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Abstract

For over a decade, the Nash Bargaining Solution (NBS) concept from cooperative game theory has been used in net-
works to share resources fairly. Due to its many appealing properties, it has recently been used for assigning bandwidth in
a general topology network between applications that have linear utility functions. In this paper, we use this concept for
allocating the bandwidth between applications with general concave utilities. Our framework includes in fact several other
fairness criteria, such as the max–min criteria. We study the impact of concavity on the allocation and present computa-
tional methods for obtaining fair allocations in a general topology, based on a dual Lagrangian approach and on Semi-
Definite Programming.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Fair bandwidth assignment has been one of the
important challenging areas of research and devel-
opment in networks supporting elastic traffic.
Indeed, Max–min fairness has been adopted by the
ATM forum for the Available Bit Rate (ABR) ser-
vice of ATM [2]. Although the max–min fairness
1389-1286/$ - see front matter � 2006 Elsevier B.V. All rights reserved

doi:10.1016/j.comnet.2005.12.006

q A very preliminary and shorter version of the fairness
criterion was presented in the conference NPDPA [27] and
preliminary numerical results using SDP programming appeared
in [28].
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has some optimality properties (Pareto optimality),
it has been argued that it favors too much long1

connections and does not make efficient use of avail-
able bandwidth. In contrast, the concept of pro-

portional fairness (of the throughput assignment)
has been proposed by Kelly [17,18]. It gives rise
to a more efficient solution in terms of network
resources by providing more resources to shorter1

connections.
Although the object that is shared fairly seems to

be a very specific one (the throughput), it is shown
.

1 The terms long and short refer here to the distance, counted in
the number of hops or of saturated links for instance, as we will
explain later.
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in [17,18] that in fact, the starting point for obtain-
ing (weighted) proportional fairness of the through-
put can be any general (concave) utility function per
connection.

As opposed to this approach, we wish to use a
fairness concept that is directly defined in terms of
the users’ utilities rather than of the throughputs
they are assigned to. Yet, as in weighted propor-
tional fairness, it would be desirable to express this
concept as the solution of a utility maximization
problem, since it makes it possible to use recent algo-
rithms for utility maximization in networks, along
with decentralized implementations [16,15,19].

The Nash Bargaining Solution (NBS) is a natural
framework that allows us to define and design fair
assignment of bandwidth between applications with
different concave utilities and has already been used
in networking problems [22,29]. It is characterized
by a set of axioms that are appealing in defining
fairness. As already recognized in [18] and later in
[29], proportional fairness agrees with the NBS if
the object that is shared fairly is the throughput
and if the user’s minimum required rate is zero.
We are interested in the NBS since it can been seen
as a natural extension of the proportional fairness
criterion which is probably the most popular fair-
ness notion in network design today: it appears
widely in the Internet world (indeed, it is shown in
[20] that some versions the TCP congestion control
protocol achieves proportional fair bandwidth shar-
ing) as well as in wireless communications [3].

We use the NBS to study the fairness of an
assignment where connection n has a concave utility
over an interval [MRn,PRn]. It thus has a minimum
rate requirement MRn and does not need more than
PRn. Utility functions with such features have been
identified in [26] for representing some real time
applications such as voice and video, and in the case
that MRn = 0, for elastic traffic.

We briefly mention some other useful concepts
for fairness or for allocating resources. One of the
properties defining the Nash Bargaining Solution
has had some criticism (an axiom stating that the
solution is not affected by reducing the domain)
since it implies that a player does not care how
much the other players have given up. Two alterna-
tive notions of fair sharing have thus been intro-
duced with the same other properties of the Nash
Bargaining Solution, but with a variation of the
above property: the modified Thomson solution
and the Raiffa–Kalai–Smorodinsky solution. A uni-
fied treatment of the Nash solution as well as of
these two has been introduced in [7] for two players
and extended in [11] for the multi-person case.
These concepts have been applied to Internet pric-
ing in [6]. Yet another ‘‘fair’’ concept for sharing
resources is the Aumann–Shapley solution for
cooperative game, which has desirable properties
such as Pareto optimality. Haviv [12] proposes this
approach to allocating congestion costs in a single
node under various queueing disciplines.

We study in this paper the way the concavity of
the utilities affect the bandwidth assignment accord-
ing to the NBS, as well as according to a generalized
version of the proportional fairness (in which the
utilities that correspond to the different connections
are fairly allocated).

Contribution of the paper: In previous work on
Nash bargaining in networks, only linear utilities
have been studied. We introduce in this paper qua-
dratic utility functions. It is a class sufficiently large
to represent utilities with various degrees of concav-
ity. At the same time they are sufficiently simple for
computation purposes. We indeed propose in the
paper a Lagrangian (see [29]) approach as well as
a reduction to Semi-Definite Programming (SDP)
which allows to use a large variety of open source
(and other) libraries to efficiently compute the fair
solution in realistic networks. We indicate the com-
plexity of the solution by analyzing matrices that are
used in the SDP formulation. We demonstrate how
various fairness concepts can be handled by the pro-
posed SDP method. We study the way the concavity
of the utilities affect the bandwidth assignment
according to the NBS, as well as according to a gen-
eralized version of the proportional fairness (in
which the utilities that correspond to the different
connections are fairly allocated). We illustrate
numerically the bandwidth allocation for the Cost
network [1].

Structure of the paper: After briefly introducing
the notations used in the article (Section 2), we pres-
ent the fair allocations in Section 3 and focus on the
NBS in Section 4 and its properties. We then pro-
pose a new fair family that covers for special cases
the previously defined fairness criteria, including
in particular the Nash, the Thomson and the
Kalai–Smorondinsky solutions and we propose a
quadratic approximation for the utility of each con-
nection, which allows us to parameterize the degree
of concavity of the utility function using a single
parameter (Section 5). We use this approximation
to further analyze the impact of concavity of utilities
on the resulting assignment. Quadratic utilities can
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be viewed as a second order approximation (in
terms of a Taylor series) of any sufficiently smooth
concave utility function. We then present in Section
7 a Lagrangian approach which allows us to imple-
ment a decentralized protocol for the bandwidth
allocation. We finally present in Section 8 a novel
alternative approach using Semi-Definite Program-
ming (SDP) and some numerical results in Section
9.

2. Definitions and notations

In the following, we denote by connection a
‘‘source–destination’’ pair. For a given network
and set of connections, there exists a infinite set of
feasible allocations. We are interested in those that
are optimal (as we will define in Section 2.2) and sat-
isfying the system’s constraints (Section 2.3). The
fair allocation we will present all belong to this
set. Let us first summarize in Section 2.1 the nota-
tions used in this article.

2.1. Notations

We summarize in Table 1 the different notations
used in the article. We suppose that to each connec-
tion n is associated a utility function f (on which
we will give more insight in Section 4.1) and has
a minimum and a maximum requirement in terms
of bandwidth, that we denote MRn and PRn,
respectively.

We also define some orders among feasible allo-
cations (that is to say satisfying the system’s con-
straints, as defined in Section 2.3). We write:

• ~x 6~y if 8i 2 1; . . . ;N ; xi 6 yi

• ~x6lg~y if either ~x ¼~y or 9i; i > 0; 8j 2 1; . . . ;
i� 1; xj ¼ yj and xi < yi (lexicographic order)
Table 1
Notations

jensj number of elements of set ens

n a connection
xn bandwidth allocated to connection n

MRn minimal bandwidth requirements of connection n

l a directed link
Cl capacity of link l

X set of feasible allocations
N set of connections
~x vector of allocations (of size jNj)
PRn maximal bandwidth required for connection n

L set of links in the network
~C vector of links capacities
• ~x �~y if rð~xÞ 6lg rð~yÞ with rð~xÞ and rð~yÞ the or-
dered versions of~x and~y.2
2.2. Efficiency

An allocation is said to be Pareto optimal or Par-
eto efficient if it is impossible to increase the alloca-
tion of a connection without strictly decreasing
another one. In other words, an allocation Pareto
efficient is maximal in the sense of 6. In the net-
working context, this amounts in saying that each
connection goes through at least one saturated link.
In general, if jNj is the number of connections, the
set of Pareto optimal points is a subset of size
jNj � 1. The fair allocations we will present are
all Pareto optimal.

2.3. Allocations constraints

We briefly introduce here the constraints in the
allocations vectors. They are of two types: the ones
associated to the users and those due to the routing
policy.

User constraints. As previously mentioned, we
suppose that each connection is associated to a min-
imum and a maximum requirement, in term of
bandwidth. We therefore have a system of jNj inde-
pendent linear inequalities 8n 2N; MRn 6 xn

6 PRn.
Routing policy. We consider the case of both

fixed-routing and fractional-routing. In fixed rout-
ing, we define a matrix A of size jLj � jNj that
specifies the links that the packets of each connec-
tion will go through:

An;l ¼
1 if connection n goes through link l;

0 otherwise.

�

In some cases, we do not want to fill the links but
keep some empty space, call left-over capacity. For
instance, an operator may wish to use only up to
90% of the link in order to let some other traffic join
the system. Therefore we suppose that we can only
use the quantity (1 � jl)Cl on each link l. Let j be
the vector of size jLj of leftover capacities. The
capacity constraints can then be written:

A~x 6 ð1�~jÞ~C. ð1Þ
In the case of fractional routing, each packet trans-
mitted by a source can follow its own path. We de-
2 that is to say that 8i;rð~xÞi is the ith smaller element of x.



Fig. 1. Linear network.
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note by /ðu;vÞn the flow of connection n in the link
from u to v. Note that /ðv;uÞn exists and is a distinct
variable. V is the set of nodes and for u 2 V, N(u)
is the set of nodes connected to u. Finally, s(n)
(respectively d(n)) is the source (destination) of con-
nection n. We have four types of constraints for
each connection n:

xn ¼
X

v2NðsðnÞÞ
/ðsðnÞ;vÞn �

X
u2NðdðnÞÞ

/ðu;sðnÞÞn

balance of flows from source sðnÞ;
xn ¼

X
u2NðdðnÞÞ

/ðu;dðnÞÞn �
X

v2NðsðnÞÞ
/ðdðnÞ;vÞn

balance of flows to destination dðnÞ;
8u 6¼ fsðnÞ; dðnÞg;

X
v2NðuÞ

/ðv;uÞn ¼
X

v2NðuÞ
/ðu;vÞn

Kirchoff or conservation law,

8u; v;/ðu;vÞn P 0 positive or null flows.

Let us introduce rsðnÞ
n ¼ �rdðnÞ

n ¼ 1, and ru
n ¼ 0 for u

different from s(n) and d(n). If we can use the frac-
tion (1 � jl)Cl on each link l = {u,v} then the capac-
ity constraints are:

8l ¼ fu; vg 2L;
X
n2N

/ðu;vÞn 6 ð1� jlÞCl.

Note that in fact this equation applies both to (u,v)
and (v,u), which means that the capacity constraints
will be verified on each orientation of {u,v}.

Finally, 8n2N;

8u2 V ; xnru
n¼

P
w2NðuÞ

/ðu;wÞn �
P

w2NðuÞ
/ðw;uÞn ;

8fu;vg2L; /ðu;vÞn P 0;

8l¼fu;vg2L;
P

n2N
/ðu;vÞn P ð1�jlÞCl.

8>>>>><
>>>>>:

We can notice that in both cases, the constraints are
linear.

3. Fair allocations

In this section, we review the criteria commonly
used for fairly sharing resources in networks. Each
of them can be found in both a simple and a
weighted version. The latter was introduced in order
to let users express the relative value of their traffic.
Then, a connection with weight k may be equivalent
to k connections of weight 1.

We illustrate the following definitions on the clas-
sical linear network represented in Fig. 1. It consists
of jLj links shared by jLj þ 1 connections (num-
bered from 0 to jLj) such that:
• each connection n, n 5 0 goes only through link
n,

• connection 0 uses all links.

Note that, for any Pareto optimal allocation, the
global revenue can be written:

Rglob ¼
X

06n6jLj
xn ¼ ð1� jLjÞx0 þ

X
l2L

Cl. ð2Þ
3.1. Maximization of global throughput

This criterion consists of the maximization of the
total allocated bandwidth Rglob ¼ max

P
n2Nxn.

A major drawback of this criterion is that it can
lead to situations in which the allocation is null for
one or more connections, as we can see in the linear
example (indeed, from Eq. (2) the criterion
imposes that x0 = 0). This is why it is not considered
as fair.

A variant, in which we assign to each user a util-
ity function (we will see in Section 4.1 how this can
be justified in the case of networks) has been devel-
oped. Roughly speaking, the utility function repre-
sents the satisfaction of a user from its allocation.
This can actually be the perceived quality of an
audio or video signal. Some algorithms [16,15] were
then developed to maximize the sum of the users’
utilities, which is called social-welfare optimization.

An opposite approach is the max–min criterion
that seeks to allocate the resources in the most
homogeneous way, while being Pareto optimal.
3.2. Max–min fairness

Several equivalent (as proved in [4]) definitions
can be found. Let us first define the bottleneck of
a connection.

Definition 1. A link l is a bottleneck of connection n

if:

• it is fully used,
• the allocation of connection n is the greatest

among all connections using link l.



Fig. 2. Allocation to connection 0 with a.
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We then have the following equivalent
definitions:

Definition 2. An allocation is max–min fair if and
only if each source has a bottleneck.

Definition 3. The max–min allocation is maximal
for the order �.

Definition 4. The max–min fair allocation is such
that any increase of the allocation for one connec-
tion would be at the expense of another connection
whose allocation was already smaller. In other
words, if ~x is the max–min allocation then
8~y; ~y 6¼~x; yn > xn ) 9s; xs 6 xn; ys < xs.

In the linear example, the allocation of con-
nection 0 will be half of the smaller link capac-
ity: x0 ¼ Clmin

=2. The total revenue is then:

Rmax – min ¼ 1� jLj
2

� �
Clmin

þ
P

l2LCn.

The max–min fairness has been adopted by the
ATM forum for the Available Bit Rate (ABR) ser-
vice of ATM [2]. It has been argued that max–min
fairness gives to much allocation to long connec-
tions (in our case the connection 0) and does not
efficiently utilize bandwidth. Therefore, a new con-
cept has been introduced to Kelly: the proportional
fairness.
3.3. Proportional fairness

It has been defined by two equivalent ways (as
proved in [4]).

Definition 5. The proportional fair assignment
maximizes max~x2X

P
n2N lnðxnÞ.

Definition 6. Proportional fairness is the unique
allocation ~x such that for any other allocation ~x0,
we have

P
n2N

x0n�xn

xn
6 0.

In the linear network, x0 ¼ 1=
P

n2N
1

Cn�x0
. Fur-

thermore, if the links are identical with capacity C,
then x0 ¼ C

jLjþ1
. We note that, as expected:

x0global-opt
< x0prop-fair < x0 max-min. Moreover Rglobal-opt

P Rprop-fair P Rmax�min. The compromise between
fairness and efficiently was the primary reason for
the success of proportional fairness.

Its weighted version can be written. An alloca-
tion ~x 2 X wpf is weighted proportional fair if for
any other allocation ~x� 2 X we have [17,18]:P

n2Nwn
x�n�xn

xn
6 0. Equivalently: xwpf ¼ max~x2XP

x2Nwn lnðxnÞ ¼ max~x2X
Q

n2Nxwn
n .
The congestion control mechanism based on lin-
ear increased-multiplicative decreased window flow
control can lead to proportionally fair allocations
under certain conditions [18]. Unfortunately this
result does not hold for all versions of TCP, and
in particular for TCP Reno. But it has been proved
that TCP Vegas actually achieve proportional
fairness [20].
3.4. Potential delay minimization

This criterion, introduced in [21], is defined by:
min~x2X

P
n2N

1
xn

. It is a minimization problem of an
inverse function of the bandwidth allocated, that
is to say the transfer time.

3.5. Relation between the different fairness criteria

Mo and Walrand [23] recently showed that these
criteria can be written as a single optimization func-
tion. Let~xa be the allocation solution of:

~xa ¼ max
~x2X

X
n2N

xa
n

1� a
; ð3Þ

with a P 0, a 5 1. Then, for specific values of a,~xa

corresponds to the different fairness criteria previ-
ously mentioned : the global maximization of the
throughput (a = 0), proportional fairness (a! 1),
potential delay minimization (a = 2) or max–min
fairness (a!1).

Fig. 2 represents the allocation of connection 0
when a grows from zero to infinity in the case of
the linear network with equal link capacities. We
clearly see the influence of the parameter a: as a
increases, the differences between the allocations of
the connections vanish, thus continuously deriving
from the global optimization equilibrium to the
max–min one.
4. Nash criterium

The Nash Bargaining Solution (NBS) [24] con-
cept for fair allocation is frequently used in cooper-
ative game theory. It is defined by a set of axioms
that game theorists find natural to require in seeking
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fair allocations. These axioms deal with utilities
associated to users, which is the natural interest of
this approach compared to the previously seen fair-
ness criteria.

The NBS has already been used (under a simpli-
fied version) in networks of general topologies to
propose a fair share of resources [29,22]. But in both
cases, the utility functions were linear. It has been
shown that in fact, the utility functions can be any
concave function.

Several fairness criteria were defined in coopera-
tive game theory (see [6] and references herein). We
consider here the Nash concept, since it can be seen,
as previously mentioned, as a generalization of the
widely studied proportional fairness.

Let us suppose that a finite number of perfectly
rational individuals can collaborate in order to get
mutual benefit. We further suppose that they can
compare their satisfaction from the possession of
the objects of the bargaining. We can then associate
the users to a utility function, which representation
is not unique: if u is such a function, then au + b is
an equivalent one (for a; b 2 R; a > 0). In the case
where the players cannot find an agreement, the
game ends at the ‘‘disagreement point’’, character-
ized by a certain utility, u0.

Let X � Rn denote the set of possible strategies.
It is a convex closed and non-empty set. The utility
functions, fn : X ! R; n ¼ 1; . . . ;N , are supposed
to be upper bounded functions. The set of achiev-
able utilities, U, U � Rk such that U ¼ fu 2 RN j9x
2 X ; u ¼ ðf1ðxÞ; . . . ; fN ðxÞÞg is non-empty, convex
and closed and u0 2 RN is the utility from which
the players accept to bargain. Finally, we denote
by U0 the set U0 = {u 2 Uju0

6 u}, the subset of U

in which the players achieve more than their mini-
mum requirements. Similarly, we define X 0 ¼ fx 2
X j8n; fnðxÞP u0

ng.

Definition 7. A mapping S : ðU ; u0Þ ! RN is said to
be an NBP (Nash bargaining point) if:

1. It guarantees the minimum required performances:
S(U,u0) 2 U0.

2. S(U,u0) is Pareto optimal.
3. It is linearly invariant, i.e. the bargaining point is

unchanged if the performance objectives are affi-
nely scaled. More precisely, if / : RN ! RN is a
linear map such that "n, /n(v) = anvn + bn; then
S(/(u),/(u0)) = /(S(U,u0)).

4. S is symmetric, i.e. does not depend on the spe-
cific labels. Hence, connections with the same
minimum performance u0
n and the same utilities

will have the same performances.
5. S is not affected by reducing the domain if a solu-

tion to the problem with the larger domain can
be found on the restricted one. More precisely,
if V � U, and S(U,u0) 2 V then S(U,u0) =
S(V,u0).

Definition 8. The point u* = S(U,u0) is called the
Nash Bargaining Point and f�1(u*) is the set of Nash
Bargaining Solutions.

We have the equivalent optimization problem:

Theorem 9 [29, Thm. 2.1, Thm 2.2] and [10]. Let

the utility functions fn be concave, upper-bounded,

defined on X which is a convex and compact subset of

RN . Let J be the set of users able to achieve a

performance strictly superior to their initial perfor-

mance, i.e. J ¼ fj 2 f1; . . . ;Ngj9x 2 X 0; s.t. f jðxÞ >
u0

jg. Assume that {fj}j2J are injective. Then there
exists a unique NBP as well as a unique NBS x that

verifies fj(x) > uj(x), j 2 J, and is the unique solution

of the problem:

max
Y
j2J

ðfjðxÞ � u0
j Þ; x 2 X 0. ð4Þ

Equivalently, it is the unique solution of max
P

j2J
lnðfjðxÞ � u0

j Þ; x 2 X 0.

In 1991, Mazumdar et al. [22] adapted the Nash
Bargaining Solution to Jackson networks. Some
years after, Yaı̈che et al. [29] adapted it for band-
width allocation in networks. In their works how-
ever, they restricted themselves to linear utility
functions.

We can note that the NBS corresponds to
proportional fairness in the case where the util-
ity functions are linear and where the MRn are
null.

Remark 10 (Other fairness criteria defined through a

set of axioms). The last axiom (5) of the Nash
Bargaining Point has suffered some criticisms, as it
does not take into account how much the other
players have given up. Two other interesting fair-
ness criteria were then defined when modifying this
last axiom, namely the Raiffa–Kalai–Smorondinsky
and the Thomson (or ‘‘utilitarian choice rule’’)
solution [8]. We do not treat here in more detail
these two criteria as they correspond respectively of
special cases of max–min fairness (Section 3.2) and
the maximization of the global throughput
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(Section 3.1) when considering the utility of the
applications.
Fig. 3. Utility function in networking.
4.1. Utility functions in networking

The interest of the Nash bargaining concept, as
opposed to the previous ones used so far in the tele-
communication context is to take into account the
different interests the users have for the shared
resource.3 In networks context, the bandwidth does
not have the same value for different users. For
instance, a user consulting his or her emails does
not have the same needs that another one using
phone over IP. The utility functions represent the
impact of the bandwidth allocation on the perceived
quality. We show in the following the shapes of the
utility functions for different types of applications.
Our discussion is qualitative and inspired from the
work of Shenker [26]. For numerical results, for
instance on audio communications, the reader may
refer to [14,9]. We illustrate the different shapes of
the utility functions in Fig. 3.

Elastic applications have no real-time require-
ments and no rate constraints. Typical examples
are file transfer or email. Their utility function is
concave increasing without a minimum required
rate.

Delay adaptive or rate adaptive applications have
soft real-time requirements. Typical examples are
voice or video over IP. In such applications, the
compression rate of data is computed as a function
of the quantity of available resource. The utility
functions that we use to represent these applications
are slightly different than those in [26]. In [26], the
utility is strictly positive for any non-zero bandwidth
and tends to zero when the bandwidth does. We con-
sider in contrast that the utility equals zero below a
certain value, as in [29]. Indeed, in many voice appli-
cations, one can select the transmission rate by
choosing an appropriate compression mechanism.
Existing compression softwares have an upper
bound on the possible compression, which implies
a lower bound on the transmission rate for which a
communication can be initiated, which we denote
MR. Thus, a maximum compression rate is associ-
ated with the lower acceptable quality for the user.
3 Note, however, that in some cases are implemented service

classes. They are so far limited to pricing purposes and the
underlying idea is usually to give priority to some packets at the
buffers.
If there is no sufficient bandwidth, the connection
is not initiated. This kind of behavior generates util-
ity functions that are null for bandwidth below MR

and which are not differentiable at the point (MR, 0).
Similarly, it is useless to allocate a bandwidth greater
than a certain threshold PR because the perceived
gain for a human being will not be noticeable. As
an example, for voice transmission, we usually con-
sider throughputs in the range [16,40] kb/s. A user
to whom we would allocate a throughput of
200 kb/s would not have a better quality feeling than
that if its throughput was halved.

4.2. Proposed approximation scheme: quadratic

utility functions

The utility functions of both ‘‘elastic traffic’’ and
‘‘delay adaptive’’ applications have a minimum
value MRn below which they equals zero (in the for-
mer case, MRn = 0). As explained by Nash, the
equilibrium point should not depend on the chosen
representation of utility function. Therefore, we
assume that fn(MRn) = 0. Beyond MRn the function
is concave and increasing with the bandwidth. We
propose to approximate such a utility function with
a parabola with parameters that depend on the
applications (see Fig. 4). The general equation has
the form:

fnðxnÞ ¼ cn � anðxn � bnÞ2. ð5Þ
Fig. 4. Quadratic utility functions.
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Note that the utility function is defined only until
the point (PRn, fPRn), so we may ignore the whole
right part of the parabola (and in particular, the
part in which the function decreases).

We introduce:

• Tn the tangent of the utility function at the point
(MRn, 0),

• fPRn the utility value at point PRn.

fn can be equally be defined by an, bn, cn or
through the equations fn(MRn) = 0, fn(PRn) = fPRn

and f 0nðMRnÞ ¼ T n. We should note that, since PRn is
in the increasing part of the function, we have
1
2
T iðPRi �MRiÞ 6 fPRi 6 T iðPRi �MRiÞ. We thus

define the concavity of the utility, bn, through

fPRn ¼ T n � bn � ðPRn �MRnÞ.
Note that 1/2 6 bn 6 1 and the smaller bn is, the
more concave is the utility. The limit bn = 1 is the
linear case (studied in [29]).

We can therefore equivalently use in the follow-
ing the parameters an, bn, cn or MRi, Ti and bi linked
by the equations:

an ¼ T n
1� bn

PRn �MRn
;

bn ¼
PRn � ð2bn � 1ÞMRn

2ð1� bnÞ
and

cn ¼
T n

4

PRn �MRn

1� bn
.

5. Proposed fairness scheme

As previously mentioned, we propose to apply the
classic fairness criteria used in networks to the utility
functions of applications rather than to the through-
put. We saw that, by applying this idea to the pro-
portional fairness criterium, we obtain the Nash
Bargaining Solution, historically defined by a set of
axioms rather than an optimization problem.

We have presented a family of fairness criteria,
parameterized by a real (a > 0, a 5 1) that allows
a network operator to choose an equilibrium
between fairness and resource utilization.

When applied to the utilities of the connections,
the optimization problem becomes:

max
n2N

½fnðxnÞ�1�a

1�a
; if a> 0;a 6¼ 1 and

Y
fnðxnÞ if a¼ 1

ð6Þ
subject to the problem constraints.
We also propose to approximate the utility func-
tions by quadratic parameterized functions. Note
that, as in our approximation f(MR) = 0, the pro-
posed criterion coincides with the NBS when
a! 1. The advantage of using quadratic utilities is
that it allows one to approximate the concave real
utilities drawn from experiments with functions that
are simple to handle through a small set of param-
eters. Also, it allows us to easily analyze the influ-
ence of these parameters on the obtained
equilibrium. Of particular interest is the influence
of the concavity.

5.1. Property: influence of the concavity

We study the impact of concavity on the NBS.
Consider two differentiable functions f and g defined
on the same interval (MR,PR] where both are
strictly positive on [MR,PR].

Definition 11. We say that f is more concave than g

if for every x 2 (MR,PR] the relative derivative of f
is smaller than or equal to that of g, i.e. f 0(x)/
f(x) 6 g 0(x)/g(x). If f or g are not differentiable at x,
one could require instead that the same relation
holds for the super-gradients: if f̂ ðxÞ is the largest
super-gradient of f at x and ĝðxÞ is the smallest
super-gradient of g at x, then we require
f̂ ðxÞ=f ðxÞ 6 ĝðxÞ=gðxÞ.

Motivated by (4), we say that:

Definition 12. An assignment ~x is more fair in the
sense of NBS than an assignment ~y if

Q
n2N

ðfnðxnÞ � fnðMRnÞÞP Pn2NðfnðynÞ � fnðMRnÞÞ.

Consider the case in which fn(MRn) = 0. Con-
sider two connections with utilities f and g as above
competing for the bandwidth of a single link of
capacity C. If we had ignored the utilities of the con-
nections, we would have assigned them an equal
bandwidth (according to the original proportional
allocation), which we denote by x = C/2.

Proposition 13. If two connections are competing for

the bandwidth of a single link, the fair assignment has

the property that more bandwidth is assigned to the

less concave function.

Proof. We show that by transferring bandwidth
from the connection with the more concave utility
(say f) to the other one, we improve the fairness
(assuming this does not violate the MR and PR con-
straints) in the sense of the NBS. Indeed, we have



Fig. 6. NBS of two connections sharing a link.
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gðxþ �Þf ðx� �Þ¼ gðxÞf ðxÞ 1þ � g0ðxÞ
gðxÞ �

f 0ðxÞ
f ðxÞ

� �
þoð�Þ

� �
.

We conclude that there is some �0 s.t. "� < �0,
g(x + �)f(x � �) > g(x)f(x). Hence we strictly im-
prove the fairness by transferring an amount of �0

to the connection with less concave utility. By fur-
ther increasing this amount, we shall eventually
reach a local maximum (since our function is con-
tinuous over a compact interval). This will be a glo-
bal maximum since (6) is a maximization problem
of a concave function over a convex set. h

Example. Let two connections of bandwidth x1 and
x2 sharing a single link of capacity C. Their utility
functions f and g are represented in Fig. 5. For
x P 0; f ðxÞ ¼ 3x106x61 þ ð2þ xÞ1x>1, and g(x) = 2x.

Then f 0ðxÞ=f ðxÞ ¼
x�1 for x 2 ½0; 1½;
ð2þ xÞ�1 for x P 1;

(

whereas 8x; g0ðxÞ=gðxÞ ¼ x�1.

(At x = 1, f is not differentiable but its super-gradi-
ents at that point constitute the set [1/3, 1].) Thus f is
more concave than g. We assume that PR1 +
PR2 > C. The NBS is the argument of

fðCÞ ¼ max f ðxÞgðC � xÞ

¼ max max
x2½0;1�

hðxÞ;max
x>1

kðxÞ
� �

with hðxÞ ¼ 6xðC � xÞ; and kðxÞ ¼ 2ðxþ 2ÞðC � xÞ.

Proposition 14. The NBS is depicted in Fig. 6. We

distinguish three regions:

(i) C < 2, where f(C) = 3c2/2 and the NBS is

ðx�1; x�2Þ ¼ ðC=2;C=2Þ,
(ii) 2 6 C < 4, where f(C) = 6(C � 1) and

ðx�1; x�2Þ ¼ ð1;C � 1Þ,
Fig. 5. Utility functions.
(iii) C P 4, where f(C) = 2(c/2 + 1)2 and ðx�1; x�2Þ ¼
ðC=2� 1;C=2þ 1Þ.

We see in this example that the least concave
function receives at least as much as the other
one, and that the difference increases with C. It is
impressive to note that there is a region in which
an increase in the capacity benefits only to one con-
nection. The example illustrates the power of the
NBS approach: the original proportional fairness,
or even weighted proportional fairness, would
assign a proportion of the capacity to each connec-
tion that does not vary as we increase the capacity,
since it is insensitive to the utilities. In contrast, util-
ity sensitive fairness concepts allocate the band-
width in a dynamic way: the proportion assigned
to each connection is a function of the capacity.

For the experimental part, we propose to study
two different fairness scenarios, that we present in
the rest of this section.

5.2. Possible optimizations

We propose two types of optimizations, called
connection-aware and network-aware. The idea in
the first is to optimize the allocation to the connec-
tions and in the former to better utilize the network
resources.

Connection-aware optimization. We associate to
each connection a utility function and, once the
minimal requirements are satisfied, fairly allocate
the extra bandwidth among the users. The ~j vec-
tor is given and the optimization problem is

max
P

n2N
fnðxnÞ1�a

1�a with the system’s constraints pre-

viously mentioned.
Network-aware optimization. We apply the fair-

ness concepts to the remaining bandwidth available
in the links. Indeed, it can be interesting to maxi-
mize the bandwidth available in a link in order to
use it for instance for some other traffic type (this
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is of particular interest if the routing policies for
connections cannot be dynamically modified).

Therefore,~x, the bandwidth allocation to connec-
tions, is given. We then consider the fair allocation
of remaining bandwidth, that is to say of vector ~j.

The problem can be written max
P

l2L
flðjlÞ1�a

1�a . We

can note that the allocation vector being given, the
optimization problem is of interest only is we con-
sider the fractional-routing. Indeed, if the routing
is fixed, then the quantity available in each link is
fixed as well.

We make the following assumption in the rest of
the article:

Hypothesis 15. The network has sufficient capacity
to satisfy all the minimum requirements.

In the next section we propose an example of
explicit rate computation. This analytic study is pos-
sible, however, only in the case of simple network
topologies and rely on specific assumptions.

6. Explicit computation of rates

In this section, we study the fair allocations in the
linear network and its generalization, the grid
network.

6.1. The linear network

We again consider the linear network of Fig. 1.
We use the obvious associated routing and consider
in the following the connection-aware optimization
with fixed routing constraints.

We recall that the fairness equilibria is obtained
through the optimization of: 1

1�a

P
n2NðfnðxnÞÞ1�a if

a 5 1, and
Q

n2NfnðxnÞ otherwise with the con-
straints:

8n2N; MRn6 xn6 PRn ðuser’s constraintÞ;
8n2L; x0þ xn6Cn ðcapacity constraintsÞ.

�
ð7Þ

Note that in this network all the links can be
saturated: 8n 2L; x0 þ xn ¼ Cn.

We make two significant assumptions. First, that
each link has the same capacity C. Secondly, we
suppose that each of the connections n,n 5 0 has
the same utility function: 8n 2L; an ¼ a1; bn ¼
b1; cn ¼ c1. Thus the fair allocation will assign the
same bandwidth to each connection n,n 5 0.

Therefore, by denoting by x the bandwidth allo-
cated to connection 0, the fair allocation problem
becomes the maximization of (8) under the con-
straints (7).

gðxÞ¼ 1
1�a ðf0ðxÞÞ1�aþjLjðf1ðC�xÞÞ1�a
h i

if a 6¼ 1;

hðxÞ¼ f0ðxÞðf1ðc�xÞÞjLj otherwise.

8<
:

ð8Þ
Remark 16. The problem is of interest only if:

MR0þMR16C ðfeasible system, Hypothesis 15Þ;
PR0þPR1 >C ðnot all maximum demands can be satisfiedÞ.

�

Solution of the linear problem. By differentiating
(8) we obtain:

a0ðx�b0Þf1ðC�xÞa¼ jLja1ðC�x�b1Þf0ðxÞa

if a 6¼ 1;

a0ðx�b0Þf1ðC�xÞjLj ¼ jLja1ðC�x�b1Þf1ðC�xÞjLj�1f0ðxÞ
otherwise.

8>>><
>>>:
We note that for a = 1, f1(C � x) = 0) h(x) = 0.
Therefore f1(C � x) 5 0 and the bandwidth x asso-
ciated to connection 0 satisfies, for all a:

a0ðx� b0Þðf1ðC � xÞÞa ¼ jLja1ðC � x� b1Þðf0ðxÞÞa.

ð9Þ
Limits and asymptotic analysis

Proposition 17. When jLj grows to infinity, the

allocation of connection 0 tend to max(MR0,C � b1).

The proof is given in Appendix A. Note that the
limit does not depend on the concavity of the utility
of connection 0. We show in Fig. 7 how the system
converge to xlim as jLj grows to infinity in the case
of the NBS (a = 1) and C � b1 P MR0.

We further refine the analysis of the limit when
jLj becomes large:

Proposition 18. If C � b1 < MR0 then x is such that

(i) x�MR0 	 Z with
Za	l2L
1

jLj
1

2ðb0 �MR0Þa0

� �a�1

� f1ðC �MR0Þa

f 01ðC �MR0Þ
.

(ii) Otherwise x ¼ C � b1 þ Z þ oð1=jLjÞ with
Z ¼ 1

jLj
ca

1

2a1

f 00ðC � b1Þ
f0ðC � b1Þa

.

Proof. If C � b1 < MR0, then, as jLj ! 1, the left
hand side of (9) tends to a non-null constant:



Fig. 7. A grid network.
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limjLj!1a0ðx� b0Þðf1ðC � xÞÞa ¼ a0ðMR0 � b0Þðf1ðC
�MR0ÞaÞ.

We now examine the right hand side of (9). It can
be written as:

jLja1ðC � x� b1Þf0ðxÞa ¼ jLja1ðC � b1 �MR0 � zÞ
� ðc0 � a0ðMR0 þ z� b0Þ2Þa
¼ jLja1ðC � b1 �MR0 � zÞ
� ð2a0ðb0 �MR0Þz� a0z2Þa

	jLj!1jLjaa
0a12aðC � b1

�MR0Þðb0 �MR0Þaza;

which yields Proposition 18(i) by substituting the
appropriate expressions.

If MR0 6 C � b1, as jLj ! 1, the left hand side
tends to the constant a0ðC � b1 � b0Þca

1. The right
hand side is: �jLja1zðc0 � a0ðC � b1 � b0 þ zÞ2Þ.
Hence the result. h
Remark 19. In Proposition 18(ii), we can check the
asymptotes for special cases (and for a = 1):

• If b1! 1 then Z ¼ C�MR0�MR1

jLj (linear case, already
obtained in [29]).

• If b1! 1/2 then Z ¼ C�MR0�MR1

2jLj ½1� PR1�MR1

C�MR0�PR1
�.

We studied the case of a linear network with two
kinds of connections. In the case where a = 1
(NBS), we note (from (9)) that the problem is a
third order polynomial and can therefore be explic-
itly solved. If a = 0 (global-optimization), the allo-
cation is given by the solution of a first order
polynomial. In any other case, only numerical
results can be used. Still, we made the limits of
the allocations explicit for any value of a, and gave
an equivalent when the number of links becomes
large.
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6.2. Grid network

This network is the natural generalization of the
linear network. It consists of K · L capacity links
with K horizontal routes and L vertical routes as
shown in Fig. 7. We focus here on the fixed routing
policy.

As in the previous example, we also suppose
that, for each i 2 {1, . . . ,L}, j 2 {1, . . . ,K}, MRi +
PRL+j P Ci,L+j and PRi + MRL+j P Ci,L+j. We fur-
ther suppose that the links have equal capacity. We
suppose that all the horizontal connections (respec-
tively vertical) have the same utility function fh

(respectively fv). We can then conclude that all the
horizontal connections (vertical) will get the same
throughput x (xv = C � x). We then wish to maxi-
mize, in the case of the NBS:Y
n2½1:L�

S
½Lþ1;LþK�

fnðxnÞ ¼ ðfhðxÞÞK � ðfvðC � xÞÞL.

ð10Þ
Proposition 20. In the grid network, if C �
b1 < MR0, x verifies: x �MRh 	 Z with: Z ¼
K
L

1
2ðbh�MRhÞah

� �a�1 fvðc�MR0Þ
f 0vðc�MR0Þ. Otherwise, x = C � b1 +

Z + o(K/L) with Z ¼ K
L

ca
v

2av

f 0hðc�bvÞ
f 0hðc�bvÞ.

Note that if L = K and fh = fv we obtain x = C/2.

Proof. Maximizing Eq. (10) is similar to maximiz-
ing fh(x) * (fv(C � x))L/K. This is equivalent to the
linear problem by substituting jLj to L/K. h
4 This assumption does not constraint our problem. If a link is
saturated when considering the minimal demands of the connec-
tions, then we rewrite the system by suppressing this link and the
connections that were going through it. The bandwidth that these
connections were using is then a new capacity constraint on the
other links of the network.
7. Lagrangian method

The Lagrangian method was proposed by Yaı̈che
et al. [29] to obtain the NBS for the special case of lin-
ear utility functions. It has the advantage of having
distributed implementations. We generalize below
this approach to the quadratic utilities, for which
the linear case can be recovered by taking b! 1.

Unfortunately, the resulting decentralized itera-
tive algorithm of the problem proposed in [29] is
not fully satisfactory for quadratic utilities, as we
will see in the following.

7.1. Lagrangian multipliers

We now use the Kuhn–Tucker conditions for (6)
to obtain an alternative characterization of the NBS
in terms of the corresponding Lagrange multipliers
under the hypothesis of fixed routing and the
connection aware optimization.

Proposition 21. Under the hypothesis that 8l 2L;P
alnMRn < Cl (this amounts in saying that no link is

saturated 4), the NBS is characterized by: 9ll P
0; l 2L such that 8n 2N, we have

xn ¼ min PRn;MRn þ
X
l2L

llal;n

 !�1

þ 1

2
� PRn �MRn

1� bn

0
BBBB@

� 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

4 1�bn
PRn�MRn

� �2

P
l2L

llal;n

� �2

vuuuuut

2
66664

3
77775

1
CCCCA.

Proof. Under the assumption
P

n2NalnMRn < Cl,
the set of possible solutions of (6) is non-empty,
convex and compact. The constraints (as defined
in Section 2.3) are linear in xn and f ðxÞ ¼

P
n2N

ln fnðxnÞ is C1. Therefore the first order Kuhn–
Tucker conditions are necessary and sufficient for
optimality. The Lagrangian associated with (6) is

Lðx; k; d; lÞ ¼ f ðxÞ �
X
n2N

knðMRn � xnÞ

�
X
n2N

dnðxn � PRnÞ

�
X
l2L

llððAxÞl � ClÞ.

For n 2N, kn P 0 and dn P 0 are the Lagrange
multipliers associated with the constraints
xn P MRn and xn 6 PRn, respectively. ll P 0,
l 2L are the Lagrange multipliers associated with
the capacity constraints. The first order optimality
conditions are thus: 8n 2N,

f 0nðxnÞ
fnðxnÞ

¼ dnþ
X
l2L

llAl;n� kn;

with ðxn�MRnÞkn ¼ 0; ðxn� PRnÞdn ¼ 0; and

8l; l 2L; ððA~xÞl�ClÞll ¼ 0.



5 See http://www.cs.nyu.edu/cs/faculty/overton/sdppack/
sdppack.html.
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Moreover,
P

alnMRn < Cl implies that "n, kn = 0 as
in [29], and either xn = PRn or dn = 0, which yields
the conclusion. h

Remark 22. As b! 1 we obtain the solution of
[29] corresponding to linear utility: xn ¼
min PRn;MRn þ

P
l2Lllal;n


 ��1
� �

.

ll, l 2L represent the implied cost associated
with the network link l. They represents the mar-
ginal cost of a rate unit allocated for any connection
crossing link l.

7.2. Dual problem

Once we have explicitly expressed the NBS in
terms of the Lagrange multipliers, we can actually
solve the NBS using the dual problem in which we
compute the Lagrange multipliers. The dual prob-
lem is

max
l2RL

þ

dðlÞ with dðlÞ ¼ min
~x2X

Lð~x; lÞ ¼ Lð�x; lÞ;

if we denote by �x the optimal allocation. The vector
�x ¼ x1; x2; . . . ; xn is the NBS. We now use the result
obtained in the primal, and, for a given vector l,
we note for each connection n : xnðlÞ ¼
gnð
P

l2Lll � al;nÞ,

with gnðpÞ¼

PRn if p6 2bn�1
bn

1
PRn�MRn

;

MRnþ 1
pþ

PRn�MRn
2ð1�bnÞ

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2

p
1�bn

PRn�MRn

� �2
r" #

otherwise.

8>>>>><
>>>>>:

We obtain for each l 2 RjLj:

dðlÞ ¼
X
n2N
� ln fn gn

X
l2L

llal; n

 ! ! !

þ
X
l2L

ll

X
n2N

al;ngn

X
l2L

llal; n

 !
�
X
l2L

Clll.

The idea is then to use a appropriate step c and
choose at each iteration:

lðkþ1Þ
l ¼ max 0; lðkÞl þ c

od
oll

� �
. ð11Þ

If the utilities are not linear, then the partial deriva-
tive of d depends on their parameters. Therefore, the
dual cannot be used to obtain a fully distributed
algorithm anymore since every link needs to know
the utility functions and allocations of all the
connections of the system.
The Lagrangian relaxation let us introduce a
optimization problem where each user computers
its allocation xn

xn ¼ gn

X
llal;n

� �
;

while the network computes the link prices ll itera-
tively from Eq. (11).

In the case of proportional fairness (a = 1) with
linear utility functions, the dual formulation can
be used to obtain a decentralized algorithm. Unfor-
tunately, the use of quadratic utilities require the
knowledge in the network of all the connections
and parameters of connections, which makes this
method not suitable for large systems.

8. A semi-definite programming (SDP) solution

In this section, we propose an alternative central-
ized method for solving the general fairness problem
(6). It uses a mathematical program called Semi-
Definite Program, which can be solved in polyno-
mial time in theory and is tractable in practice.
One can then use public domain programs to solve
SDP.5 SDP solves the minimization problem of a
linear combination of variables (given by the scalar
product of a vector L and the vector of variables)
subject to a constraint of positive semi-definiteness
(psd) of some general symmetric matrix P whose
entries are either variables or constants. More
details on SDP can be found in [5]. We study the
complexity of our method and show that the pro-
posed construction of the SDP matrix allows us to
analyze large networks.

In the first subsection, we see how SDP was
defined as an extension from linear programming
and then recall some basic results of linear algebra.
We describe the general shape of our SDP matrices
to solve our optimization problem (Section 8.2), and
the details for the different values of a (Section 8.3).
We finally present a detailed description for a simple
example (Section 8.4).

8.1. From linear programming to SDP

Definition 23 (Linear programming). A linear
program (LP) has the form:

minfcTxjAx P bg;

http://www.cs.nyu.edu/cs/faculty/overton/sdppack/sdppack.html
http://www.cs.nyu.edu/cs/faculty/overton/sdppack/sdppack.html
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where x is the unknown vector, c is a given coeffi-
cient vector, A 2Mm,n is a m · n matrix of con-
straints and b is the vector of constraints.

We can extend linear to conic programming. In
any Euclidian Space E we can define convex pointed
cones [13,25]. Then, each cone K induce a partial
order in E, that we denote PK : aPKb()
a� bPK0() a� b 2K.

Definition 24 (Conic programming). Let K be a
convex pointed cone of E; c 2 Rn an objective

vector, b 2 E and A a linear mapping A :
Rn ! E
x 7!Ax.

�
.

Then, the optimization problem minx{cTxjAx P
Kb} is a conic problem.

Semi-Definite Programming refers to the prob-
lems associated to K ¼ Sþm the cone of semi-definite
positive matrices in the Euclidian space E = Sm the
set of symmetric matrices of size m · m.

Definition 25. A symmetric matrix A of size m · m

is said semi-definite positive and we note A 
 0 if
8x 2 Rm; xTAx P 0. Equivalently, all its eigen-
values6 are positive or null.

Definition 26 (Semi-Definite Programming). A semi-
definite programming problem is an optimization
problem of the form

min cT.vecðX Þ such that
A.vecðX Þ ¼ b;

X 
 0;

�

with X 2 Sþn , c 2 Rn2, b 2 Rm and A 2 Mm;n2 .7

The following are results of linear algebra needed
to understand our solving method. The proofs can
be found in [13].

Proposition 27 (Real symmetrical matrices). All

the eigenvalues of a real symmetric matrix are real.

Proposition 28 (Symmetric matrices of size 2). Let

a, b and c be real positive numbers. Then, the matrix

M ¼ m1;1 m1;2

m2;1 m2;2

� �
is positive semi-definite (psd) if

and only if m1;1m2;2 P M2
1;2.
6 The eigenvalues are the solutions of the polynomial
det(A � kI).

7 If X is the matrix X = (xi,j), 1 6 i, j 6 n then vec(X) is the
vector (x1,1, . . . ,x1,n,x2,n, . . . ,xn,n).
Proposition 29 (Symmetric matrices of size 1). A

matrix of size 1 (a scalar) is psd if and only if its

unique element is positive or null. M ¼ ðm1;1Þ 

0() m1;1 P 0.

Proposition 30. A bloc diagonal matrix8 is psd if and

only if all its blocs are psd.
8.2. General solving method with SDP

The general idea of SDP is to transform the ori-
ginal maximization of a function into a minimiza-
tion problem of some new variable (or more
generally of a linear combination of variables) sub-
ject to a constraint of positive semi-definiteness
(psd) of some general matrix P. The positiveness
(psd) of the matrix will:

• insure the system constraints,
• replace the objective function (of (6)) by a single

variable.

We will see that in our case, we can construct the
matrix with blocs of size 1 and 2. Note that the
order of the blocs in the matrix is not relevant. Note
further that the number of variables cannot be
known a priori. Indeed, the creation of the matrix
and of the blocs induce the creation of several inter-
mediate variables that we will precise in the
following.

Finally, the entries we will give to the SDP solver
are the matrix and a vector of variable. In our case,
this vector will be composed of ‘‘0’’ at each but one
entry, corresponding to the final variable we want to
maximize (this entry will contain the value ‘‘�1’’).

In the following two paragraphs, we explicit the
blocs expressing the system constraints and those
that enable us to transform the users utility func-
tions into variables.

System constraints. As seen in Section 2.3 the sys-
tem constraints are linear. From Proposition 29
these constraints can be expressed via matrices of
size 1 (scalar matrices).

We give in this paragraph the constraints repre-
senting the system with fixed routing (the fractional
8 A bloc diagonal matrix has the form

A ¼

A1 0
A2

. .
.

0 A3

0
BBB@

1
CCCA.
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routing is similar). The capacity constraints are
given by the positivity of jLj matrices, correspond-
ing to the jLj links. Indeed, we recall that these con-
straints are 8l 2L; ðAxÞl 6 Cl. Then, it is sufficient
to introduce jLj scalar matrices capal, such that:
8l 2L, capal

1;1 ¼ Cl � ðAxÞl.
The users constraints are given by: 8n 2N,

MRn 6 xn 6 PRn. We therefore introduce 2� jNj
scalar matrices util so that utili

1;1 ¼ PRi � xi if
i 6 jNj and utili

1;1 ¼ xi �MRi if jNj < i 6 2jNj.
Relations between the variables. The initial vari-

ables are the bandwidth allocated to connections
xn; n 2N. We introduce the intermediate variables
wn; n 2N with the following proposition:

Proposition 31. Let xn be a positive number and

fn(xn) its utility, as defined in Eq. (5). We introduce

F n ¼
� wn�cn

an
xn � bn

xn � bn 1

� �
. Then F n 
 0() wn 6

fnðxnÞ.

By using the blocs F n; n 2N, we replace the ini-
tial variables xn; n 2N by wn; n 2N and instead of
maximizing a function of xn, we maximize a func-
tion of wn. Indeed, by distinguishing three cases
depending of the sign of a � 1, we can prove that
"a P 0, 1

1�a

P
w1�a

n 6
1

1�a

P
fnðxnÞ1�a. We can note,

from this simple example that we replaced the utility
functions by a constraint of psd of a matrix. Let us
suppose we have N variables yn such that 8n 2N,

yn 6
w1�a

n
1�a (for a given a). Then, the psd of scalar

matrix END, defined by END1;1 ¼
P

k2Nyk � z
� 

insures z 6
P w1�a

n
1�a and maximizing z leads to the

desired optimization since z 6
P

nyn 6
w1�a

n
1�a 6

fnðxnÞ1�a

1�a .
We provide in the following subsection a method

to construct matrices whose psd constraint will
insure that (we omit the ‘‘n’’ subscript):

y 6 w1�a if 1� a > 0; y P w1�a otherwise.
8.3. Different values of a

The first paragraph deals with the case a 5 1
whereas second concerns the most complex case of
the NBS (a = 1).
8.3.1. Case a 5 1

Remark 32 (Case a = 2). The positiveness of

matrix H ¼ w 1
1 y

� �
ensures that y P 1/w.
We use an idea of Nemirovski to provide a reso-
lution method with a good approximation for any
value of a > 0 with a 5 {1,2}.

If 0 < a < 1, we have 1 � a > 0. Therefore, it is
sufficient to provide one or several matrices whose
psd will ensure that y 6 w1�a.

Proposition 33 (Case 0 < a < 1). Then 1 � a < 1

and 8e > 0; 9p 2 N; k 2 f0; . . . ; 2P � 1g; jð1� aÞ�
k=2pj 6 e. Let w; y 2 Rþ. It is possible, using SDP

constraints, to bound y and w by the relation

y 6 wk=2p
.

Proof. Let c1, . . . ,cp a serie of 0/1 integers, such that
k ¼

Pp
i¼1ci2

i�1. We note y0 = 1 and submit y1, . . . ,yp

to the following constraints:

yi�1 yi

yi w

� �
if ci ¼ 1 and

yi�1 yi

yi 1

� �
if ci ¼ 0.

Then obviously y2
i 6 yi�1wci , and yp 6 wk=2p

. Hence
the result, by setting yp = y. h

If a > 1 we aim at finding matrices those psd
constraint will ensure that y P w1�a.

Proposition 34 (Case 1 < a < 2). Since 0 < �(1 �
a) < 1 we have: 8e > 0; 9p 2 N; k 2 f0; . . . ; 2p�
1g; j � ð1� aÞ � k=2pj 6 e. Let w; y 2 Rþ. It is pos-

sible, using SDP constraints, to bound w and y by the

relation w P y�k=2p
.

Proof. Let c be an intermediate variable. Using
Proposition 33, one can set c 6 yb. Also, one can

write
y 1
1 w

� �

 0 which leads to yw P 1. Then

ywb P 1.

The following proposition covers the cases
a 2 [2;+1].

Proposition 35 (Case 2 < a). We have 0 < 1
1�a < 1.

Then 8e > 0; 9p 2 N; k 2 f0; . . . ; 2p � 1g; 1
1�a�
��

k=2pj 6 e. Let y;w 2 Rþ. It is possible, using

SDP constraints to bound w et y by the relation

y P w2p=k.

Proof. Similarly to the proof Proposition 33, we
obtain wyb P 1. h
8.3.2. Computing the NBS (case a = 1)

We propose in this section a method to compute
the NBS (case a = 1). The method used is slightly
different than from the other cases since we do not



Fig. 8. Simple computation of the NBS.
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use the intermediate variables yn; n 2N. We
directly exhibit a serie of matrices whose psd insure
that z 6 �nwn. The result for the NBS relies on the
following:

Proposition 36. Let z and w1, . . . ,wn be real positive

numbers. Then, using SDP constraints, it is possible

to bound these numbers by the relation:

z2dlog2ðNÞe
6

YN
i¼1

wi.

Proof. Let p be the smallest integer such that
2p P N. We construct a family of real positive vari-
ables zi2kþ1;ðiþ1Þ2k with 1 6 k 6 p and i 2 {0, . . . ,

2p�k � 1} satisfying the constraints expressed by
the following 2p � 1 matrices:

z2i2k�1þ1;ð2iþ1Þ2k�1 zi2kþ1;ðiþ1Þ2k

zi2kþ1;ðiþ1Þ2k zð2iþ1Þ2k�1þ1;ð2iþ2Þ2k�1

 !

 0;

where we denote zjj = wj for j 2 {1, . . . ,n} and
z ¼ z1;2p . Then we obtain constraints of the forms
z2

1;2 6 w1w2; z2
3;4 6 y3y4; z2

1;4 6 z1;2z3;4 and finally

z2p

1;2p 6
Q

iwi. h

To solve the NBS problem, we propose to add
artificial connections so that the total number of
connections is of the form 2p and use the previous
proposition. We also create fictitious links that these
connections will use so that they do not modify the
share of the others. It is important to bound the
bandwidth allocated to these connections so that
the share obtained by SDP does not grow without
control that would provoke an error. As these ficti-
tious connections use their own link, no matter the
value of their upper bound PRi, we will obtain
xi = PRi.

The following proposition shows that the blocks
of the matrix are of size at most 2 and that their
number remains reasonable (of the order of
OðNþLÞ). The SDP approach can hence offer
simple and fast solutions for dimensioning purposes
or for studying existing system, and is suitable for
the study of large networks.

Proposition 37. We stress that the proposed con-
struction will lead to at most 6jNj � 7 variables,

4jNj � 5 blocks of size 2, and 4jNj þ jLj � 4 blocks

of size 1.

Proof. Let p be the smallest integer such that
2p P jLj and q = 2p. Then, one can check that,
our method will lead to: qþ
Pp

i¼0q2i�1 ¼ 3:2p � 1
variables, qþ

Pp
i¼1q2i�1 ¼ 2pþ1 � 1 blocks of size 2

and l + 2.2p = 2p+1 + l blocks of size 1. In the worst
case, we have jLj ¼ 2p�1 þ 1, hence the result. h
8.4. A simple example of NBS computation with
fixed routing

We finally illustrate in this sub-section the previ-
ous results with the construction of the matrix for
the computation of the NBS on a simple network.
We consider a network with jLj ¼ 4 links and
jNj ¼ 3 connections. The routing matrix is:

A ¼

1 0 1

0 1 0

0 1 1

1 0 0

0
BBB@

1
CCCA.

Recall that element ai,j equals 1 if and only if con-
nection j uses link i. In our SDP program, we add an
artificial connection so that the total number of con-
nections has the form 2p with p 2 N as explained in
Section 8.3.1. We suppose that this extra connection
uses its own link and therefore does not modify the
NBS of our problem. A possible network associated
with this problem is represented in Fig. 8.

The first four blocs of the matrix link the
variables xn with their utility wn:

MAT1;n ¼
� wn�cn

an
xn � bn

xn � bn 1

� �
.

The following matrices link the wi variables together
to obtain a single variable that SDP will maximize
(from Proposition 36).

MAT2;1 ¼
w1 y1;2

y1;2 w2

 !
; MAT2;2 ¼

w3 y3;4

y3;4 w4

 !
;

MAT2;3 ¼
y1;2 y1;4

y1;4 y3;4

 !
.



Fig. 9. Small network with fixed routing.
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The positiveness of these matrices implies that
(y1,4)4

6 (y1,2)2 Æ (y3,4)
2
6 w1 Æ w2 Æ w3 Æ w4. Then, maxi-

mizing the single variable y1,4 will lead to the re-
quired optimization of

Q
nðcn � anðxn � bnÞ2Þ.

We incorporate the (linear) constraints of the
problem. The constraints (Ax)l 6 Cl lead to the dec-
laration of L matrices that are, in our example:

MAT3;1 ¼ ðC1 � ðx1 þ x3ÞÞ;
MAT3;2 ¼ ðC2 � x2Þ;
MAT3;3 ¼ ðC3 � ðx2 þ x3ÞÞ and

MAT3;4 ¼ ðC4 � x1Þ.

Finally, the constraints xi 6 PRi and xi P MRi are
reflected by eight scalar matrices:

MAT3;4þn ¼ ðPRn � xnÞ; and

MAT3;8þn ¼ ðxn �MRnÞ; 1 6 n 6 4.

We can notice that the values PR4 and MR4 corre-
sponding to the artificial connection are not impor-
tant since the connection is independent of the
others and SDP will give x4 = PR4.

The entries we should give to the SDP algorithm
are the matrix obtained by concatenation of the
blocs we described and the vector L. As we want
to maximize y1,4, the vector should be of the form:
L = (0, 0,0,0,0,0,0,0,0,0,�1) (or an equivalent
one if we renumber the variables). We can notice
that we have in this simple example 11 variables: 4
allocation variables xn, 4 utility variables wn and 3
intermediate variables y1,2, y3,4 and y1,4.

We present in the last section some numerical
results obtained with the csdp solver. The matrices
we used were obtained according to the method
we previously explained.

9. Numerical experiments

We implemented the SDP approach using a Mat-
lab program on a SUN ULTRA 1 computer to
obtain the fair shares. We first tested our program
on the same linear network example for which we
had explicit expressions, and the results completely
agreed. We then considered two more complex net-
works which we describe below. The computation
time (including the display part) in both cases was
less than a minute.

The utility functions are chosen identical for each
connection (although the program can handle differ-
ent parameters without increasing the complexity)
and are MR = 10, PR = 80, a = 1/490, b = 745
and c = 1102.5. The bandwidth parameters and
the allocations are given in percentage of the total
capacity of the link. For each network, we present
a figure showing the set of links and a figure repre-
senting the bandwidth allocated to each connection.
Finally, in the connection-aware case, the links have
the same capacity C = 100, while in the case of net-
work-aware optimization experiments, the link sizes
and the connections requirements are different one
from another.

9.1. NBS for a small network with fixed routing

We consider the network represented in Fig. 9. It
contains jLj ¼ 10 links and jNj ¼ 11 connections.
The routing is characterized by matrix A:

A ¼

0 1 0 0 0 0 0 1 0 0 0

0 1 0 0 0 0 0 1 1 0 0

0 1 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0 0

1 0 0 1 0 0 0 0 0 1 0

1 0 0 1 1 0 0 0 0 1 0

1 0 0 0 1 0 0 0 0 1 1

0 0 1 0 1 0 1 0 0 1 1

0 0 1 0 0 0 0 0 0 0 1

0 0 0 0 0 1 1 0 0 1 0

0
BBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCA

.

The SDP solution is given in Fig. 10, in which each
connection is represented by a line whose gray scale
represent its allocation. We can note that the SDP
formulation required to introduce 36 variables and
the SDP matrix was of size 104 (31 matrices of size
2, and 42 of size 1).

We can note that all the links cannot be saturated
simultaneously even although the solution is Pareto
optimal. This is for instance the case of links 1, 3
and 4. Moreover, we can distinguish two indepen-
dent systems:



Fig. 10. First network: solution.

Fig. 11. COST network: links.

9 We withdrew the connections whose demands would be lower
than 2.5 Gb/s according to experiments dating from 1993.

Fig. 12. COST network: NBS allocation.
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• The one formed by the links 1–4 and used by
exclusively by connections 2, 8 and 9.

• The system that consists of links 5–11, used by
the other connections.

Note that in the first system, only one link is sat-
urated. This link being used by the three connec-
tions, each of them received one third of its
capacity (since they have the same utility function).

The second system is more complex and we can-
not determine, without the help of computers the
different allocations of the connections. Still, the
numerical results agree with our expectations since
connection 6, using only one link, obtain the highest
allocation (almost 63% of the link capacity),
whereas connection 10, crossing the maximum num-
ber of links, obtain the smaller allocation (17% of
the link capacity). In the case of max–min optimiza-
tion these differences would have been, of course,
smaller.

Finally, let us recall that the critical element in
the allocation of a connection is the set of saturated
links and not the total number of links crossed by a
connection. Thus, in our example although connec-
tion 3 crosses more links than connection 11, it
receives the same allocation. Indeed, the extra link
it goes through is link 7, which is not saturated.
The same observation holds for connections 1 and
4.

9.2. The COST network

We then considered the COST network repre-
sented in Fig. 11. It contains 11 nodes representing
major European cities. We present two optimization
schemes, corresponding respectively to the connec-
tion-aware optimization with fixed routing and to
the network-aware optimization with fractional
routing.

NBS in the case of connection-aware optimization

with fixed routing. We considered in the simulation
the 30 connections having the higher forecast
demands.9 The solution obtained in the case of the
NBS is given in Fig. 12 and the results are summa-
rized in Table 2. The routing was chosen arbitrarily
in order to minimize the number of links crossed by
each connection.

The solution involved adding extra 65 intermedi-
ate variables, and the size of the psd matrix was 215
(63 matrices of size 2, and 89 matrices of size 1). As
in the previous example, the connections having the
higher allocations are represented with darker
colors. We can again note that the connections



Table 2
Bandwidth allocation in COST networks

Pa–Mi 47.34 Mi–Vi 63.00 Pr–Co 80.00 Zu–Pa–Lo 21.87 Zu–Pr–Be 50.00
Pa–Lo 33.93 Pr–Be 50.00 Be–Am 27.11 Pa–Zu–Vi 25.48 Zu–Lu–Br 35.79
Pa–Be 80.00 Lo–Br 80.00 Zu–Vi 55.06 Be–Am–Lu 27.11 Lo–Am–Be 23.73
Pa–Br 43.66 Lo–Am 76.27 Vi–Be 63.00 Mi–Vi–Be 37.00 Pa–Br–Am 28.42
Pa–Zu 33.19 Am–Br 49.54 Mi–Pa–Br 27.93 Be–Am–Br 22.04 Mi–Zu–Lu–Am 28.42
Mi–Zu 71.58 Co–Be 80.00 Mi–Pa–Lo 24.74 Zu–Lu–Am 35.79 Vi–Zu–Pa–Lo 19.46

Co : Copenhagen, Be: Berlin, Am: Amsterdam, Lo: London, Br: Brussels, Pa: Paris, Lu: Luxembourg, Pr: Prague, Zu: Zurich, Vi: Vienna,
Mi: Milan.
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using the smaller number of (saturated) links
received more bandwidth. We can even point out
that four connections (Copenhagen–Prague, Copen-
hagen–Berlin, London–Brussels and Paris–Berlin)
are alone in their respective link, and are therefore
allocated their maximum demand, that is to say
80% of the link capacity. Those links are thus not
saturated. The allocations of connections Berlin–
Prague and Berlin–Prague–Zurich are equal and
are 50% of the link capacity because they compete
for the same bottleneck link (the reason is therefore
similar that for connections 1 and 4 of the previous
network).

Network-aware optimization. We then considered
the case of network-aware optimization and frac-
tional routing. In this example we added three
links: London–Copenhagen, Amsterdam–Copenha-
gen and Luxembourg–Prague to increase the possi-
ble routing strategies. Moreover we got interested in
comparing different values of a. We present here the
results obtained for a = 0.5 and a = 5.
Table 3
COST network: demands

Pa–Mi 5 Pa–Zu 6 Pa–Lu 1 Am–Lu 1
Pa–Lo 10 Pa–Vi 2 Pa–Am 5 Pa–Co 1
Pa–Pr 1 Pa–Be 11 Mi–Am 2 Mi–Lu 1
Pa–Br 6 Mi–Be 9 Mi–Co 1 Zu–Lu 1
Mi–Vi 3 Mi–Br 2 Am–Co 1 Lu–Br 1
Mi–Zu 6 Mi–Lo 3 Zu–Am 3 Zu–Co 1
Zu–Vi 3 Zu–Be 11 Pr–Co 1 Be–Am 8

Table 4
Results for a = 0.5

Link BP Link BP Link BP Link

Pa–Mi 57 Zu–Pr 87 Vi–Be 96 Am–Lo
Pa–Zu 68 Pr–Vi 55 Be–Am 92 Am–Co
Pa–Be 97 Pr–Be 93 Be–Co 81 Am–Br
Pa–Lo 91 Zu–Vi 41 Pr–Co 61 Lo–Co
The link capacities are given in arbitrary units
and we considered the 110 possible demands (corre-
sponding to all the possible pairs source–destina-
tion). The demands are different from one to
another, as illustrated in Table 3. Here, although
the problem size is much higher than the previous
example (due to the increase of the number of links
and connections), the computation time remained
lower than one minute. The link usages (in percent-
age) for a = 0.5 and a = 5 are given in the Tables 4
and 5, respectively and graphically represented in
Figs. 13 and 14.

We observe that, when the parameter a grows, we
tend to a more homogenous coloration of the links,
which agrees with theoretical results. When a grows,
the allocations are more ‘‘equaled’’ and we thus
observe a more homogeneous use of the links.
Accordingly, the use of the more saturated link
decrease from 97.36% to 92%.

When a grows from 0.5 to 5, the average link
usage increases (from 70.38% to 73.83%). This can
Lo–Pr 1 Pr–Mi 1 Pr–Be 2 Zu–Lo 3
Lo–Br 4 Lo–Am 5 Pr–Zu 1 Zu–Br 6
Lo–Be 8 Lo–Co 1 Pr–Br 1 Pr–Lu 1
Am–Br 4 Br–Co 1 Lu–Lo 1 Pr–Am 1
Be–Br 6 Co–Be 3 Vi–Co 1 Vi–Lo 2
Vi–Br 1 Be–Lu 2 Pr–Vi 1
Vi–Be 9 Vi–Lu 1 Vi–Am 1

BP Link BP Link BP Link BP

61 Mi–Zu 61 Pa–Br 68 Mi–Br 73
29 Mi–Vi 81 Pr–Lu 32 Am–Lu 62
90 Zu–Lu 73 Lu–Br 61 Br–Lo 62
87



Fig. 14. Bandwidth allocation for COST network, a = 5.

Fig. 13. Bandwidth allocation for COST network, a = 0.5.

Table 5
Results for a = 5

Link BP Link BP Link BP Link BP Link BP Link BP Link BP

Pa–Mi 52 Mi–Zu 73 Zu–Lu 76 Am–Lo 73 Mi–Br 76 Pa–Lo 78 Pr–Co 74
Pa–Zu 73 Pr–Vi 76 Be–Am 92 Am–Co 47 Vi–Be 92 Am–Br 77 Lo–Co 73
Pa–Be 92 Pr–Be 92 Be–Co 92 Lu–Br 73 Br–Lo 74 Mi–Vi 73 Pa–Br 76
Zu–Pr 76 Pr–Lu 47 Am–Lu 74 Zu–Vi 47
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seem surprising, since the allocated bandwidth
remain constant, as well as the link capacity. In fact,
when a grows, the traffic becomes more split
between the different possible routes in order make
the link usage more homogeneous. Therefore the
average number of links used by a connection
increase as well and so does the network usage.
It is also interesting to note that the usage of
some links, like the Berlin-Copenhagen, have
increased almost to their maximum usage for the
solution a = 5, supposedly more ‘‘fair’’ ! This shows
that the search for fairness in a global scale some-
times leads some users to critical situations while
their remain in their bound in cases that are less
fair.

10. Conclusion

We have applied in this paper the NBS approach
for bandwidth allocation and its generalization that
are sensitive to the utilities of connections. We have
studied some of the characteristics of these con-
cepts, and showed that they are indeed more suit-
able for applications that have concave utility. We
proposed a simple parametrization of the concavity
of the utility function using quadratic functions. We
finally proposed some computational approaches
that allows us to handle large networks: a Lag-
rangian approach and a novel approach based on
SDP.

The SDP approach has the advantage that it is
simple to implement using any general SDP soft-
ware. Furthermore additional conditions (for
instance those linked to integer programming, or
other telecommunication requests) can be intro-
duced without requiring any study on the stability
or the convergence of the algorithm. This is a
clear improvement compared to many other spe-
cific methods, and in particular to the iterative
ones that have been proposed for solving fairness
problems.

Also, we considered a fairness approach that
takes into account not just the assigned throughput
of each connection but instead the utility that the
assigned throughput represents. This type of
fairness concept agrees with the game theoretic
definition of fairness given by NBS and is an inter-
esting generalization of the fairness criteria that
have been used so far in the telecommunication
context.
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Appendix A. A proof of Proposition 17

We first prove the following lemma:

Lemma 38. As jLj grows to infinity, the only

possible limits xlim of the bandwidth assigned to

connection 0 are MR0 and C0 � b1.

Proof. Since x is bounded (from MR0 6 x 6 PR0),
the left part of (8) is bounded too. Therefore, the
limit xlim, if any, is such that a1(C0 � x � b1) Æ
f0(x) = 0.

We want to determine which of the three
solutions are possible, that is to say belonging to
the set [MR0,PR0]. From (7) we have PR0 +
PR1 > C. As b1 > PR1 (from (5)), then C � b1 <
PR0. Therefore the solution xlim = C � b1 is accept-
able if C � b1 P MR0. The two other solutions
are the zeros of f0. By definition the larger one is
strictly greater than PR0 and therefore not
acceptable. h

The second lemma compares the possible limits.

Lemma 39. Let f and g be defined as in (8). Then

g(C � b1) P g(MR0) and h(C � b1) P h(MR0).

Proof. We have gðMR0Þ ¼ jLj
1�a f1ðC �MR0Þ1�a and

gðC � b1Þ ¼ 1
1�a ½f0ðC � b1Þ1�a þ jLjðf1ðb1ÞÞ1�a�.

From the definition of b1 we have
f1(b1) P f1(C �MR0). Moreover, if C � b1 P MR0

then f0(C � b1) P 0 and therefore g(C � b1) P
g(MR0).

If a = 1, then h(MR0) = 0 and hðC � b1Þ ¼
f0ðC � b1Þðf1ðb1ÞÞN > 0. h

We can finally prove Proposition 17. We have
seen that for any value of a, MR0 and C � b1 are
the only two possible limits. Moreover, if C �
b1 P MR0 then g(C � b1) P g(MR0) and h(C �
b1) P h(MR0). Therefore, the limit of the allocation,
if any, is max(C � b1,MR0).

We can show that this value is indeed the limit of
the allocation. We detail here the case of a = 1, the
case of a 5 1 being similar. If C � b1 > MR0, then
f1(C � Id) is maximal for C � b1 (by definition of
b1) and f0(C � b1) > 0 (since C � b1 > MR0). Then,
limjLj!1f0ðxÞðf1ðc� xÞÞjLj ¼ C � b1.

Suppose now that C � b1 6MR0. f1(C � Id) is a
parabola those maximum is for C � b1 6MR0 and
that is null in MR0. Therefore the function is
decreasing in [b1 +1], and in particular in
[C �MR0,C � PR0] (since C � b1 > MR0). There-
fore its maximum is achieved in C �MR0. As f0 is
positive on the set [MR0,PR0] then xlim = MR0.
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