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ABSTRACT
We consider a two-players zero-sum Markov game with side
constraints where only one player controls the transition
probabilities. We reduce the problem to that of solving an
equivalent linear program. Our approach is different than
the one previously used to derive such linear programs [4, 5,
9]. We introduce a new type of constraints: the ”subsciption
constraints” along with standard constraints which we call
”realization constraints”. We extend the results obtained in
[4, 5, 9] to the case where both players have constraints.

1. INTRODUCTION
In Markov games (also known as stochastic games), there

are finitely many matrix games, each identified with a ”state”.
At each time one of these games is played; there are several
players who choose simultaneously their actions (e.g. the
row and the column of a matrix) and these actions deter-
mine a payoff to each player. The state evolution is given
by a controlled transition probability matrix. It has the fol-
lowing Markovian property: the next state (i.e. the identity
of the next game to be played) conditioned on the present
state and on the present actions of the players does not de-
pend on the past states and actions. In that sense, Markov
games extend Markov chains.

This does not mean that the state process is Markovian,
since some dependence of future states on all the past his-
tory given the present state can exist through the way ac-
tions are selected. A dependence can be brought in if the
decision rule for choosing an action at a given time has a de-
pendence on the whole history. One of the central research
issues in Markov games has been to identify special struc-
tures of games that guarantee the existence of Markovian
or of stationary equilibrium policies (a Markovian policy for
a player chooses an action a according to a probability low
that is a function of only the current state and time. The
choice of a is independent on any previous action or state.
A stationary policy for a player is a Markovian policy in
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which choices of actions do not depend on time). Under any
Markov policy, the state process of the Markov game is a
Markov chain. Under a stationary policy, this Markov chain
is, moreover, time-homogeneous.

We study in this paper a zero-sum Markov game, in which
two players have opposite objectives. We restrict to the case
in which only one player controls the transition probabili-
ties. We further introduce side constraints on both players.
We propose a linear program approach for deriving optimal
policies and for computing the value.

2. THE MODEL

2.1 Probabilistic structure
We consider a Stochastic game characterized by the fol-

lowing objects:

• State space. X is a finite state space,

• Initial distribution. β is a probability distribution
over X, according to which the initial state is chosen.

• Action spaces. Ai stands for the finite action space
of player i. At state x ∈ X, the set of actions available
to player k is Ak(x). Let Kk = (x, a), x ∈ X, a ∈
Ak(x).

• Transition probabilities. P = {Pxay} stands for
the transition probabilities; Pxay is the probability
that the state moves from x to y if player 2 chose ac-
tion a. We assume that player 1 has no influence on
the transition probabilities.

A history hn is a sequence

hn = (x1, a1, x2, a2, ..., xn−1, an−1, xn),

where x` ∈ X, a` = (a1
` , a

2
`), where ak

` ∈ Ak(x`), ` =
0, 1, 2, .... A player k (behavioral) strategy u is a sequence
(u0, u1, ...) where u` is a probability measure over Ak(x`)
conditioned on hn.

Algorithms for stochastic games with a single controller
were studied in [7].

Some classes of strategies. Denote by Uk the set of
all strategies (also called policies) for player k. Let Uk(S)
and Uk(M) be the set of stationary and of Markov policies,
respectively, of player k. A stationary policy u ∈ Uk(S)
is identified with a set of probability functions denoted as
u(·|x), over the actions Ak(x). For all x ∈ X u(a|x) is then



the probability of choosing action a if the state is x. A
Markov policy u ∈ Uk(M) is identified with a set of proba-
bility functions denoted as u(·, n|x), over the actions Ak(x).
For every x ∈ X and every positive integer n, u(a, n|x) is
the probability of choosing action a at time n if the state
is x. We finally introduce the set Uk(D) of pure stationary
policies for player k.

An initial distribution β, together with a pair u = (u1, u2)
of policies u1 ∈ U1, u2 ∈ U2’ defines a unique probabil-
ity measure P u

β on the state-action trajectories. Let Eu
β

be the corresponding expectation operator. We write by
Xn, A1

n, A2
n the stochastic state and action processes.

2.2 Costs and Constraints
We consider a cost C : U1×U2 → R which player 1 has to

pay to player 2. Player 1 wishes to minimize this cost and
player 2 wishes to maximize it.

Further introduce the cost functions Dk
s : U1 × U2 → R,

k = 1, 2, s = 1, ..., mk. Player k has a set Mk of mk side
constraints of the form

Dk
s (u1, u2) ≤ ξk

s , s ∈ Mk (1)

where ξk
s are some constants.

We shall use two types of cost functions which we define in
the next paragraphs. To that end we introduce first immedi-
ate costs functions; for each x ∈ X, a1 ∈ A1(x), a2 ∈ A2(x)
we define the costs c(x, a1, a2), and dk

s (x, a1, a2), k = 1, 2,
s ∈ Mk.

1. The expected discounted cost. We define the ex-
pected discounted costs as

Cα(β, u) = (1− α)

∞X
n=1

αn−1Eu
β c(Xn, A1

n, A2
n), (2)

Dk,s
α (β, u) = (1− α)

∞X
n=1

αn−1Eu
βdk

s (Xn, A1
n, A2

n).

where α is the discount factor. The above costs can
be viewed as realization-based costs: they are the
expected discounted sum of immediate costs of the re-
alizations (Xn, A1

n, A2
n) over the time slots n.

2. We also define subscription-type costs of the form:

Dj,s
subs(u

j) =
X

(x,aj)∈Kj

dj
s(x, aj)uj(aj |x)

where uj ∈ U j(S). We call this type of costs“subscription-
based” since it is based on the fraction of time during
which a given action will be used at a given state, and is
not based on how frequently the state will actually be
visited (and the action used). As could be the case in
subscription fees for services, the payment for planned
use of a service can be done in advance and charging
can be simplified by avoiding measuring the actual use
of the resources.

For the case of a single player, and when the discounted
cost is used, it is sufficient to consider stationary policies
without loss of optimality. In the stochastic game framework
this means that the best response against a stationary policy
is a stationary policy. We will actually obtain stationary
saddle-point policies for both players. This will allow us to
restrict the stochastic game to stationary policies without
loss of optimality.

3. CONSTRAINED ZERO-SUM GAMES:
DEFINITIONS AND CLASSIFICATION

The definitions of constrained games that we present in
this section are given with respect to abstract cost functions
and they will later be used for either the discounted realiza-
tion based costs or for the subscription type cost.

3.1 Orthogonal constraints
In this framework, one restricts the constraints of player

k to depend only on the strategies of that player; that is
D1

s(u1, u2) does not depend on u2, and D2
s(u1, u2) does not

depend on u1. Let Uk
c be the set of strategies of player k that

satisfy (1). Let Uc := (U1
c , U2

c ). We shall assume throughout

Uk
c is non empty, k = 1, 2. (3)

Set Uk
c (S) and Uk

c (M) to be the subset of Uk(S) and Uk(M),
respectively, that satisfy (1).

Upper and lower values. The problem faced by player
1 is to find u1 that achieves the upper value V defined as:

V := inf
u1∈U1

c

sup
u2∈U2

c

C(u1, u2). (4)

The problem faced by player 2 is to find u2 that achieves
the lower value V defined as:

V := sup
u2∈U2

c

inf
u1∈U1

c

C(u1, u2). (5)

Saddle point. Introduce the cost C(u1, u2) where uk ∈
Uk which player 1 wishes to minimize and which player 2
wishes to maximize. We seek a saddle-point couple (u∗, v∗) ∈
Uc, i.e. a policy for each player such that

V := inf
u∈U1

c

C(u, v∗) = C(u∗, v∗) = sup
v∈U2

c

C(u∗, v) (6)

(the policies u∗ and v∗ are also called optimal). If the saddle-
point exists then we call V the value of the game which we
denote by V = valu,vC(u, v) where u ∈ U1

c and v ∈ U2
c .

3.2 Non-orthogonal constraints
When the constraints of player k depend also on policies

of player j 6= k, we define Uk
c (uj) to be the set of strategies

of player k that satisfy (1) when player j 6= k uses strategy
uj . Define Uc to be the set of pairs (u1

c , u
2
c) such that uk ∈

Uk
c (uj) for k = 1, 2 and j 6= k. We consider some special

cases.
Valuation of the constraints of the adversary.

Defining the lower value in the case that only player 2 has
non-orthogonal constraints (or the upper valuer in the case it
is player 1, or both the lower and upper value if both players
have non-orthogonal constrained) requires additional speci-
fications on the goals of the player. Indeed, in those cases,
the game is not well defined unless one specifies further how
a player values the constraints of the other player. In par-
ticular, we may define as in [2] the following frameworks
related to this valuation.

• The aggressive case. Player k’s primary objective is
to prevent the other player j 6= k from meeting her con-
straints. For example, if only player 1 has constraints
then in the calculation of the lower value, player 2 can
use only strategies that ensure that the constraints will
be met, whatever player 1 plays.



• The indifference case. Player k does not care whether
the constraints of player j 6= k are met. If, e.g., k = 1,
then in the calculation of the lower value player 2 may
use strategies u2 that do not guarantee that the con-
straints will be met, provided at strategy u1 that, to-
gether with u2, violates the constraints, yields low pay-
off to player 1.

• The joint case [8]. Each constraint concerns both
players, i.e. Dk

s and ξk do not depend on k. Then
we have u1 ∈ U1

c (u2) if and only if u2 ∈ U2
c (u1). If,

e.g., k = 1, then in the calculation of the lower value
player 2 may use any strategy u2 for which there exists
a strategy u1 such that (u1, u2) ∈ Uc, since player 1
will use only strategies u1 that, together with u2, meet
player 1’s constraints, which are identical to player 2’s
constraints.

We shall describe some special cases in more details.

3.3 The aggressive case
We need some definitions. Define Uk

g to be the set of
policies for player k for which, no matter what strategy the
other player j chooses among its feasible strategies, player
2 meets her constraints. In other words, uk ∈ Uk

g if uk ∈
Uk

c (uj) for every uj ∈ U j
c .

If only player 2 has non-orthogonal constraints, then in
the aggressive framework the lower value is

V := sup
u2∈U2

g

inf
u1∈U1

c

C(u1, u2). (7)

If only player 1 has non-orthogonal constraints, then in the
aggressive framework the upper value is

V := inf
u1∈U1

g

sup
u2∈U2

c

C(u1, u2). (8)

3.4 The indifference case
Only player 2 has non-orthogonal constraints.

In the case that only player 2 has non-orthogonal constraints,
the upper value V is defined as:

V := inf
u1∈U1

c

sup
u2∈U2

c (u1)

C(u1, u2). (9)

Only Player 1 has non-orthogonal constraints.
In the case that only player 1 has non-orthogonal constraints,
the lower value V defined as:

V := sup
u2∈U2

c

inf
u1∈U1

c (u2)
C(u1, u2). (10)

Saddle point.
In the case of non-orthogonal constraints, we define a

saddle-point couple (u∗, v∗) ∈ Uc to be a policy for each
player such that

V := inf
u∈U1

c (v∗)
C(u, v∗) = C(u∗, v∗)

= sup
v∈U2

c (u∗)

C(u∗, v) (11)

If the saddle-point exists, then we call V the value of the
game which we denote by V = valu,vC(u, v) where (u, v) ∈
Uc.

Unless otherwise stated, we shall restrict to the indiffer-
ence framework. We have shown in [2] that a saddle-point
does not exist in general for the other frameworks.

4. MATHEMATICAL PROGRAMMING AP-
PROACH

We derive below the upper value of the game (as de-
fined in (7)) and an optimal stationary policy for player
1. We assume that only player 2 has constraints, which
are realization-based. We reduce the problem to that of a
mathematical programming. We then extend the result to
the case where player 1 has subscription-type constraints.

We proceed as follows. We first fix a stationary policy
u1 for player 1, and formulate an LP to solve the problem
of best response for player 2 among stationary policies. We
then derive an LP to solve the optimization problem (4)
faced by player 1.

4.1 Best response for player 2

Fix a stationary policy u1 for player 1. Then player 2 is
faced with a Constrained Markov Decision Process (CMDP)
whose sets of immediate costs, c(u1) and d2

s(u
1), are given

by

c(u1; x, b) :=
X

a∈A1(x)

u1(a|x)c(x, a, b), (12)

d2
s(u

1; x, b) :=
X

a∈A1(x)

u1(a|x)d2
s(x, a, b), (13)

We show how to compute its value

sup
u2∈U2

c

Cα(β, u1, u2). (14)

Steps:

1. No constraints: dynamic programming. Assume
first that there were no constraints on player 2. Then it
is well known that the value of the MDP is the unique
solution of the dynamic programming (DP):

vα(x) = max
b∈B(x)

 
(1− α)c(u1; x, b) + α

X
y∈X

Pxbyvα(y)

!

for all states x.

2. No constraints: linear programming. The above
dynamic programming implies that the value of the
MDP satisfies

vα(x) ≥ (1− α)c(u1; x, b) + α
X
y∈X

Pxbyvα(y)

for all states x and actions b ∈ A2(x). Functions with
this properties are known as sub-harmonic functions
for the discounted case, and the value of the MDP is
known to be the smallest sub-harmonic function
[1, 6]. This statement can be reformulated as an LP:

minimize
X
x∈X

β(x)φ2(x)

over the real decision variables φ(y), y ∈ X s.t.

φ2(x) ≥ (1− α)c(u1; x, b) + α
X

`∈X2

P2
xb`φ

2(`),

∀(x, b) ∈ K2.



3. Accounting for the constraints: We now relax the
constraints (1). Define non-positive Lagrange multipli-
ers λs (one for each s ∈ M2). Define the Lagrangian

Lα(u1; β, u, λ2) =

Cα(u1; β, u)+ < λ2, D2
α(u1; β, u)− ξ2 > .

(where the notation < ·, · > stands for the scalar prod-
uct). u∗ for player 2 maximizes Cα(u1; β, u2) over
u2 ∈ U2

c (S) if and only if it maximizes

inf
λ2∈R

m2
−

Lα(u1; β, u2, λ2)

over u2 ∈ U2(S). Throughout, R− is the set of non-
positive numbers.

4. Change the order between max and inf. The
value remains the same under this change [1]. Hence
the value of the constrained problem (14) equals that
of

inf
λ2∈R

m2
−

max
u∈U2(S)

Lα(u1; β, u, λ2)

5. Observe that Lα(u1; β, u2, λ2) is the difference between
(i) the expected discounted cost that corresponds to
the immediate cost

jλ(u1; x, b) := c(u1; x, b)+ < λ2, d2(u1; x, b) >,

and (ii) < λ2, ξ2 >.

6. Hence, by step 2, its maximum over U2(S) (which
equals that of Cα(u1; β, u2) over u2 ∈ U2

c (S)) is ob-
tained by taking the minimum over λ ∈ Rm2

− of the
difference between the value of the following LP and
< λ2, ξ2 >:

min
φ2

X
x∈X

β(x)φ2(x) s.t. (15)

φ2(x) ≥ jλ(u1; x, b) +
X

y∈X2

P2
xbyφ2(y), ∀x, b (16)

7. Hence the value of (9) when we hold u1 fix equals that
of the LP:

min
φ2,λ

 X
x∈X

β(x)φ2(x)− < λ2, ξ2 >

!
s.t. (16) and λ ≤ 0.

4.2 The value, and Player 1’s optimal policy
We assume in this subsection that player 1 has no con-

straints. This is the situation studied in [4, 5] except that
in our case the immediate costs involved in the constraints
on player 2 are allowed to depend on the actions of both
players, where as in these references they depend only on
the actions of the player who has the constraints (player 2
in our case).

Player 1 has to choose a policy u1 ∈ U1
c (S) that minimizes

the value of LP (15). We note however that u1 has an impact
on the LP only through

jλ(u1; x, b) =
X

a∈A1(x)

u1(a|x)jλ(x, a, b),

which are linear in u1. Thus the upper value (9) is obtained
by solving the mathematical programming:

MP1 : minφ2,λ,u1
`P

x∈X β(x)φ2(x)− < λ2, ξ2 >
´

s.t. (16), λ ≤ 0,

u1(a|x) ≥ 0 ∀x, a,
P

a∈A1 u1(a|x) = 1, ∀x.

The only non-linear term in the above MP is jλ in (16),
which is bi-linear in the terms u1 and λ2. In the special case
that d2 does not depend on a1, however, the MP becomes
a linear program, derived already in [4, 5] using a different
approach. We note that the above MP provides not only
the value of (4) but also the optimal u1.

We now consider additional realization-based constraints
on player 1. In other words, we aim at solving the following
problem:

P2 : Obtain a saddle-point (u∗, v∗) for the game (6)
where Cα(β, u, v) is the objective function
that we minimize over the strategies U2

c of player 2,
and that we maximize over the strategies U1

c of
player 1, where

U1
c =

˘
u1 ∈ U1(S) : D1,s

subs(β, u1) ≤ ξ1
s

¯
U2

c =
˘
u2 ∈ U2(S) : D2,s

α (β, u2) ≤ ξ2
s

¯
This problem corresponds to a situation in which player

1 is a customer, who is constrained by subscription-type
costs, and player 2 is the service provider, who is constrained
by realization-based costs. The game is equivalent to the
following linear programming:

LP2 : minφ2,λ,u1
`P

x∈X β(x)φ2(x)− < λ2, ξ2 >
´

s.t. (16), λ ≤ 0,

u1(a|x) ≥ 0 ∀x, a,
P

a∈A1 u1(a|x) = 1, ∀x.P
(x,a)∈K1 u1(a|x)d1,s

subs(x, a) ≤ ξ1
s .

This problem is more general than the one in [4, 5] as it
has constraints on both players. LP2 directly provides an
optimal stationary policy for player 1. As in [4, 5], the dual
will provide an optimal stationary policy for player 2.

5. OCCUPATION MEASURE APPROACH
Preliminaries. Define for every x ∈ X and u2 ∈ U2(S)

the following discounted state occupation measure:

πα(β, u2; y) = (1− α)

∞X
t=0

αt
X
x∈X

β(x)
“
[P (u2)]t

”
xy

.

here [P (u2)]0 is the identity matrix. We further define the
discounted state-action occupation measure to be

πα(β, u2; y, b) = πα(β, u2; y)u2(b|y).



Let u = (u1, u2), where ui ∈ U i(S), and fix a distribu-
tion β over the initial state. The costs are related to the
occupation measure through

Cα(β, u) =
X

(x,b)∈K2

πα(β, u2; x, b)
X

a∈A1

u1(a|x)c(x, a, b)

Dk
s,α(β, u) =

X
(x,b)∈K2

πα(β, u2; x, b)
X

a∈A1

u1(a|x)dk
s (x, a, b)

Achievable occupation measures Let Qα be the set of

vectors ρ ∈ R|K2| satisfying8>>>><>>>>:

X
(y,b)∈K2

ρ(y, b)(δx(y)− αPybx) = (1− α)β(x), ∀x,X
(y,b)∈K2

ρ(y, b) = 1,

ρ(y, b) ≥ 0, ∀(y, b) ∈ K2,
(17)

where δx(y) is the indicator which is equal to one if x = y
and is zero otherwise. The first equality is equivalent toX

b∈A2(x)

ρ(x, b) = (1− α)β(x) + α
X

(y,b)∈K2

ρ(y, b)Pybx,

which means that the discounted frequency to visit the state
x is the sum of the probability that x is the initial state
(times 1− α) and the probability to move to x (times α).

Note that any ρ satisfying the above constraints is a prob-
ability measure.

Define

•
Qk

pure the finite set of occupation measures correspond-
ing to all pure stationary policies of player 2.

•
Q2

S the set of occupation measures corresponding to
all stationary policies of player 2.

• M(
Q

) the convex hull of a set
Q

.

Define

C(u1, ρ) :=
X

(x,b)∈K2

ρ(x, b)
X

a∈A1

u1(a|x)c(x, a, b)

Dk
s,α(u1, ρ) :=

X
(x,b)∈K2

ρ(x, b)
X

a∈A1

u1(a|x)dk
s (x, a, b)

For a given probability measure ρ over K2, we define the
stationary policy w(ρ) for player 2 as

wx(b, ρ) =
ρ(x, b)P

b′∈A2(x) ρ(x, b′)
, b ∈ A2(x), (18)

whenever the denominator is non-zero (when it is zero, w2(ρ)
is chosen arbitrarily). Here w2

i (a, ρ) is the probability that
player 2 will choose action a at state i according to this
stationary policy.

The next relations follow from [1].

Lemma 1. (i) M(
Q2

pure) =
Q2

S = Qα.

(ii) Then for any β, u1 ∈ U1(S) and u2 ∈ U2(S),

Cα(β, (u1, u2)) = C(u1, ρ), (19)

Dk
s,α(β, (u1, u2)) = Ds

k(u1, ρ), (20)

where ρ(x, b) = πα(β, u2; x, b).
(iii) Conversely, for every u1 and every ρ ∈ Qα Eqs. (19)-
(20) hold, where u2(b|x) := wx(b, ρ) is given in (18).

Remark 1. The set of occupation measures correspond-
ing to the discounted cost (and hence also the set of achiev-
able discounted costs) is thus a polytope. This is trivially
true also for the subscription-type costs, where we can view
directly {uj(a|x)}, (x, a) ∈ Kj as the occupation measure for
player j that corresponds to a policy uj.

6. A MATRIX GAME REPRESENTATION
We obtain from Lemma 1 (i) the following.

Corollary 1. (i) for every u ∈ U2(S) there exists a
probability measure γ2 over the pure stationary policies U(D)2

such that

πα(β, u2) =
X

u∈U(D)2

γ2(u)πα(β, u)

(ii) Conversely, for every probability measure γ2 over the
pure stationary policies U(D)2, there is a stationary policybγ2 ∈ U2(S) such that

πα(β, bγ2) =
X

u∈U(D)2

γ2(u)πα(β, u)

We have a similar representation for player 1, which con-
cerns this time directly the policies. More precisely, we note
that the set U1(S) is convex (an element of U1(S) is iden-
tified by a vector of |X| probabilities; the xth element is
identified with a probability over A1(x)). Applying Krein-
Milman’s theorem, we obtain:

Lemma 2. For any stationary policy u1 ∈ U1(S) there
exists a probability measure γ1 over the pure stationary poli-
cies U(D)1 such that

u1 =
X

u∈U(D)1

uγ1(u)

(ii) Conversely, for every probability measure γ1 over the
pure stationary policies U(D)1, there is a stationary policybγ1 ∈ U1(S) such that

bγ1 =
X

u∈U(D)1

uγ1(u)

We shall call bγk the mixed representation of the stationary
policy uk. We obtain the following.

Theorem 1. Given any pair of stationary policies (u1, u2)
with mixed representations bγ1 and bγ2, respectively, we have

Cβ(α, bγ1, bγ2) =
X

u1∈U1(D)

X
u2∈U2(D)

γ1(u1)γ2(u2)Cβ(α, u1, u2);

for all s ∈ M1,

D1,s
subs(β, bγ2) =

X
u2∈U(D)2

γ2(u2)D1,s
subs(β, u1)

and for all s ∈ M2,

D2,s
α (β, bγ2) =

X
u2∈U(D)2

γ2(u2)D2,s
α (β, u2)



In view of the Theorem, problem P2 can be viewed as
a constrained matrix game, whose rows and columns cor-
respond to the pure stationary policies of player 1 and 2,
respectively. We can apply therefore directly the theory of
constrained zero-sum matrix games from [3] to obtain a lin-
ear program and its dual that provide the saddle-point value
and optimal policies.
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