
in (Altman and Hayel, 2008a) with, however, a total cost criterion.

Users participate in local competitions for the access to a shared medium in
order to transmit their packets. An individual state of each mobile represents
the energy level at the user’s battery which, for simplicity, we assume to take
finitely many values, denoted by S = {0, . . . , n}.

Each time the battery empties (which corresponds to reaching state 0), the
mobile changes the battery to a new one (this corresponds to state n), and pay
a cost C. We assume that each time a mobile reaches state zero, it remains
there during a period whose expected duration is τ .

In each state s ∈ S \{0}, each mobile has two available actions h and l which
correspond respectively to high power pH and low power pL. We consider an
Aloha-type game where a mobile transmits a packet with success during a slot
if:

• with probability p, the mobile is the only one to transmit during this slot,
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• the mobile transmits with high power and the other transmitting mobile
uses low power or is in state 0.

The reward function r depends on a mobile’s state as well as on the trans-
mission powers, that is, the action of the mobile as well as that of the one it
interacts with. Then we have for s 6= 0:

r(s, a, s′, a′) = p + (1− p)1l(s′=0) + (1− p)1l((a=h), (a′=l), (s′ 6=0)).

For s = 0 we take r(0, a, s′, a′) = C/τ .
For each state s ∈ S \ {0}, the transition probability Qs′(s, a) may be non-

zero (for both a ∈ {l, h}) only for s′ ∈ {s, s − 1}. Then, as the two possible
transitions are to remain at the same energy level or move to the next lower one,
we simplify the notation and use Q(s, a) to denote the probability of remaining
at energy level s using action a.

To model the fact that the mobiles stays in the average τ units at state 0
and then moves to state n we set the transition probabilities from state 0 to any
state other than n and 0 to be zero; the probability to move to n is 1/τ and
that of remaining at 0 is 1− 1/τ .

The transition probabilities between energy levels which are motivated by
the application of energy consumption satisfy:

• For all state s ∈ S \ {0}, we have Q(s, h) < Q(s, l) because using less
power induces higher probability to remain in the same energy level.

• For all state s ∈ S \{0} and for both actions a ∈ {l, h}, we have Q(s, a) >

Q(s − 1, a) because less battery energy the mobile has, less is the proba-
bility to remain at the same energy level.

Computing the OMESS

Define the set of occupation measures achieved by all (individual) policies in
some subset U ′ ⊂ U as

Lη(U ′) =
⋃

u∈U ′
Φu

η

It will turn out that the expected fitness of an individual (defined in next sub-
section) will depend on the strategy u of that individual only through Φu

η . We

are therefore interested in the following characteristic of Lη(U) (see Kallenberg,
1983; Altman, 1999):
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Lemma 1 Lη(U) is equal to the set Qη defined as the set of ζ = {ζ(s, a)}
satisfying

∑

s′∈S

∑

a∈As′

ζ(s′, a)[δs′(s)−Qs′(s, a)] = η(s), ∀s, ζ(s, a) ≥ 0, ∀s, a. (12)

where δs′(s) is the Dirac distribution in state s′.
(ii) We have: Lη(U) = Lη(US) = coLη(UD) where coLη(UD) is the convex hull
of Lη(UD).
(iii) For any ζ ∈ Lη(U), define the individual stationary policy u ∈ US by

us(a) =

{
ζ(s,a)∑

a∈As
ζ(s,a) if

∑
a∈As

ζ(s, a) > 0
arbitrary number in [0, 1] if

∑
a∈As

ζ(s, a) = 0

Then fη,u = ζ.

Transforming the MDEG into a standard EG

Consider the following standard evolutionary game EG:

• the finite set of actions of a player is UD,

• the fitness of a player that uses v ∈ UD when the others use a policy
u ∈ US is given by (9).

• Enumerate the strategies in UD such that UD = (u1, ..., um) where

m =
∏

s∈S
|As|,

• Define γ = (γ1, ..., γm) where γi is the fraction of the population that uses
ui. γ can be interpreted as a mixed strategy which we denote by γ̂.

Remark 1 Here the convex combination εγ̂+(1−ε)γ̂′ of the two mixed strategies
γ̂ and γ̂′ is simply the mixed strategy whose ith component is given by εγi +(1−
ε)γ′i, i = 1, ..., m.

Combining Lemma 1 with eq. (7) we obtain:
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Proposition 2 (i) γ̂ is an equilibrium for the game EG if and only if it is an
OMESS for the original MDEG.
(ii) γ̂ is an ESS for the game EG if and only if it is an OMESS for the original
MDEG.

Proof. The statements hold if we allowed for only mixed policies; indeed,
they follow from Lemma 1 and eq. (7). We have to check that if a mixed
policy is an equilibrium or a OMESS when restricting to UM then it is also an
equilibrium among all policies. This in turn follows from from Lemma 1 and
eq. (9).

Application to Energy Control in Wireless Networks (con-

tinued)

We pursue the example of energy control applying the latest proposition in order
to obtain the OMESS for this MDEG. Indeed, we will find the OMESS for the
related EG game which will be written as a matrix game with dimension 4.
In order to find the equilibrium of this matrix game, we have to compute the

fitness F̃ (v, u) for all policies v and u. We use the renewal theorem to find the
expected fitness per cycle of lifetime.

F̃ (v, u) = p
Tη,v

Tη,v + τ

Tη,u

Tη,u + τ
+ (1− p)

Tη,v(h)
Tη,v + τ

Tη,u(l)
Tη,u + τ

+

τ
1

Tη,u + τ

Tη,v

Tη,v + τ
− C

1
Tη,v + τ

where Tη,v(a) is the expected number of times the action a is used under the
policy v starting from the initial distribution η and C is the cost for a new
battery.

In a first step, we have to compute the occupation measure fη,u correspond-
ing to each policy u ∈ {u1, u2, u3, u4}; for that we need the probability for a
user to be in each state, at time t, using action a under policy u. At initial time
t = 0, a mobile always starts with a battery full of energy, that is η = (0, 0, 1).
We describe the matrix game with the four following matrices:

F̃1(ui, uj) =
Tη,ui

Tη,ui + τ

Tη,uj

Tη,uj + τ
,
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F̃2(ui, uj) =
Tη,ui

(h)
Tη,ui + τ

Tη,uj
(l)

Tη,uj + τ
,

F̃3(ui, uj) =
1

Tη,uj + τ

Tη,ui

Tη,ui + τ
,

and

F̃4 =




1
X1 + X3 + τ

1
X1 + X3 + τ

1
X1 + X3 + τ

1
X1 + X3 + τ

1
X1 + X4 + τ

1
X1 + X4 + τ

1
X1 + X4 + τ

1
X1 + X4 + τ

1
X2 + X3 + τ

1
X2 + X3 + τ

1
X2 + X3 + τ

1
X2 + X3 + τ

1
X2 + X4 + τ

1
X2 + X4 + τ

1
X2 + X4 + τ

1
X2 + X4 + τ




with

X1 =
1

1−Q(1, l)
, X2 =

1
1−Q(1, h)

,

X3 =
1

1−Q(2, l)
, X4 =

1
1−Q(2, h)

.

Then we obtain the following modified fitnesses depending on the policies in
the following matrix:

F̃ = pF̃1 + (1− p)F̃2 + τF̃3 − CF̃4.

The OMESS of the MDEG which model energy control behaviors in wireless
networks is obtained by finding the OMESS of the standard EG with the matrix

of fitnesses given by F̃ .

Conclusions

In this paper we have studied a new class of evolutionary games which we call
MDEG, where the decisions of each player determine transition probabilities
between individual state. We have illustrated this class of game through an
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energy control problem in wireless networks. We had introduced already in
(Altman and Hayel, 2008a) a definition of ESS strategies in stationary policies
in a particular simple MDEG in which only in one state there are decisions to be
taken. If we apply directly that definition to general policies (we call this here
a Strong ESS) it turns out that when abandoning the restriction to stationary
policies, even in this simple model there are no ESS (except for some restricted
choice of parameters that results in some pure ESS). We solved this problem by
defining a weaker notion of ESS using occupation measures called Occupation
Measure ESS (OMESS). We have then proposed methods to determine OMESS
and we make the link with the ESSet notion.

Introducing individual Markov decision processes into evolutionary game has
many future perspectives. A natural next step would be to extend the pairwise
interaction model and its related fitness to a general population game framework
that could include the Wardrop equilibrium framework from road traffic, and
more generally, the generating function approach of (Vincent and Brown, 2005).
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