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Abstract— In a recent paper, Bonald and Roberts
[1] studied non-persistent TCP connections in transient
overload conditions, under the assumption that all
connections have the same round-trip times. In this paper
our goal is to develop theoretical tools that will enable us
to relax this assumption and obtain explicit expressions
for the rate of growth of the number of connections at
the system, the rate at which TCP connections leave the
system, as well as the time needed for the completion
of a connection. To that end, we model the system as a
DPS (Discriminatory Processor Sharing) system which we
analyze under very mild assumptions on the probability
distributions related to different classes of arrivals: we
only assume that the arrival rates of connections exist,
and that the amount of information transmitted during
a connection of a given type forms a stationary ergodic
sequence. We then proceed to obtain explicit expressions
for the growth rate of the number of connections at the
DPS system for several specific probability distributions.
We check through simulations the applicability of our
queueing results for modeling TCP connections sharing a
bottleneck.

Methods Keywords: Stochastic processes/Queueing theory.

I. INTRODUCTION

In this paper we provide a new queueing analysis of
DPS (Discriminate Processor Sharing) queueing model
(see e.g. [8]) with stationary ergodic service times (pos-
sibly correlated). We apply this model to the perfor-
mance evaluation of multiplexing of heterogeneous TCP
connections (heterogeneity is taken with respect to both
round trip delay as well as with respect to the probability
distribution of the amount of data to be transmitted by a
connection). We focus on the overload regime of the
queue in which the amount of workload that arrives

exceeds the system capacity. Our mathematical analysis
is based on techniques from reference [7], who presented
a fluid limit for a single queue operating under the
processor sharing regime. A remarkable property of these
fluid limits is that the throughput, and the rate of growth
of the queue size was shown to depend not only on
expectation of interarrival and service times, but on the
whole distribution of the service times. In addition to
the extension of the model of [7] to the case of several
classes (and to the DPS regime), we consider in this
paper a more general arrival processes that need not
be stationary nor ergodic1. This allows us to extend
our results to some networks of DPS queues. For some
distributions (exponential and hyper-exponential) of the
service times, we are able to obtain exact expressions
that describe the system’s performance.

We then apply our mathematical results to study the
performance of non-persistent TCP connections at tran-
sient overload periods. We use the well known fact that
at a session level, TCP can be analyzed using a processor
sharing approach [1], [4]. We consider K types of TCP
sessions where each type is characterized by its average
round trip time and the distribution of the amount of
information it has to transfer. Within each type, there
may be very short connections (”mice”) i.e. connections
with small amount of information to transfer, as well
as long connections (”elephants”). We focus on the case
that the sessions share a bottleneck link. We then extend
the result to some more general networks.

As already shown in [1] for the case of equal round
trip times (RTTs) of connections that share a single

1Our framework is related to that of [2] that studied stability of
non-stationary systems; in our case we obtain ”stability” properties
of the ”instability” of an overloaded system



bottleneck node, during transient overload periods there
is a linear growth in the number of ongoing TCP sessions
and their waiting times in the system, and the average
throughput of a session decreases to zero. Yet the rate
at which sessions of a given class leave the system
converges to a constant which our DPS model can
predict.

Our model shows that even in overload periods,
eventually all sessions manage to complete (including
”elephants”). Other surprising feature of the analysis is
that the departure rate of sessions need not be monotone
increasing in the arrival rates2. Yet we show that the
number of ongoing sessions is monotone in the arrival
rates.

The structure of the paper is as follows. We begin
in the next section by presenting the discriminatory
processor sharing regime and analyze its performance
under overload condition. We then discuss the stability
conditions in Section III for the case of a single com-
mon bottleneck queue. We extend the analysis to the
case of several overloaded links (with possibly different
routes for different TCP sessions) in Section IV. Explicit
expressions are obtained in Section V for the system’s
performance for some special marginal distributions of
the service times. In Section VI we apply our model to
the analysis of TCP connections with different round
trip time sharing a common bottleneck node; using
simulations performed with ns simulator [9], we show
that the DPS model is well adapted to the way TCP
connections share the bandwidth at overload.

II. DISCRIMINATORY PROCESSOR SHARING: MODEL

AND ANALYSIS

We analyze a single server queue, fed by K indepen-
dent arrival processes under the discriminatory processor
sharing discipline. This discipline is defined as follows.
A coefficient gi is associated to the arrival process i, i =
1 . . . K. We denote Li

t the number of customers of class
i in the queue at time t. Under the DPS discipline each
class i customer is served with a rate

gi∑K
j=1 gjL

j
t

.

The total server rate is assumed equal to 1.
We introduce the following assumptions and notation.

All the processes introduced below are assumed to be
defined on a common probability space, on which a
probability measure P is defined. Let N i[a, b] be the

2Examples have been obtained in [6] for the single class case

number of class i arrivals in the interval [a, b]. We assume
that the limits

λi := lim
t→∞

N i[0, t]
t

(1)

exist P −a.s. Let tin denote the instant at which the nth
customer of class i arrives. Let σi

n denote the amount of
service required by the nth customer of class i arriving
to the system. (In the case of TCP connection, this
corresponds to the size of the nth file divided by the
bottleneck link throughput.) We shall assume that for
each class i, the service times σi

n are stationary ergodic
under the shift in n. (This setting, in which the inter-
arrival times are not required to be stationary ergodic, is
a generalization of the setting in [7] even for one class of
customers. It will become necessary for us to consider
this setting, as we shall consider networks where the
arrival into one queue are related to the output of another
queue. The inter-departure times from the first queue are,
in general, nonstationary.) Denote

• P̂ i the Palm probability3 associated to the process
N i

• Êi the expectation with respect to this measure.
The following hypothesis implies the transient behaviour
of the queue under study :

K∑
i=1

λiÊ
i(σi

0) > 1 (2)

We will use the following lemma which is an adaptation
of the one in [7] to our setting (with weaker assump-
tions):

Lemma 1: Let N [0, t] be a point process. Denote

λ
.= lim sup

t→∞
1
t
N [0, t], λ

.= lim inf
t→∞

1
t
N [0, t],

and suppose that λ < ∞ and λ > 0. To each point tn of
the point process we associate a mark σn. If the sequence
{σn} is stationary and ergodic (under the shift in n), for
any measurable functions f, g : IR+ → [0, 1] we have,
almost surely

i) lim sup
t→∞

1
t

∑
n≥0

g(σn)1I{tn≤f(σn)t} ≤ λE((fg)(σ0)),

ii) lim inf
t→∞

1
t

∑
n≥0

g(σn)1I{tn≤f(σn)t} ≥ λE((fg)(σ0)).

3for a stationary ergodic marked point process N i, the term ”Palm
probability” is the probability describing the process embeded at
times T i

n; we use this term with some abuse of terminology as N i

need not be stationary. It will however only be used for the service
times σi

n, which are indeed assumed to be stationarity ergodic.



In particular, if λ = λ = λ then

lim
t→∞

1
t

∑
n≥0

g(σn)1I{tn≤f(σn)t} = λE((fg)(σ0)).

Proof: We start showing that i) holds when A = f(IR+)
if finite. In this case

lim sup
t→∞

1
t

∑
n≥0

g(σn)1I{tn≤f(σn)t}

≤
∑
a∈A

lim sup
t→∞

1
t

∑
n≥0

g(σn)1I{tn≤at}1I{f(σn)=a}

≤
∑
a∈A

lim sup
t→∞

1
t

N [0,at]∑
n≥0

g(σn)1I{f(σn)=a}

≤
∑
a∈A

lim sup
t→∞

N [0, at]
at

lim sup
t→∞

× 1
N [0, at]

N [0,at]∑
n=0

g(σn)a1I{f(σn)=a}

≤
∑
a∈A

λE[g(σ0)a1I{f(σ0)=a} = λE[gf(σ0)]

The last inequality is based in the fact that
limt→∞ N [0, at] = ∞ since λ > 0.

Now, let us define

fm(x) = k/m ∀x such that �mf(x)� = k − 1 (3)

Here �y� is the greater integer smaller than y.
We have

lim sup
t→∞

1
t

∑
n≥0

g(σn)1I{tn≤f(σn)t}

≤ lim sup
t→∞

1
t

∑
n≥0

g(σn)1I{tn≤fm(σn)t}

≤ λE((fmg)(σ0))

We can now obtain i) by using the Lebesgue theorem,
that allows us to write

lim
m→∞λE((fmg)(σ0)) = λE((fg)(σ0)) (4)

The proof of ii) can be done in the same manner.

We will denote T i
n the time of departure of the n-th

class i customer (i.e. of the customer that arrived at time
tin).

The next proposition shows that a unique limit exists
to the rates of growth of number of customers of different
classes, and that this limit can be computed as a solution
of a set of K equations. We have recently learnt that this
result has been obtained in parallel in [5] in a Markovian

setting, i.e. for the special case that for each i, the
sequence {σi

n}n are i.i.d. and the arrivals are independent
Poisson processes.

For any random variable X , we denote by

ess inf(X) := sup(a : P (X > a) = 1),

ess sup(X) := inf(a : P (X < a) = 1).

Proposition 2: Let Li
t be the number of customers of

class i in the queue at time t. Then

lim
t→∞

Li
t

t
= αi, a.s. (5)

where α = (αi)K
i=1 is the unique positive solution of

xi = λi


1 − Êi exp


−g−1

i σi
0

K∑
j=1

xjgj




 , (6)

i = 1 . . . K. Let W i
n be the sojourn time of the n-th

customer of class i, then

lim
n→∞

W i
n

n
− (eαiσi

n − 1)
λi

= 0 (7)

in distribution.
Proof: Denote

αi = ess sup
(

lim sup
t→∞

Li
t

t

)
,

αi = ess inf
(

lim inf
t→∞

Li
t

t

)
.

Observe that αi ≤ λi since the number of customers
of class i in the buffer at time t is less than or equal to
the total number of customers of class i that have arrived
until t. Let α and α be the vectors whose ith components
are αi and αi, respectively.
The proof follows 4 steps.

Step 1 : A bound for α. Let β = (βi)K
i=1 be a real

vector such that βi > αi i=1. . . K. Then, there exist C0

such that Li
t ≤ βit ∀t > C0, i = 1 . . . K. We have

T i
n ≤ tineγiσi

n ∀ tin > C0 (8)

where γi = g−1
i

∑K
j=1 gjβ

j . Indeed, because of the DPS
service discipline,

σi
n =

∫ T i
n

ti
n

gi∑K
j=1 gjL

j
u

du, n ≥ 0 (9)



If t > C0, then Li
t ≤ βit. Then we have

σi
n ≥

∫ T i
n

ti
n

gi∑K
j=1 gjβju

du

=
gi∑K

j=1 gjβj
Log

T i
n

tin

for n ≥ 0. This implies (8). On the other hand, eq. (8)
and the fact that∑

0≤ti
n<C0

1I{ti
n≤t<T i

n} ≤ N i[0, C0]

implies that

Li
t =

∑
n≥0

1I{ti
n≤t<T i

n} ≤ N i[0, C0]

+
∑

ti
n≥C0

1I{t exp(−γiσi
n)<ti

n≤t} (10)

Using Lemma (1), and writing 1I{t exp(−γiσi
n)<ti

n≤t} =
1I{ti

n≤t} − 1I{ti
n≤t exp(−γiσi

n)} we have

lim sup
t→∞

Li
t

t
≤ λi(1 − Êi(exp

(−γiσi
0

)
)) (11)

and letting β converging to α, we have

lim sup
t→∞

Li
t

t
≤ λi(1 − Êi(exp

(
−δ

i
σi

0

)
)) (12)

where δ
i = g−1

i

∑K
j=1 gjα

j .

Step 2 : A bound for α. Let β = (βi)K
i=1 be a real

vector such that βi < αi i=1. . . K. Then, there exist C0

such that Li
t ≥ βit ∀t > C0, i = 1 . . . K. We have

T i
n ≥ tin exp

(
γiσi

n

) ∀ tin > C0 (13)

where γi = g−1
i

∑K
j=1 gjβ

j . This can be shown using the
same arguments as in Step 1. This implies that

Li
t ≥

∑
ti
n≥C0

1I{t exp(−γiσi
n)<ti

n≤t} (14)

and then it can be shown as in Step 1 (letting β
converging to α) that

lim inf
t→∞

Li
t

t
≥ λi(1 − Êi(exp

(−δiσi
0

)
)) (15)

where δi = g−1
i

∑K
j=1 gjα

j . At this point we cannot
yet conclude from (12) and (15) that Lt/t has a limit
as t → ∞ since we have not showed that the right
hand side of (15) is larger than the right hand side of
(12). We shall establish the existence of the limit only

in step 4, by using properties derived in the step 3 below.

Step 3 : Computing the unique positive solution. We
show that there exists a unique non null solution of the
set of equations

xi = λi


1 − Êi exp


−g−1

i σi
0

K∑
j=1

xjgj




 , (16)

i = 1 . . . K. Let x̃i = xigi, i = 1 . . . K and λ̃i =
λigi, i = 1 . . . K. In terms of this transformation, we
look for a solution of

x̃i = λ̃i

[
1 − Êi exp

(
−
∑K

j=1 x̃j

gi
σi

0

)]
, (17)

i = 1 . . . K. Let x =
∑K

j=1 x̃j , the function

Z(x) := x −
K∑

j=1

λ̃i

[
1 − Êi exp

(−g−1
i xσi

0

)]
(18)

has a unique strictly positive solution. In fact, it is
convex, converges toward +∞ at infinity and, due to
the inequality (2), has a strictly negative derivative at 0.
Denote ν this solution (note that ν is the smallest
solution of Z(x) ≥ 0, x > 0, and the largest solution
of Z(x) ≤ 0) and define

αi = λi(1 − Êi(exp
(−g−1

i νσi
0

)
)), i = 1 . . . K.

Let α = (αi)K
i=1. It is easy to see that α is the unique

strictly positive solution of (16). Indeed, once the sum
of x̃j are determined uniquely as the positive solution
of Z(x) = 0, the value of each x̃j is uniquely defined
as seen from eq. (17).

Step 4 : Relation between the solution of (16) and the
increase rate of the number of sessions.
Eq. (12) implies that

K∑
i=1

gjα
j ≤

K∑
i=1

gjλj

(
1 − Êi(exp(−δ

i
σi

0))
)

.

Then, due to the characteristics of the function (18),∑K
i=1 gjα

j ≤ ν.
Eq. (15) implies that

K∑
i=1

gjα
j ≥

K∑
i=1

gjλj

(
1 − Êi(exp(−δiσi

0))
)

.

Then, in order to prove that
∑K

i=1 gjα
j ≥ ν it is enough

to prove that
∑K

i=1 gjα
j �= 0 and this can be done in the

same way as in [7].



Then
K∑

i=1

gjα
j =

K∑
i=1

gjα
j .

Using (12) and (15) we have α = α = α. This prove the
first part of the proposition.
To obtain the second part, we note that (8) and (13),
together with the fact that α = α = α, imply that

lim
n→∞T i

n/tin − exp(γiσi
n) = 0,

where

γi = g−1
i

K∑
j=1

gjα
j .

We then use the relation W i
n = Tn − tn together with

(1).

Remark 3: Note that it follows from (8) that even in
permanent overload conditions, eventually all sessions
manage to complete. [1].

Next, we present some continuity and monotonicity
properties of the rate of growth of the queue as a function
of the input rate.

Proposition 4: Under the same hypothesis of Propo-
sition 2, the explosion rate of class i customers is a
continuous function of λj , j = 1, . . . , K.
Proof: It follows from the Implicit Function Theorem
that the strictly positive solution x of the equation
Z(x) = 0 (see (18)) is continuous in all λj’s. From (17)
we now see that the strictly positive solution of (16) is
continuous in that x and hence in the λj’s. The result
now follows from Proposition 2.

In the following proposition we use the notations intro-
duced in Proposition 2.

Proposition 5: (Monotonicity) Under the same hy-
pothesis as in Proposition 2, the explosion rate of class
i customers is an increasing function of each input rate
λj , j = 1, . . . , K.
Proof: From the definition of ν and αi (see Proposition
2), it is enough to prove that ν is an increasing function
of λj , j = 1, . . . , K. Let us recall that ν is the unique
positive root of

Gλ̃1,...,λ̃K
(x) = x −

K∑
j=1

λ̃i

[
1 − Êi

(
e−g−1

i xσi
0

)]
(19)

The proposition is then a consequence of the fact that
Gλ̃1,...,λ̃K

(x) is convex, has another 0 at ν = 0 and is
decreasing with respect to λj , j = 1, . . . , K.

III. SUFFICIENT AND NECESSARY CONDITIONS FOR

STABILITY

Since we are not dealing with an ergodic stationary
setting, we shall say that the system is stable if αj =
0 ∀j. Proposition 2 shows that

K∑
i=1

λiÊ
i(σi

0) ≤ 1 (20)

is a necessary condition for stability. We show now that
this is also a sufficient condition. Indeed, under condition
(20), the function (18) is strictly increasing and has a root
in zero. Then it has no positive roots. By using the same
arguments as in Step 4 of Proposition 2, one can easily
prove that ᾱj = 0 ∀j. This implies that αj = 0 ∀j so
that the system is stable.

IV. A NETWORK OF DPS QUEUES

The fact that the results of the previous Section did
not require stationarity of interarrival times but just the
existence of rates, was sufficient to show that the output
processes also have rates, which are uniquely defined
as the positive solution of a set of implicit equations.
This implies that the results above holds in fact to any
network of DPS queues, that can be described as a
directed graph provided that there are no feed-backs.
The only requirement is that in each queue l and class i,
the sequence of service times σi

0(l), σ
i
1(l), σ

i
2(l), .... are

stationary ergodic where σi
k(l) are the amount of service

required by the kth arrival of class i at queue l.
The next question is whether this can be generalized

to networks with feedback. We first note that the results
for a single queue may generalize to a single queue with
feedback under the following assumptions:

• The arrival rates λi := limt→∞
N i[0,t]

t exist P −a.s.
• The nth customer of class i gets ri

n services of du-
rations σi

n(1), σi
n(2), ..., σi

n(ri
n). The jth service of

the nth customer of class i starts immediately after
the j − 1st service ends. Denote σn =

∑rn
i

j=1 σi
n(j).

Each one of the K sequences {σi
n} is assumed to

be stationary (under the shift in n) under P .

Under the above assumptions, it is clear that the results
of the previous section hold, when we replace σi

n by σi
n.

Hence, under this setting, we may still apply all previous
results to network of DPS queues, provided that there are
no feedback.

When considering networks with feedback, the analy-
sis becomes much more difficult and will be pursued in
the future.



V. EXAMPLES OF DISTRIBUTIONS

Consider the case where for each class k = 1, ..., K,
the marginal distribution of the service times is exponen-
tial with parameter µi (Recall that the service times need
not be i.i.d.). We now compute explicitly the solution of
(6). The expression

Êi exp


−g−1

i σi
0

K∑
j=1

xjgj


 (21)

is the Laplace Stieltjes transform of σi
0 at the point

g−1
i

∑K
j=1 xjgj and is thus given by

Êi exp

(
−σi

0

∑K
j=1 xjgj

gi

)
=

µi

µi + g−1
i

∑K
j=1 xjgj

.

Hence, equation (6) reduces to

xi = λi

[
1 − µi

µi + g−1
i

∑K
j=1 xjgj

]

=
λi
∑K

j=1 xjgj

µigi +
∑K

j=1 xjgj

=
λiy

µigi + y
, i = 1 . . . K, (22)

where y =
∑K

j=1 xjgj . Multiplying (22) by gi and taking
the sum over i = 1, ..., K, we get the following single
equation for the unknown y:

1 =
K∑

i=1

λigi

µigi + y
. (23)

For the case of K = 1, this gives y = g1(λ1 − µ1) and
thus x1 = λ1 − µ1. This can be explained by the fact
that for exponential case, the dynamics of the system has
the same distribution as a FIFO system, for which the
rate of growth of number of customers in the system is
clearly λ − µ.

For the case of K = 2, (23) yields a quadratic equation
y2 + by + c = 0 where

b = g1(µ1 − λ1) + g2(µ2 − λ2),

c = g1g2(µ1µ2 − λ1µ2 − λ2µ1).

Note that the overload condition λ1/µ1 + λ2/µ2 > 1
implies that c < 0, so indeed the quadratic equation has
a unique positive solution. The solution then determines
x1, x2 through (22).

Whereas the exponential distribution allows us to
obtain a simple solution for the overload, it does not
describe well the distribution of the size (and hence

service time) of a TCP session. The latter is known to
be heavy tailed [1], [3] and in particular the Pareto and
the Weibull distribution have been used to describe its
distribution. Unfortunately, with these distributions we
cannot get an explicit expression for (21) and therefore
we cannot solve (6) explicitly. Nevertheless, one can use
the hyper-exponential distribution which has been shown
in [3] to approximate the heavy tailed distributions. We
thus write the complementary probability distribution
function of the service time σi

0 of class i as

Hc
i (t) =

B(i)∑
j=1

pi
je

−µj
i t.

It is thus a mixture of B(i) exponentials weighted by the
probabilities pj

i , j = 1, ..., B(i). The Laplace Stieltjes
transform of σi

0 is

Li(s) =
B(i)∑
j=1

pi
jµ

j
i

s + µj
i

,

and thus

1 − Li(s) = 1 −
B(i)∑
j=1

pi
jµ

j
i

s + µj
i

=
B(i)∑
j=1

pi
js

s + µj
i

.

substituting in the above s = y/gi, (6) then becomes:

xi = λi


1 − Êi exp


−g−1

i σi
0

K∑
j=1

xjgj






= λi

B(i)∑
j=1

pi
jy

y + giµ
j
i

, i = 1 . . . K, (24)

where again y =
∑K

j=1 xjgj . Multiplying by gi and
summing over i = 1, ..., K, we get the following single
equation with the unknown y:

1 =
K∑

i=1

λigi

B(i)∑
j=1

pi
j

y + giµ
j
i

. (25)

It’s solution gives us then the xi of each class i by
substituting in (24). Due to the nature of the super-
exponential distribution, the above equation has in fact
the same form of (23); this can be seen if we define
λj

i = λip
i
j , and gj

i = gi. Then (25) becomes

1 =
∑
i,j

λj
ig

j
i

y + gj
i µ

j
i

. (26)

Finally, we note that even for more general distri-
butions of the σi

0, our general results (e.g. Proposition
2) allow us to compute numerically the performance
measures (such as increase rate of number of session).



VI. APPLICATION TO TCP IN OVERLOAD

CONDITIONS

In this section we apply the analysis for a single queue
with DPS regime in overload to model several sources
that send TCP sessions who share a common bottleneck
link. (We note that the framework of DPS queues is
not appropriate for studying TCP connections in a more
complex topology with several bottlencek nodes since
our model for a network assumes a store and forward
mechanism: a connection starts to be treated in a DPS
node only when it has ended to be treated in the previous
uplink node; TCP however shares in practice all nodes
along its path simultaneoulsy).

Consider the following network depicted in Figure 1.
There are two groups of sessions all sharing the same
bottleneck link (of 2Mbps). The sessions arrive at the
bottleneck over high speed access links of 100Mbps. All
TCP packets are of size 500bytes. We use the NewReno
version of TCP without the delayed ack option.

Arrival rates The time between session inter-arrivals
within each group is exponential and its expectation is
0.24sec. Thus λi = 4.167, i = 1, 2.

Service rates A file has an exponentially distributed size
with average size of 40Kbytes. The system is indeed in
overload: its load is given by twice λ times the average
size of a flow in bits over the link’s capacity. This gives
ρ = 2 × 4.167 × 40 × 103 × 8/2Mbps = 1.333.

Delays and classes of sessions The propagation delay
over the bottleneck link is 50ms. The two classes of
sessions are distinguished by the delay of the access
link (and thus by the RTT). The propagation delay at the
access link of class 1 is 50ms. The propagation delay at
the access link of class 2 is varied in our simulations
from 50ms to 500ms. When computing the RTT, we
will have to take into account the queueing delay. We
note that the transmission time of a packet into the
bottleneck link takes 500 × 8/2Mbps = 2msec. We
wish the queueing delay to be small with respect to the
propagation delay so that we can indeed change easily
RTT over a large range. We thus chose a queue size of
30 packets. This implies a maximum queueing delay of
60msec. (As we shall see, the average queueing delay
will be around 50msec.) The average RTT of the first
group is 250msec, where RTT of the second one varies
between 250msec to 1150msec in steps of 100msec.

Simulation were performed with ns simulator [9].

We begin by depicting in Fig. 2 the impact of the
delay D2 (or equivalently of RTT2) of group 2 on the
throughput (in terms of sessions per second) of each one
of the classes. For each class, we depict the number of
sessions that have been completed by the end of the
simulations (50 sec). The isolated points correspond to
simulations and the continuous curves to the numerical
results discussed later on.

We see that as D2 increases, the general trend of the
throughput of class 2 is to decrease and that of class 1 to
increase. The throughput of class 1 is always larger than
of class 2 when D2 > D1. For the largest D2, where it
is 4.6 times D1, the throughput of class 1 is around the
double of that of class 2.

Next, we look in more details on the simulations
of the system where in average, RTT2 = 550msec
(and RTT1 = 250msec). Fig. 3 shows the cumulative
number of departures as a function of time of each class.
The upper curves corresponds to class 1. We see that
the curves are very close to being linear, as predicted by
our analytical results. As can be expected, longer RTTs
imply lower throughputs of packets and thus also lower
throughputs in terms of number of sessions terminating
per second. In our formalism, we can say that the DPS
weighting factor g2 for class 2 is smaller than for class
1 (g1). We shall show later how these parameters are
selected.

Fig. 4 shows the number of sessions of each class
present at the system. We see, as expected, a general
linear trend in their growth. The upper curve corresponds
to class 2. Since the arrival rates of both classes is the
same, it is clear that the lower departure rates of class
2 that we saw in the previous figure will mean a larger
number of class 2 sessions in the system.

Fig. 5 shows the average and instantaneous queue
sizes at the entrance to the bottleneck link. We see that
except for a short transient time, the average queue size
stabilizes at 25 packets.

Finally, the cumulative number of lost packets at the
bottleneck queue is depicted in Figure 6. It is seen to be
quite close to linear.

Validation. We next computed numerically the through-
puts. For equal delays we can take g1 = g2 = 1. We
then obtain y = µ − λ1 − λ2 = 2.083, so the rates of
growth of the number of sessions in the system are xi =
1.0415, i = 1, 2, and the throughputs are λi−xi = 3.125.
The simulated throughputs are 140/50 = 2.8 so we get
an error of around 10%.

For unequal delays the problem of choosing the gi
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is harder since we are not aware of simple explicit
expressions for throughputs of short TCP sessions as
a function of RTT. As an approximation, we choose
gi = RTT−1

i , in line with the well known throughput
formulae [10] that was derived for persistent sessions.
We note that in our case, a session contains at the
average 80 packets. Our simulations showed that the
average duration of a session was much larger than the
initial slow start phase, so we could indeed use results
derived for persistent TCP. (This can be seen for example
from the fact that the number of losses per session
is much larger than 1. For example, in the simulation
corresponding to RTT2 = 550msec there were 3350

packets lost among around 400 sessions.)
With this choice of the gi’s, we see the comparison

between simulations and our model prediction in Fig.
2. We see that our model tends to over estimates the
sessions’ throughput, with an average error of aound
10%.

We have obtained an even better prediction of the
simulation results (not reported here) for ρ = 1.333
when using slightly higher load (than ρ = 1.333) in
the analytical equations. A possible explanation for this
phenomenon could be that since the queue has emptied
during the simulation (especially during the first 10
seconds), some of the link capacity was wasted during
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the simulation time so that the service time required by a
session is larger (and hence a slightly larger load would
better predict the simulation results).

VII. CONCLUDING REMARKS

The main goal of this paper has been to analyze
the behavior of DPS queues in overload. Surprisingly
simple expressions have been obtained for a general (not
necessarily) Markovian setting for computing the growth
rate and the throughput. These expressions were explicit
for some special distributions of service times. We then
tested the applicability of our results for modeling the
behavior of TCP sessions sharing a common bottleneck
link. When using our model with the DPS weights given
by the reciprocal of the round trip times, our model
did quite well, overestimated the throughputs by around
10%.

Acknowledgement. The authors wish to thank Dr. Arzad
Alam Kherani for useful discussions on Section VI.

REFERENCES

[1] T. Bonald and J. Roberts, “Performance modeling of elastic
traffic in overload”, ACM Sigmetrics, Cambridge, MA, USA,
June, 2001.

[2] El Taha and Stidham, Sample path analysis of queueing systems,
Kluwer, 2000.

[3] A. Feldmann and W. Whitt, ”Fitting Mixtures of Exponentials
to Long-Tail Distributions to Analyze Network Performance
Models”, INFOCOM’97, 1096-1104, 1997.

[4] S. Ben Fredj, T. Bonald, A. Proutiere, G. Regnié and J. W.
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