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† Univesité d’Avignon, 339, Chemin des Meinajaries, Agroparc BP 1228, 84911 Avignon Cedex 9, France

‡ Facultad de Ingenerı́a, Universidad de Los Andes, Mérida 5101, Venezuela

Abstract— We consider competition between non-cooperative
mobiles over several independent collision multiple-access chan-
nels or more generally, over interference channels. A mobile
selects one of the channels for transmission; if the same channel
is chosen simultaneously by more than a single mobile then
a collision occurs and the colliding packets are lost. Policies
based on assigning each independent channel to another mobile
turn out to constitute efficient equilibria. But they request some
synchronization and coordination which may not be possible. We
identify other mixed equilibria that do not request synchroniza-
tion but exhibit innefficiency. Moreover, we show that a Braess
type paradox occurs in which the availability of more resources
results in poorer performance to all mobiles. We extend the model
to investigate the influence of capture phenomena.

I. INTRODUCTION

A large effort has been dedicated in recent years to the study
of the multiple access channel [2], [15], [17], the interference
channel [27], [18], [22], [25] and the relay channel [20] under
game theoretic frameworks. Most of these references obtain a
single equilibrium.

The goal of our work is to better understand the occurrence
of multiple equilibria and their properties in some multiple
access and in interference channels.

We start by describing a simple two players game in back-
logged multiple access collision channels. Three equilibria are
identified under symmetric conditions of which two are pure
and one is a mixed equilibrium. The pure equilibria perform
better than the mixed equilibrium but require coordination
which is often not possible. We then obtain a similar structure
in a more general setting of a non-symmetric interference
channel with capture. We note that a similar structure has
been obtained also in the context of non-cooperative routing
in loss networks [1] and in a power control problem over an
interference channel in [6].

We show that this type of games is a special case of the
well studied class of coordination games [4], and the charac-
terization of the equilibria is then a direct consequence. We
further obtain properties of the equilibria that are specific to
this problem. Numerical examples are introduced to illustrate
our findings. The allow us to identify a Braess-type paradox
[10] in which the availability of more resources results in
poorer performance to all mobiles. We briefly discuss some
stability issues and some extensions of the model.

The structure of the paper is as follows. After describing
in the next section some central ideas through a simple
motivating example, we present the general model and results
in Section III. The stability of the equilibria is briefly discussed

in Section IV. A numerical study is presented in Section V in
which a Braess-type paradox is identified. Extensions to more
than two mobiles are presented in Section VI followed by a
concluding section.

II. SIMPLE MOTIVATING EXAMPLE

Consider the following basic example. There are two mo-
biles i = 1, 2 and two independent channels j = 1, 2.
Each mobile transmits at the same time one packet: Mobile
i transmits a packet over channel i with probability pi and
with probability 1 − pi over the other channel. A packet is
successfully transmitted if it is the only one that uses the
channel. Thus the transmission success probability of mobile
i is

Ui(p) = pipj + (1− pi)(1− pj), j 6= i

Mobile i wishes to maximize the probability Ui of successful
transmission of its packet.

The policy that assigns a dedicated channel to each mobile
(i.e. p1 = p2 = 1 or p1 = p2 = 0) is obviously optimal: it
involves no collisions and the success probability is one. It is
also a Nash equilibrium. However it requires coordination or
synchronization in order to assign each channel to a different
mobile.

The symmetric policy p1 = p2 = 0.5 turns out to be an
equilibrium; if mobile i uses pi = 0.5 then no matter what
pj mobile j (i 6= j) chooses, it will have the same success
probability of 1/2. Thus no mobile can benefit by unilaterally
deviating from p = 1/2, so it is an equilibrium.

Note that if mobile i had only one option, that of choosing
channel i, then the innefficient equilibrium would not occur.
This is a feature similar to the inefficiency we have in
the prisoner’s dilemma or in the Braess’ paradox in which
eliminating some options for the players can result in better
performance to every one. Yet if we wanted to implement this
idea in our context and create mobiles with only one channel,
then we would face again a synchronization problem. If half of
the mobiles have built in technology for accessing one channel
and the other half can only access the other channel, then two
randomly selected mobiles will still be using the same channel
with probability half.

III. THE MODEL AND MAIN RESULT

Consider 2 mobiles and 2 base stations. The base stations
use, each one, an independent channel (for example, each one
uses another frequency). We shall assume that mobile i has
a good radio channel with base station i and a bad one with



station j 6= i. More precisely, let hij be the gain between
mobile i and base station j.

Let SINRi denote the Signal to Interference and Noise
Ratio corresponding to the signal received from mobile i at
the base station to which it transmits. Each mobile has two
pure strategies: γ, β where γ means transmitting on its good
channel and β on its bad one. Then

SINR1(u) =





h11P1

No
if u = (γ, γ)

h12P1

No
if u = (β, β)

h11P1

No + h21P2
if u = (γ, β)

h12P1

No + h22P2
if u = (β, γ)

SINR2(u) =





h22P2

No
if u = (γ, γ)

h21P2

No
if u = (β, β)

h22P2

No + h12P1
if u = (β, γ)

h21P2

No + h11P1
if u = (γ, β)

Here No is the thermal noise at each base station and Pi is
the fixed transmission power of mobile i.

Under many modulation schemes the probability of a suc-
cessful transmission of a packet is known to be a monotone
increasing function of the SINR [24]. We thus assume that
mobile i has a success probability given by fi(SINRi).
Define

A := f1

(
h11P1

No
,

)
B := f1

(
h11P1

No + h21P2

)

C := f1

(
h12P1

No + h22P2

)
D := f1

(
h12P1

No

)
.

a := f2

(
h22P2

No
,

)
b := f2

(
h22P2

No + h12P1

)

c := f2

(
h21P2

No + h11P1

)
d := f2

(
h21P2

No

)
.

The mobiles are thus faced with the following matrix game:

action γ action β
action γ A, a B, c
action β C, b D, d

Theorem 3.1: There are exactly three equilibria; the two
pure equilibria: (γ, γ) and (β, β), and a mixed one in which
player 1 and 2 select γ with probabilities:

X∗ =
D −B

A + D −B − C
, Y ∗ =

d− b

a + d− b− c
.

Proof: We note that B < D, b < d, C < A and
c < a. The game is thus a standard coordination game (see
http://en.wikipedia.org/wiki/Coordination game) [4] for which
the result is well known.

The mixed equilibrium is characterized by the indifference
property: when a mobile uses its mixed equilibrium policy
then the other player is indifferent between γ and β.

The utility of mobile 1 and 2 at the mixed equilibrium are
given by

U∗
1 = AY ∗ + B(1− Y ∗), U∗

2 = aX∗ + b(1−X∗).

Consider now the symmetric case (A = a,B = b, C = c,D =
d). Then we get at the mixed equilibrium:

U∗ =
(a− c)(d− c) + c(a + d− b− c)

a + d− b− c
=

ad− cb

a + d− b− c

IV. STABILITY

For any policy Y for mobile X , the utility of mobile 1
is linear in the probability X it selects γ. Only for Y ∗ this
utility does not depend on X , and thus for any other Y the
optimal response of mobile 1 is either one or zero. Thus a
small deviation of the second mobile from Y ∗ results in a big
jump in the best response of the first mobile. But this is true
for any mixed equilibrium in a matrix game.

We note however that the equilibrium is stable in the
following sense: for any ε > 0, if mobile 2 deviates from
Y ∗ to a point Y sufficiently close to Y ∗ then (X∗, Y ) is an
ε-Nash equilibrium (i.e. a mobile cannot gain more than ε by
deviating unilaterally).

A more formal notion of stability of an equilibrium comes
from evolutionary games in which there are many pairwise
interactions between individuals of an infinite population. The
mixed strategies can be interpreted as the fraction of the
population that uses the different pure policies. A multi-policy
(Z∗) is said to be an Evolutionary Stable Strategy (ESS) if it
is robust against the deviation of a whole (sufficiently small)
fraction of individuals. This is known to be equivalent (in the
symmetric case) to the requirement that one of the following
holds, see [26, Proposition 2.1]. For each Y , either

U1(Y, Z∗) < U1(Z∗, Z∗) (1)

or

U1(Y,Z∗) = U1(Z∗, Z∗) and U1(Y, Y ) < U1(Y, Z∗) (2)

From the discussion above it can be seen that the mixed
equilibrium Z∗ is not an ESS. Indeed, (1) does not hold
and in fact for all Y we have at the mixed equilibrium
U1(Y, Z∗) = U1(Z∗, Z∗). Moreover, when Y corresponds to
a pure strategy (in which each mobile is connected to another
base station) then we have U1(Y, Y ) > U1(Y, Z∗) and then
(2) clearly does not hold.



V. NUMERICAL STUDY AND THE BRAESS’ PARADOX

As examples of success probability as a function of the
SINR, we have the following expressions for the bit error
probability as a function of the modulation [7] (numerical
examples based on these formulas can be found in [3], [5],
[7]):

pe(SINR) =





1
2erfc(

√
κ · SINR) for GMSK

1
2 exp (−SINR) for DBPSK

1
2 exp(− 1

2 · SINR) for GFSK

1
2erfc(

√
SINR) for QPSK

3
8erfc(

√
2
5 · SINR) for 16-QAM

7
32erfc(

√
4
21 · SINR) for 64-QAM

where κ is a constant (that depends on the amount of re-
dundancy in the coding and on the frequency band). In the
absence of redundancy this gives the following expression for
f of a packet of N bits provided that the bit loss process is
independent

f(SINR) = (1− pe(SINR))N

We next study a numerical example and examine the impact
of the gain hij on the utility. We use the following values of
the parameters to calculate U∗: h11 = h22 = 10dB, κ = 0.68,
P1 = P2 = 0.6Watt, N0 = −174dB and N = 60.
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Fig. 1. Utility (vertical axis) at the mixed equilibrium with different values
of the gain hij in dB (horizontal axis)

We can see in Figure 1 that U∗ decreases when h12 = h21

increase until they are equal to h11 = h22. This behavior
which occurs all along the interval, (0, h11 = h22), is known
as a Braess-type Paradox.

This paradox is said to occur in a network whenever adding
a link or adding capacity to a link causes delays of all users to
increase; in an economic context in which users pay the service
provider, this may further cause a decrease in the revenues of
the provider. This problem was identified by Braess [10] in the
transportation context, and has become known as the Braess’
paradox. See also [14], [23]. The Braess’ paradox has been
studied as well in the context of queuing networks [9], [11],
[12], [13], [16].

Remark 5.1: A behavior similar to the one we obtain in this
access game over independent channels has been reported in
[6] that studies an access game over independent interfering
channels. There too, three equilibria have been identified in
the case of two mobiles.

In our case, increasing the gains hij (which can be done by
using stronger antennas) can be considered as increasing the
link capacity. As observed, a Braess’ paradox indeed occurs.

VI. MORE THAN TWO MOBILES

We return to the simple model of the Introduction extended
to the case where there are K mobiles and K independent
channels to some common base station. (The results are
the same if we assume instead that each channel leads to
another base station or access point). Note: access based on a
random choice of independent collision channels can be found
in satellite systems (see e.g. the SPADE Demand Assigned
Multiple Access described in [21]) and in WiMAX.

We assume that if more than one transmission occurs simul-
taneously on a given channel then all packets involved are lost.
Let p = (p1, ..., pK) be a vector of probabilities. We interpret p
as a policy vector in which player i transmits with probability
pi over channel i and with probability (1− pi)/(K − 1) over
a channel uniformly distributed among the remaining ones.

A. The price of non-coordination

It is easy to show that p = 1
K (1, 1, ..., 1, 1) is an equilib-

rium. It is a symmetric one which requires no coordination
between the mobiles. We call this policy the non-coordinated
equilibrium of degree K. The success probability of each
mobile is

U∗ =
1
K

(
1− 1

K

)K−1

The global utility is then

G(K) := KU∗ =
(

1− 1
K

)K−1

Note that this converges to 1/e just as in the classical slotted
ALOHA [19]!

The best equilibrium is obtained with p = (1, 1, ..., 1)
for which the success probability of each mobile is 1; the
global utility is then K. We call it the fully coordinated
equilibrium. In order to implement it we need indeed to
provide a mechanism enabling each mobile to choose a distinct
channel.



There are many other equilibria that we shall identify later,
but the two we mentioned provide respectively the worst and
the best throughput for each mobile.

The price of non-coordination which we define as the
ratio between the non-coordinated equilibrium and the fully
coordinated one is given by

PonC(K) =
1
K

(
1− 1

K

)K−1

Note that as K → ∞ we get that PonC tends to zero and
moreover

lim
K→∞

KPonC(K) = 1/e

B. On the number of equilibria

We show next that the number of equilibria grows exponen-
tially with K. Let m be some integer satisfying 1 ≤ m ≤ K
and let K̂ = {K1, ...,Km} be a partition of K. Then we can
identify K̂ as any policy in which Ki mobiles restrict to some
given Ki channels and implement there the non-coordinated
equilibrium of order Ki, for each i = 1, 2...,m.

Thus any partition of the K mobiles defines another class of
equilibria. The number of such classes is easily seen to grow
exponentially fast with K.

C. Equilibrium selection and evolution

A large part of the literature on coordination game deals
with equilibrium selection, where the question is how to learn
to use the good equilibrium among the two pure ones. An
example of an access problem in mobile communications that
can be handled with these tools is the following.

Consider a group of K mobiles along with K receivers
(base stations). We consider light traffic conditions so that
we can neglect the probability that more than two mobiles
along with their receivers are at interference range of each
other. Each receiver has one independent radio channel which
is better than the others. We assume symmetry; when in range
with two receivers, we assume that mobile i has a good radio
channel with one receiver (the ith, with a gain denoted by hγ)
and a bad channel with the other receiver (a gain of hβ < hγ).
There is a finite population of mobiles. The game is played
repeatedly so mobiles have the opportunity to update their
strategies. It is assumed that the mobiles are not aware of the
utilities of other players and the question is then how to select
a strategy.

This problem can be analyzed using model studied in [8]. In
[8], the simple clever myopic adjustment strategy is considered
where a player evaluates its strategy by comparing the current
expected payoff to the expected payoff if it were to switch
strategy, given that the remaining players do not switch their
strategies. Two variants of this adaptation rule are considered
in [8], and convergence to one of the pure equilibria is
established in the limit as the size of the population of players
grows to infinity.

VII. CONCLUDING REMARKS

This paper identifies the well known coordination games
structure in a class of wireless non-cooperative games over
multiple access collision channels or interference channels.
The equilibria are computed for these games and their prop-
erties are studied. Through a numerical example, we identify
a Braess-type paradox similar to the one obtained in [6], [16].
An interesting question which we leave for future work is
whether similar multi-equilibria structure arise in the case of
state dependents models.
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