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Abstract— We consider a mobile ad hoc network consisting of
three types of nodes: source, destination, and relay nodes. All the
nodes are moving over a bounded region with possibly different
mobility patterns. We introduce and study the notion of relay
throughput, i.e. the maximum rate at which a node can relay
data from the source to the destination. Our findings include the
results that a) the relay throughput depends on the node mobility
pattern only via its (stationary) node position distribution, and b)
that a node mobility pattern that results in a uniform steady-state
distribution for all nodes achieves the lowest relay throughput.
Random Waypoint and Random Direction mobility models in
both one and in two dimensions are studied and approximate
simple expressions for the relay throughput are provided. Finally,
the behavior of the relay buffer occupancy is examined for the
Random Walk and Random Direction mobility models. For both
models, the explicit form of the mean buffer are provided in the
heavy-traffic case.

I. INTRODUCTION

In mobile ad hoc networks (MANETs), since there is no
fixed infrastructure and nodes are mobile, routes between
nodes are set up and turn down dynamically. For this reason,
MANETs often experience route failures and network discon-
nectivity which induce two of the main problems of MANETs.
In order to overcome these problems, Grossglauser and Tse [9]
proposed to exploit the node mobility in MANETs to increase
the network throughput. Their idea was to look at the diversity
gain achieved by using the mobile nodes as relays.

The relay mechanism proposed in [9], called the two-hop
relay mechanism, is simple: if there is no route between the
source node (s) and the destination node (d), the source node
transmits its packets to one of its neighboring nodes (say, r)
for delivery to the node d. This mechanism belongs to the
family of routing protocols introduced in disruption tolerant
networks (DTNs) [1].

In [5] it was then shown that a bounded delay can be
guaranteed under the two-hop relay mechanism. The aim of
these studies (see also [10]) is the scaling property of the
throughput or delay as the number of nodes in the network
becomes large. Our interest in the present work is in the
performance of the above mentioned relay mechanism in a
network consisting of a fixed and finite number of nodes. It
was then shown in [5] that a bounded delay can be guaranteed
under this relaying mechanism. The aim of these studies (see
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also [10]) is the scaling property of the throughput or delay
as the number of nodes in the network becomes large. Our
interest in the present work is in the performance of the above
mentioned relay mechanism in a network consisting of a fixed
and finite number of nodes.

It is important to mention that most of the studies of scaling
laws of delay or throughput in wireless ad hoc networks
assume a uniform spatial distribution of nodes, which is the
case, for example, when the nodes perform a symmetric
Random Walk over the region of interest [5], [9]. In the present
paper, we study the effect of the node mobility pattern on
the throughput and delay performance of the relaying scheme
of [9]. We are interested in the maximum relay throughput of
a mobile node, i.e., the maximum that a node can contribute
as a relay to the communication between two other nodes.
The relaying of data for other nodes requires a relay node to
allocate its own resources. In particular, a relay node has to
keep the data to be relayed in its buffer. Hence, the study of
the buffer behavior of a relay node forms an important topic
of research. The present work addresses the above two issues,
i.e., the maximum relay throughput and the relay node buffer
behavior.

Our point of departure is a simple observation which relates
the evolution of a relay node buffer at certain time instants,
called cycle times, to the evolution of the workload process
in a G/G/1 queueing system. The service requirements and
inter-arrival times in this queueing system are determined by
the characteristics of the mobility pattern of the nodes.

Our main findings are the following:
1) The relay throughput depends only on the stationary dis-

tribution of the nodes’ position. Hence, any two mobility
patterns that have the same stationary distribution will
achieve the same relay throughput.

2) It is assumed in [9] that the stationary distribution of
a node position is uniform over the region of interest.
This has led to many research efforts which base their
work on this particular assumption [5], [10]. We prove
that the relay throughput achieved is the lowest when
nodes are uniformly distributed.

3) Knowledge of the stationary node location distribution
alone is not enough to understand the behavior of relay
node buffer at cycle times. A detailed analysis involving
second-order moments of contact times between mobile
nodes is necessary to obtain a full picture. We perform
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such an analysis for the Random Direction model [15]
inside a square in addition to the random walk model
over a circle derived in [2].

4) We then show numerically that the average relay buffer
size at cycle times derived in [2, Sec. VI] converges to
the time average of relay buffer size as the workload at
the relay node increases. This result was validated for
the Random Direction and Random Waypoint mobility
models inside a square [4].

An important point that needs to be emphasized is that,
unlike [5], [9], [10] which study the system performance when
the number of nodes is large, we are interested in a relay node
performance while it is involved in relaying data between two
particular nodes. Developing models for performance analysis
of a relay node buffer and the relay throughput can help in
dimensioning a relay node buffer size and on achieving an
optimal performance using relaying mechanisms. We note that
the model studied in this paper is not restricted to three nodes,
nor that the model requires the same mobility pattern for all
of the nodes.

The rest of the paper is organized as follows: Section II
describes the relaying system considered. In Section III we
develop a queueing model for the relay buffer (RB). Section
IV studies the effect of mobility models on the relaying
throughput, and in Section V we find expressions for the
relay throughput for the Random Waypoint and the Random
Direction models in both one and in two dimensions. Section
VI studies the RB behavior for the Random Walk and Random
Direction models. In Section VII, we report numerical results
on the stability, relay throughput, contact time distribution,
probability of a 2-hop route, and the RB behavior. Section
VIII concludes the paper and gives research directions.

II. THE SYSTEM MODEL

To study the maximum rate at which a node can relay data,
we start by considering the scenario where three nodes move
in a two-dimensional bounded region. One of these nodes is
the source of packets, one is the destination, and the third
one is the relaying node. The mobility patterns of the three
nodes are independent and may be different from each other;
this is in contrast with [5], [9] where the authors assume that
the mobility pattern of the nodes is such that the steady-state
distribution of the location of all the nodes is uniform over
the region of interest. In fact, [5] assumes that nodes perform
random walks (there are other mobility models which also
result in a uniform stationary distribution, e.g., the Random
Direction model). As mentioned earlier, we are interested in
the maximum relay throughput of a relay node. As a starting
point we will restrict ourselves to the case where there is only
one relay node. At a later stage we will relax this assumption.
Also, we want to study the dependence of the relay node
buffer behavior on the mobility model. We assume that a
node detects its one-hop neighbor(s) by sending periodically
Hello messages. However to detect two-hop neighbors, nodes
exchange the addresses of their neighbors.

The model is the following:

1) The three nodes move independently of each other ac-
cording to a (possibly node-dependent) mobility model
inside a bounded 2-dimensional region.

2) The source node has always data to send to the desti-
nation node. This is a standard assumption, also made
in [5], [9], [10], because we are interested in the maxi-
mum relay throughput of the relay node.

3) When the relay node comes within the transmission
range of the source node (we will also say that nodes
are in contact in this case), and if the destination node
is outside the transmission range of the source and of
the relay node, then the relay node accrues packets to be
relayed to the destination node at a constant rate rs. [We
could allow for a stochastic nature of traffic generated
by the source by assuming that rs is an independent
stochastic process. However, such a study is out of the
scope of this work.]

4) When the destination node comes within the transmis-
sion range of the relay node, and if the destination and
the relay node are outside transmission range of the
source node, then the relay node sends the relay packets
(if any) to the destination node at a constant rate rd.

5) If the relay node is within transmission range of both
the source node and the destination node, then the relay
node does not contribute to relaying. In this case there
is either a direct communication between the source and
destination or there is a two-hop route via the relay node
so that the relay node acts as a forwarding node and not
as a relay.

Our objective is to study the properties of the relay buffer
(stability, stationary occupancy distribution, throughput). To
this end, we first develop a queueing model that will give
many insights into the system behavior.

III. A QUEUEING MODEL FOR THE RELAY BUFFER

After addressing the case where there are only three mobile
nodes in Section III-A, we investigate the situation of an
arbitrary number of source/destination/relay nodes, under the
additional assumption that all source and destination nodes are
fixed (cf. Section III-B).

A. Single Source, Destination, and Relay Nodes

The state of the relay node at time t is represented by the
random variable (r.v.) St ∈ {−1, 0, 1} where:

• St = 1 if at time t the relay node is neighbor (i.e., within
transmission range) of the source, and if the destination
is a neighbor neither of the source nor of the relay node.
In other words, when St = 1, the source node sends relay
packets to the relay node at time t;

• St = −1 if at time t the relay node is a neighbor of
the destination, and if the source is a neighbor neither
of the destination nor of the relay node. When St =
−1 the relay node delivers relay packets (if any) to the
destination;

• St = 0 otherwise.
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Mobiles have finite speeds. We will assume that the relay node
may only enter state 1 (resp. −1) from state 0: if St− 6= St

then necessarily St = 0 if St− = 1 or St− = −1.
Denote by Bt the RB occupancy at time t. The r.v. Bt

evolves as follows:
• it increases at rate rs if St = 1. This is because when

St = 1, the relay node receives data to be relayed from
the source node at rate rs;

• it decreases at rate rd if St = −1 and if the RB is non-
empty. This is because if St = −1, and if there is any
data to be relayed, then the relay node sends data to the
destination node at rate rd.

• it remains unchanged in all other cases.
Let {Zn}n (Z1 < Z2 < · · · ) denote the consecutive jump

times of the process {St, t ≥ 0}. An instance of the evolution
of St and Bt as a function of t is displayed in Figure 1.
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Fig. 1. Evolution of {St}t and relay node buffer occupancy.

The evolution of the discrete indexed process {SZk
, k ≥ 1}

consists of sequences of 1, 0 and −1. This naturally motivates
us to look at the times when the relay node returns to the
source node after being neighbor of the destination node at
least once. This is done in the following.

We define a cycle as the interval of time that starts at t =
Zk, for some k with St = 1, and (necessarily) St− = 0 and
SZk−2 = −1, and ends at the smallest time t + τ such that
St+τ = 1 and St+s = −1 for some s < τ . In Figure 1,
the time-interval [Z7, Z17) constitutes a cycle. Let Cn denotes
the duration of the nth cycle. Note that there is no restriction
on the number of times the relay node becomes neighbor of
the source node or of the destination node during a cycle.
Hence, during a cycle the relay node will transmit packets to
the destination and will receive packets from the source. Also,
we note that the end time of the nth cycle is also the start time
of the (n+1)th cycle.

Let Wn be the time at which the nth cycle begins. Let

σn
∆=

∫ Wn+1

t=Wn

1{St=1}dt (1)

be the amount of time spent by the relay node in state 1 during
the nth cycle. Similarly, let

αn
∆=

∫ Wn+1

t=Wn

1{St=−1}dt (2)

be the amount of time spent by the relay node in state −1
during the nth cycle. Observe that during the amount of time
σn, the RB increases at rate rs, and it decreases at rate rd

during the amount of time αn. Let B̃n be the RB occupancy
at the beginning of the nth cycle, i.e. B̃n = BWn. Clearly,

B̃n+1 =[B̃n + rsσn − rdαn]+ (3)

where [x]+ = max(x, 0). In other words, B̃n+1 can be
interpreted as the workload seen by the (n+1)st arrival in
a G/G/1 queue, where rsσn is the service requirement of the
nth customer, and rdαn is the inter-arrival time between the
nth and the (n + 1)st customer. This interpretation will be
used next.

Assumption A: Throughout Section III-A we assume that
the sequence {Cn, σn, αn}n is stationary and ergodic, with
0 < E[Cn] < ∞, 0 < E[σn] < ∞ and 0 < E[αn] < ∞.

Clearly, the statistical properties of the random variables Cn,
σn, and αn will depend on the node mobility patterns. Hence,
our study will be restricted to the class of mobility models
under which the stationarity and ergodicity assumptions hold
for the sequence {Cn, σn, αn}n.
Definition: The long-term fraction of time the RB receives
data is

πs
∆= lim

t→∞
1
t

∫ t

u=0

1{Su=1}du, (4)

and the long-term fraction of time that the destination node is
the neighbor of only the relay node ( i.e., the fraction of time
that the RB may drain off) is

πd
∆= lim

t→∞
1
t

∫ t

u=0

1{Su=−1}du. (5)

It can be shown that these limits exist under Assumption
A. The proof is beyond the scope of this work. Moreover,
Assumption A implies that [3]

πs = lim
t→∞

P (St = 1) =
E[σn]
E[Cn]

(6)

and

πd = lim
t→∞

P (St = −1) =
E[αn]
E[Cn]

. (7)

Theorem 1: If rsE[σn] < rdE[αn] then B̃n converges in
probability to a proper and finite r.v. B̃ (i.e., limn P (B̃n < x)
= P (B̃ < x) ∀ x ≥ 0). If rsE[σn] > rdE[αn], then B̃n

converges in probabilty to +∞ almost surely. 2

Proof. Follows from the relation to the G/G/1 queue made
above and [14].

Remark 1: In terms of πs and πd, the stability condition of
Theorem 1 writes

rsπs < rdπd.
Remark 2: If all nodes have the same mobility pattern, then

clearly πs = πd, since the relay node is equally likely to
be within the transmission range of the source and of the
destination. Therefore, by Remark 1, the stability condition
is

rs < rd.
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Theorem 2: If rsπs < rdπd, then the relay throughput Tr,
defined as the stationary output rate of the relay node, is given
by

Tr = rsπs. 2

Proof. In steady-state the RB can be thought of as a standard
G/G/1 queue so that the output rate is the same as the input
rate and is given by rsπs.

Remark 3: The relay throughput Tr only depends on rs

and the stationary distribution of the node mobility pattern.
In particular, two different mobility patterns with the same
stationary distribution (for the location of the nodes) will yield
the same relay throughput.
It is clear from Theorem 2 and Remark 1 that πs and πd

play an important role in determining the stability and the
throughput of the RB. Much of the rest of this paper will be
devoted to the study of these quantities.

B. Multiple Source, Destination, and Relay Nodes

We now assume that there are K source nodes, M destina-
tion nodes and N relay nodes, all with the same transmission
range R (the latter will be assumed throughout). The source
and destination nodes are stationary. The relay nodes move
independently of each other inside a connected area A accord-
ing to a a common mobility model. The distance between any
two source nodes, and between any two destination nodes, is
assumed to be greater than 2R. This implies that a relay node
can not receive (resp. transmit) data from (resp. to) two or
more source (resp. destination) nodes at the same time.

Furthermore, assume that the routing protocol generates
routes of length no more than h-hops, i.e., the lifetime of a
packet in number of hops is not greater than h. The distance
between any source and any destination node is set to be
greater than hR. Therefore, there does not exist a direct route
from any source to any destination node, which implies that
packets of a source have to use the mobile relay nodes in order
to be transfered to their destinations.

The RB of a relay node is composed of M queues; one for
each of the M destinations. The system behaves as follows:

1) When there are i relay nodes inside the transmission
range of source node k, where i ∈ {1, · · · , N} and
k ∈ {1, · · · ,K}, then the source transmits to the i
relay nodes the packets addressed to destination node
m ∈ {1, · · · ,M} with probability Pm

k in a round-robin
scenario, where

∑M
m=1 Pm

k = 1. Note that we assume
that there is only one copy of the packet. Thus queue
m of the relay node accrues packets at a fixed rate
rSk

Pm
k /i, where rSk

is the transmission rate of source
node k.

2) When the relay node receives a packet from a source
that is destined to destination node m, it buffers this
packet in its queue of index m.

3) When there are j relay nodes with non-empty queue
m inside the transmission range of destination m, these
relay nodes share the channel bandwidth fairly. More
precisely, queue m of these j relay nodes drains off at
a fixed rate rDm/j, where rDm is the transmission rate

of a relay node to the destination node m. The service
discipline in queue m of the relay node is FIFO.

Let f(x), x ∈ A, be the stationary node location probability
density. Denote by xSk

and xDm
the fixed location in A of

source k ∈ {1, · · · ,K} and destination m ∈ {1, · · · ,M},
respectively.

Hence, the probability that a relay node is the neighbor of
a node located in x ∈ A is

π(x) =
∫

{y∈A:d(x,y)≤R}
f(y)dy, (8)

where d(u, v) is the Euclidean distance between locations u
and v.

By conditioning on the number of nodes within range of
source node k, we find that the input rate at queue m of each
relay node is

τm
Sk

=Pm
k rSk

N∑

i=1

1
i

(
N − 1
i− 1

)
π(xSk

)i π(xSk
)
N−i

=Pm
k rSk

1− (
1− π(xSk

)
)N

N
, (9)

where a := 1− a.
The overall long-term arrival rate to queue m of a relay

node from all of the sources is

τm
S :=

K∑

k=1

τm
Sk

=
1
N

K∑

k=1

Pm
k rSk

[
1− (

1− π(xSk
)
)N

]
. (10)

The exact derivation of τm
D , the long-term service rate of

queue m at a relay node, is intractable since it depends on
the (stationary distribution of the) location of the other relay
nodes with respect to the destination Dm, and on whether or
not queue m at each relay node is empty or not and located
within transmission range of Dm. More precisely, if i relay
nodes are within the transmission range of destination Dm,
and if queue m in each of these relay nodes is non-empty,
then the service rate in queue m at each of the i relay nodes
is rDm/i. The above reasoning indicates that rDm/N is the
minimum instantaneous service rate at each queue m. This
yields the following lower bound—called τ̂m

D —on the long-
term service rate of queue m:

τ̂m
D = rDm

1− (
1− π(xDm)

)N

N
. (11)

As a result, a sufficient condition for the stability of queue m
at each relay node is

τm
S < τ̂m

D . (12)

If queue m at a relay node is stable, then the relay throughput
Tm

r at this queue is equal to its long-term arrival rate, i.e,

Tm
r =τm

S =
K∑

k=1

τm
Sk =

1
N

K∑

k=1

Pm
k rSk

[
1− π(xSk)

N
]
.

(13)
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The network throughput, T , is the sum of the relay throughputs
at all the M queues of all the N relay nodes, namely

T =
N∑

n=1

M∑
m=1

Tm
r =

K∑

k=1

rSk

[
1− (

1− π(xSk)
)N

]
. (14)

Observe that 1− (
1− π(xSk)

)N
is the probability that there

is at least one relay node inside the transmission range of the
source node k.

We conclude this section by briefly addressing the situation
where all of the nodes are moving. Since an exact calculation
of the throughput of queue m at a relay node is very difficult,
we will derive an approximation for this quantity. This approx-
imation is based on the assumption that routes cannot exceed
two hops. We assume that all nodes move independently of
each other with the same mobility pattern, and that they have
the same transmission range. Let p1 be the probability that
two nodes are within transmission range of one another. Let
p2 be the probability that three nodes constitute a two-hop
route. Then, under the above simplifying assumption

N∑

i=1

Pm
k rSk

i

(
N − 1
i− 1

)
(p1 − p2)i (1− p1)N+1−i

=Pm
k rSk

(1− p1)
(
(1− p2)N − (1− p1)N

)

N
(15)

is the contribution of source node k to the long-term arrival
rate in queue m at any relay node. Therefore, the overall
long-term input rate at queue m at any relay node can be
approximated by summing up the r.h.s. of the above identity
over all the values of k. This gives

τm
S ≈ (1− p1)

(
(1− p2)N − (1− p1)N

)

N

K∑

k=1

Pm
k rSk

. (16)

When Pm
k = 1/M (that is, there is a uniform probability that

source node k sends to destination node m) and when the
transmission rates of all sources are equal to rS , then (16)
becomes

τm
S ≈rS

(1− p1)
(
(1− p2)N − (1− p1)N

)

MN
. (17)

In the next section, we will investigate the impact of the
mobility pattern on the relay throughput. We will show that
the throughput is minimized when in steady-state the nodes
are uniformly distributed over the area.

IV. COMPARISON OF MOBILITY MODELS

We consider the scenario where nodes move independently
of each other according to same mobility pattern. Assume
that the nodes location distribution is stationary. The nodes
position can take values in a discrete set X with cardinality
#X = G. Let G(x), x ∈ X denote the set of all points in
the transmission range of a node located at x. We assume that
there is complete symmetry, so that #G(x) = #G(y) for all
x, y ∈ X and that if x ∈ G(y) then y ∈ G(x). This can be
assumed when there is no boundary effect, for example, as is
the case of motion over a torus or over a circle (representing,
respectively, motion over a plane or line with wrap around).

Let P be the probability measure over X that represents
the stationary node location distribution. As the cardinality of
X is equal to G, P can be represented as an G-dimensional
(column) vector. The uniform stationary node location over X ,
called U , is a G-dimensional vector whose entries are all equal
to 1

G . Let ex, x ∈ X , denote a probability measure over X
which gives all mass to position x, i.e., ex is an G-dimensional
vector whose entries are all equal to 0 except for the xth

components which is equal to 1.
For any stationary node location distribution P over X ,

let g(P ) denote the probability that two nodes are neighbor
of each other. Let H denote the neighborhood matrix, i.e.,
Hx,y = 1 if y ∈ G(x) and Hx,y = 0 otherwise. Note H is a
symmetric matrix. In terms of Px (resp. Py), the probability
that a node is at location x (resp. y) in the stationary regime
g(P ) writes

g(P ) =
∑

x∈X

Px

∑

y∈G(x)

Py =
∑

x∈X

Px

∑

y∈X

Hx,yPy = PT HP

where PT is the transpose of P and we use the fact that the
locations of the nodes are independent.

Theorem 3: A uniform distribution of nodes over the re-
gion of interest achieves the minimum probability of contact
between any two nodes. 2

Proof: Consider any P of the form

P =U + δex − δey, (18)

for some 0 < δ < 1 and x, y ∈ X , x 6= y. Then

g(P ) =PT HP

=g(U) + δ2(eT
x Hex + eT

y Hey − eT
x Hey − eT

y Hex)

+ 2δ(ex − ey)T HU, (19)

where we have used the fact that for all x ∈ X eT
x Hex = 1 as

x ∈ G(x). Since H is a symmetric matrix, we have PT HQ =
QT HP for all P, Q probability measures on X . Also, it is
easy to see that eT

y Hex = 1 if x ∈ G(y) and is 0 otherwise.
Hence we get

g(P ) =g(U) + 2δ2(1− 1{x∈G(y)}) + 2δ(ex − ey)T HU

=g(U) + 2δ21{x/∈G(y)} +
2δ(#G(x)−#G(y))

G
,

where in the last expression we have used the, easy to observe,
fact that eT

x HU = #G(x)
G . Hence, since #G(x) = #G(y) for

all x, y ∈ X , it is seen that g(P )−g(U) = 2δ21{x/∈G(y)}) ≥
0. Which implies that

U ∈ argmin
P=U+δex−δey

g(P ). (20)

Now, any other probability distribution over the set X is
a point in G−dimensional canonical simplex. The uniform
distribution is at the centroid of this simplex and any other
distribution P , when viewed as an G dimensional vector (a
point in the simplex), can be written as

P =U + ε, (21)

where U is the uniform distribution and ε is an G-dimensional
vector whose entries are in the interval [− 1

G , G−1
G ] and the
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entries sum to zero. Clearly, any such ε can be written as a
(possibly non-unique) finite sum

ε =
∑

x∈I(P )

(ex − ey(x))δx, (22)

where I(P ) ⊂ X is some index set, y(x) ∈ X , and δx >
0, x ∈ I(P ). This is because ex forms a basis for the
G−dimensional space and because P is a probability vector
with

∑
x∈X εx = 0.

Recall that if the stationary node distribution is P , we can
write g(P ) as g(P ) = PT HP , where H is an G × G sym-
metric matrix indicating the neighborhood relation. We have
already shown that when P = U , the uniform distribution, the
directional derivative of PT HP is positive along any direction
of the form (ex−ey) where ex is G−dimensional vector with
all except the xth entry equal to zero. We now use continuity of
the derivative of g(U) to conclude that its directional derivative
along any direction is positive. Hence U ∈ argmin

P
g(P ).

The above result does not imply that the relay throughput
achieves its minimum under the uniform stationary node
distribution. This is because the relay throughput under dis-
tribution P , denoted Tr(P ) = rsπs(P ) and with πs(P ) =
limt→∞ P (St = 1) under the probability measure P , is

Tr(P ) =rs

(
g(P )−

∑

x∈X

Px

∑

y∈G(x)

Py

∑

z∈G(x)∪G(y)

Pz

)
, (23)

and it can be easily seen that for any x ∈ X , πs(ex) = 0.
Since πs(·) is a probability, this implies that P = ex achieves
minimum of πs(·). However, it is reasonable to assume that
the uniform distribution is a local minimum for πs(·) because
the second term in expression for πs(·) above is of smaller
order as compared to the first term.

Observe that if the source node and the destination node
are fixed, and if they are far apart (so that a two-hop commu-
nication between them via a relay node is not possible), then
a uniform distribution of relay node achieves the minimum
relay throughput.

In the next section, we will find expressions for the relay
throughput in the case nodes move according to the Random
Waypoint and the Random Direction models.

V. THROUGHPUT IN RANDOM WAYPOINT AND RANDOM
DIRECTION MODELS

In this section, we compute the relay throughput in the case
where (i) the relay node moves along a finite interval according
either to the Random Waypoint model or to the Random Direc-
tion model, the source and destination nodes being stationary
(Section V-A.1), (ii) all nodes move independently of each
other, with the same mobility model (Random Direction or
Random Waypoint), either along a finite interval (Section V-
A.2) or inside a square (Section V-B).

We have shown in Theorem 2 that the relay throughput Tr

is given by Tr = rsπs, where rs is the transmission rate of the
source to the relay node (rs is a given parameter), and πs is the
stationary probability that the source is sending packets to the
relay node (see Section III). In the following, we will compute
πs for each case mentioned above. This will be carried out

under the assumption that all nodes have the same transmission
range R.

A. One Dimension

For the Random Waypoint mobility model over the interval
[0, L], the stationary probability density function of a node
location is [4]

f(x) =
6(L− x)x

L3
, x ∈ [0, L]. (24)

The stationary probability density function under the Random
Direction mobility model is uniform [15], i.e.,

f(x) =
1
L

, x ∈ [0, L]. (25)

1) Only Relay Node is Mobile: We assume that the source
and the destination nodes are fixed in [0, L], and that the relay
node moves along this interval according to either the Random
Direction or the Random Waypoint mobility model.

We first focus on the stability condition. From Remark 1
the stability condition is given by rsπs < rdπd, where these
quantities are defined in Section III. Let us compute πs and
πd for either mobility model (recall that rs and rd are given
parameters). We have

πs =
∫ (s+R)∧L

x=(s−R)+
f(x)dx, πd =

∫ (d+R)∧L

x=(d−R)+
f(x)dx,

where f(·) is the stationary node location distribution, and
a ∧ b=min(a, b). Thus, the stability condition reads

rs

∫ (s+R)∧L

x=(s−R)+
f(x)dx < rd

∫ (d+R)∧L

x=(d−R)+
f(x)dx. (26)

Consider now the relay throughput. In the stable case it is
given by (see Theorem 2)

rs

∫ (s+R)∧L

x=(s−R)+
f(x)dx. (27)

In the particular case where the relay node moves according
to the Random Direction mobility model, the stability condi-
tion is (use (26)) with f(x) given in (25))

rs((s+R)∧L)−(s−R)+<rd((s+R)∧L)−(s−R)+,

and the relay throughput, T f
RD, achieved is (cf. (25) and (27))

T f
RD = rs

((s+R)∧L)−(s−R)+

L
. (28)

For R < s < L− R and R < d < L− R, T f
RD = rs

2R
L and

πs = πd, regardless of the position of the source node and
of the destination node. In this case, the stability condition
reduces to rs < rd.

When the relay moves according to the Random Waypoint
mobility model, then the stability condition is (use (24) and
(26))

rs[2(A−B)(3− (A2 + AB + B2))]

< rd[2(C −D)(3− (C2 + CD + D2))],
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with

A :=(s + R) ∧ L, C := (d + R) ∧ L,

B :=(s−R)+, D := (d−R)+,

and the relay throughput, T f
RW , is given by

T f
RW = rs

2(A−B)(3− (A2 + AB + B2))
L3

. (29)

2) All Nodes are Mobile: We now assume that the source,
destination and relay nodes are all mobile, and move along
[0, L] according to the same mobility model: the Random
Waypoint or the Random Direction model. First, observe from
Remark 2, that in this case the stability condition is given by
rs < rd.

Let us now compute the throughput Tr = rsπs for each
mobility model. We have

πs =
∫ L

0

f(x)
∫ (x+R)∧L

(x−R)+
f(y)dydx−

∫ L

0

f(x)

[∫ (x+R)∧L

(x−R)+
f(y)dy

]2

dx

−
∫ L

0

f(x)
∫ (x+R)∧L

(x−R)+
f(y)

∫ (y+R)∧L

(y−R)+
f(z)dzdydx, (30)

where f(x) is given either by (24) or by (25), depending on
the mobility model in use. It is easy to compute πs in explicit
form for both functions f(x). We will instead provide compact
approximation formulas, since the exact ones are lengthy. We
approximate πs by the first term in the r.h.s. of (30). Note that
this term is the probability that two nodes are neighbors. This
approximation is justified by the fact that, for each function
f(x) in (24) and (25), the second and the third term in the
r.h.s. of (30) are much smaller than the first term, when the
ratio ρ := R/L is small with respect to 1. This yields the
following approximate throughputs:

TRW ≈ rs
ρ(12− 20ρ2 + 15ρ3 − 2ρ5)

5
(31)

for the Random Waypoint mobility model, and

TRD ≈ rsρ(2− ρ), (32)

for the Random Direction mobility model. Observe that these
formulas depend on R and L only through their ratio, and that
TRD < TRW for all ρ < 1.

We conclude this section by considering the case where
rs = rd := r. In this case, the relay buffer is not stable. To
handle this situation, it is proposed in [9] to use a probability
of relaying, pr, which is close to 1, so that when the relay
node enters the neighborhood of the source node, the source
node transmits data to be relayed with probability pr < 1, and
does not transmit with the complementary probability. Note
that this scheme ensures stability and gives near maximum
throughput as well.

B. Two Dimensions

In this section we consider nodes moving in a square. We
start by computing the relay throughput; then we find the
probability of these nodes form a two-hop route.

1) Three Nodes Moving: Nodes move independently of
each other inside a square of side length L. They move
according to the same mobility model, the Random Direction
or the Random Waypoint model.

Similarly to Section V-A.2 the stability condition is rs < rd

(Remark 2). The probability that two nodes are neighbors is

π(f) =
∫

x∈[0,L]2
f(x)

∫

x2:|x−x2|≤R

f(x2)dx2dx ≈ πR2

∫

x∈[0,L]2
f2(x)dx,

where we have used the continuity of f(·), and the assumption
that R is negligible with respect to L. This approximation is
in agreement with Theorem 3, which states that the minimum
probability of contact is achieved by the uniform distribution,
since the latter integral is the L2-norm of f(·), which is
minimized when f(·) is the uniform distribution.

When the RB is stable, the relay throughput is approximated
by rsπ(f), where rs is the source transmission range. It can be
shown, numerically, that for the Random Waypoint mobility
model over a square π(f) ≈ 1.36π(R/L)2 [7], this implies
that the relay throughput, T 2d

RW , is approximated by

T 2d
RW ≈ 1.36πrsρ

2, (33)

where ρ := R/L. Under the Random Direction mobility we
find that π(f) ≈ πρ2. Hence, the relay throughput, T 2d

RD, is
approximated by

T 2d
RD ≈πrsρ

2. (34)

Note that T 2d
RD < T 2d

RW .
2) Probability of a Two-Hop Route: The throughput of data

between a pair of nodes when there exists a route between
them, called forwarding throughput, is a function of the route
length in hops. A first step to derive the forwarding throughput
is to compute the distribution of the route length in hops. In
this section, we compute the probability of a two-hop route
between two nodes s and d, assuming there are N other
nodes. All the nodes are mobile inside a square A = [0, L]2

and moving (independently) according to either the Random
Waypoint or Random Direction models.

Let xs (resp. xd) represents the position of node s (resp.
d). There is a two-hops route between node s and d, if the
node d is inside the annulus, C, of center xs and of interior
and exterior radius equal to R and 2R, and there is at least
an intermediate node inside, DI , the intersection of the two
disks of radius R centered around xs and xd. The probability
of the two-hop routes between nodes s and d when R << L
writes

PN (2) ≈
∫

A

f(xs)
∫

C

f(xd)
[
1−

( ∫

DI

f(x)dx
)N]

dxddxs

≈ 2π

N∑

i=1

(−1)i+1

(
N

i

)
u(i)vf (i)

(R

L

)2(i+1)

, (35)

where u(i) =
∫ 2

1
rA(r)idr, and vf (i) =

∫
[0,1]2

f(x)i+2dx.
Here A(r) is the area of DI when R = 1 and the distance
between nodes s and d is equal to r. This gives

A(r) =2 arcos
(r

2

)
− r

2

√
4− r2. (36)
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We observe that PN (2) is a function of (R/L)2. The nu-
merical values of u(i) and vfw(i), the value of vf (i) for the
Random Waypoint model, are listed in Table I. Note that for
the Random Direction model the node location distribution is
uniform over A, hence vfd(i), the value of vf (i) in such case,
is equal to one.

i u(i) vfw(i) i u(i) vfw(i)

1 0.649 2.156 8 0.4513 170.9
2 0.47 3.664 9 0.494 341.7
3 0.406 6.541 10 0.547 688.8
4 0.384 12.08 20 2.159 9.93 105

5 0.383 22.87 40 66.23 3.68 1012

6 0.395 44.1 60 2703.08 3.80 1018

7 0.418 86.3 120 3.09 108 7.09 1038

TABLE I
THE NUMERICAL VALUES OF THE u(i) AND vf (i) FOR THE RANDOM

WAYPOINT MODEL.

Until now we have looked at the effect of mobility patterns
on the “average” throughput and showed that throughput de-
pends only on the stationary node distribution. We then showed
that minimum throughput is achieved when the stationary
distribution of node position is uniform. In the next section,
we will study the relay buffer behavior in the case where the
relay node performs a Random Walk with fixed source and
destination, and in the case all the three nodes move according
to Random Direction model inside a square.

VI. RELAY BUFFER BEHAVIOR

In this section, the effect of the mobility model on the
relay buffer occupancy is studied. We assume that the mobility
models under consideration have stationary node location
distributions. The plan is to use the G/G/1 queueing model
of the RB size introduced in Section III-A, and to look at the
effect of mobility patterns on the relay buffer occupancy.

More precisely, in Equation (3) the RB size at the beginning
of nth cycle, B̃n, was interpreted as the workload seen by the
(n + 1)st arrival in a G/G/1. In this section, the distribution
of B̃n will be approximated by the corresponding quantity
in a GI/G/1, i.e., by assuming that αn and σn in (3) are
independent. In the GI/G/1 queue, it is known that E[B̃]
verifies the following inequality called the Kingman upper
bound [13, P. 29]

E[B̃] ≤ r2
dV ar(αn) + r2

sV ar(σn)
2(rdE[αn]− rsE[σn])

, (37)

and furthermore in the heavy traffic case, i.e., when rsE[σn] ≈
rdE[αn] with rsE[σn] < rdE[αn], the stationary waiting time
is exponentially distributed with mean [13, P. 29]

E[B̃] ≈ r2
dV ar(αn) + r2

sV ar(σn)
2(rdE[αn]− rsE[σn])

. (38)

This approximation will be used in the following to estimate
the expected RB size for the following cases where: first
the relay node performs a Random walk and the source and
destination are fixed, second the three nodes move inside a
square according to the Random Direction model. This section
is meant for illustration of the above phenomenon.

Moreover, it is also to be understood that the effective arrival
process to the RB in the G/G/1 queueing model is not the
contact time between the relay and source nodes, i.e.,

∫ Zn+1

u=Zn

1{S(u)=1}du, (39)

but is composed of many (random number of) such contact
times since

σn =
∫ Wn+1

u=Wn

1{S(u)=1}du. (40)

That this is the case can be easily seen by studying the
evolution of the {St} process. Since it is possible that in a
cycle, the {St} process alternates between values 0 and 1 for
many times before taking the value of −1.

Clearly, a larger relay buffer occupancy would imply that
the amount of time required to deliver all the packets would be
composed of many contact periods between the relay node and
the destination, hence there can be several inter-visits between
the relay node and the destination required to deliver the
packets. This implies that we can not study the delay incurred
by the nodes by considering only one inter-visit time (or the
meeting time) or only one contact time. This shows that the
buffer behavior (hence the delays) will depend on both contact
times and the inter-visit times.

This section is meant for illustration of the above phe-
nomenon.

A. One-dimensional Random Walk

We consider the following scenario. The relay node is
moving according to a symmetric random walk (RW) on a
circle of circumference1 4R + 2w steps – see Figure 2. The
RW step size is fixed and is equal to µ meters. The speed of
the relay node is assumed to be constant and equal to v, so the
time required to jump from one step to the next one, is equal
to µ/v seconds. The source and the destination are held fixed,
and they are located as shown in Figure 2. The quantities w
and R are assumed to be integers. Also, the data transmission
between source and destination only takes place through the
relay node.

When the relay node becomes a neighbor of the source
(when passing points E or F), it starts to accumulate data
at rate rs. When the relay node enters the neighborhood of
the destination, via points G or H, it delivers the data to
destination at rate rd. Once in the interval [E, F ], the relay
node remains there for a random amount of time before exiting
via points E or F . Symmetry implies that this time has the
same distribution whether the relay node enters [E,F ] through
the point E or F . Similar is the case for the segment [G,H].
We call this (random) time the contact time between the
relay node and the source (or the destination). Once the relay
node exits [E, F ], it either enters [J,K] or [I, O]. Now, the
relay node stays in this region for a random amount of time
(during which it neither receives nor transmits), and then either
reenters [E, F ] or enters [G,H].

1R is the transmission range of source, destination, and relay node.
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Fig. 2. Random walk on circle.

The number of times that the relay node enters [E, F ]
without entering [G, H] is denoted by the r.v. L, and is
geometrically distributed with parameter p, independent of
whether the relay node exited [E, F ] via E or F , that is,

P (L = k) = (1− p)pk−1.

The parameter p is the probability that a symmetric random
walker starting at point J hits point F before reaching G.

Let Aj , j ≥ 1, be independent and identically distributed
random variables representing the first time that a random
walker, starting at point F , exits [E,F ], so that the service
requirement in the queueing model of Section III-A is rsσ,
where

σ =
L∑

j=1

Aj .

In the following, A denotes a generic r.v. with the same
distribution as Aj .

Using results from random walk literature (for example [6]),
it can be shown that

E[A] = 2R
µ

v
,

V ar[A] =
(µ

v

)2

· 4R

3
(2R + 1)(R + 1),

p = 1− 1
w

,

E[L] = w,

V ar[L] = w(w − 1).

Since L is independent of A, we get

E[σ] = E[A]E[L] = 2wR
µ

v
,

V ar[σ] = V ar[A]E[L] + (E[A])2V ar[L],

= 4wR
(µ

v

)2(
wR +

1
3
(2R2 + 1)

)
.

In the scenario under study, σn and αn have the same
probability distribution (Remark 2). Thus based on (38), the
expected RB size at the beginning of the cycles is approxi-
mately exponentially distributed with expected value

E[B̃] =
(r2

s + r2
d)V ar(σ)

2E[σ](rd − rs)
=

µ(r2
s + r2

d)
v(rd − rs)

(
wR+

1
3
(2R2+1)

)
,

(41)

when rs ≈ rd with rs < rd.

B. Random Direction Mobility on a Plane

We consider the following scenario of three nodes: the
source, the destination, and the relay node. All these nodes are
moving inside a square of side-length L. They move according
to the Random Direction model with wraparound and with
constant speed V , and constant travel time T .

Based on the queueing model of Section III-A, the RB
accumulates data at rate rs when the process St = 1. This
means that the relay node is inside the transmission range of
the source, in contact with the source, and the destination
is outside the transmission range of the source and of the
relay node. In the first hand, note that when R << L the
probability that the source and the relay node are in contact
is of order (R/L)2, see Section V-B.1. But on the other hand,
the probability that the relay node and the destination are in
contact with the source is of order (R/L)4, the same order
as the probability that the three nodes form a two hop route,
see Section V-B.2. Thus, we will approximate the duration of
time where St = 1 by the duration of time where the source
and the relay node are in contact regardless of the position of
the destination.

Let Aj , j ≥ 1, be independent and identically distributed
random variables representing the contact times between the
source and the relay node. Recall that in Section III-A a cycle
contains at least one contact time between source and relay
node and one contact time between relay node and destination.
Let L1 denotes the r.v. that represents the number of times that
a contact is established between the source and relay node
inside a cycle. The service requirement in the queueing model
of Section III-A is rsσ, where

σ =
L1∑

j=1

Aj . (42)

As we saw in Section VI-A, the mean RB size at cycle instants
in heavy-traffic depends on the first two moments of L1 and
Aj . Thus in the rest of the section, first we will derive the
probability distribution of L1, and next we will derive the
probability distribution of Aj using that of L1.

For i ≥ 1, let Ii denote the inter-meeting time between
the source and the relay node, i.e. the time interval between
two consecutive contacts of the two nodes. Let Fr denote the
residual time (from start of a cycle) required for the relay
node and the destination to come in contact with each other.
We will assume that Ii, Ai, and Fr are mutually independent
[11]. For k ≥ 1, let Xk =

∑k
i=1(Ai + Ii) and X0

∆= 0, so the
probability that L1 ≥ k given that L1 ≥ 1 is

P (L1 ≥ k) =
P

(
Xk−1 + Ak ≤ Fr

)

P
(
A1 ≤ Fr

) . (43)

For R << L, the inter-meeting times between any pair of
nodes, Ii, are well approximated by independent and identi-
cally distributed r.v. of exponential distribution with parameter
λ = 8RV

πL2 [8]. Then, using the memoryless property of the
exponential distribution, it follows that Fr is also exponentially
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Fig. 3. Contact distance between 2 mobile nodes.

distributed with the same parameter λ. Therefore, in our case
the probability P (L1 ≥ k) is approximated by

P (L1 ≥ k) ≈ βk−1, (44)

where β = 1
2exp

(− λE[A]
)
, with E[A] denoting the average

value of the r.v. Aj . The above approximation is based on the
assumption that variation of Aj is small compared to those
of Xk and Fr. In the rest of the section, we will derive the
probability distribution of Aj .

Let A denotes the r.v. that have same distribution as Aj .
Assume that during the contact of two nodes there is no
change of node direction. This assumption holds when T ,
the node travel time between successive change of directions,
is sufficiently large compared to the contact time between
two nodes. By conditioning on the direction of the source,
θs, and of the relay node, θr, we derive the relative speed
v∗ = |−→V (θs) − −→V (θr)| and the relative angle θ∗ = θs − θr

between these two nodes. The crossing distance, AB, depends
on the crossing angle α, see Figure 3. By conditioning on α, A
is computed by dividing AB by the relative speed v∗. We note
that in the case of the Random Direction model θs, θr, and α
are uniform distributed in [0, 2π]. The CDF of A is computed
by unconditioning on θs, θr, and α, over the constraint that
|θs−θr| > δ, where δ is a threshold to avoid very large contact
time occurrence. Let θ1 = θs+θr

2 , and θ2 = θs−θr

2 , thus the
CDF of the normalized contact time Ã = AV

R is the following

P (Ã ≤ x) =
1
C

[ ∫ 2π

δ

∫ θs−δ

0

∫ π
2

0

dαdθsdθr

θ1−pi≤α≤θ1,sin(θ1−α)≤x·sin(θ2)

+

∫ 2π−δ

0

∫ 2π

θs+δ

∫ π
2

0

dαdθsdθr

0≤α≤θ1−π,sin(θ1−α)≥x·sin(θ2)

+
∫ 2π

δ

∫ θs−δ

0

∫ 2π

π
2

dαdθsdθr

θ1+pi≤α≤2π,sin(θ1−α)≤x·sin(θ2)

+
∫ 2π−δ

0

∫ 2π

θs+δ

∫ 2π

π
2

dαdθsdθr

θ1≤α≤θ1+π,sin(θ1−α)≥x·sin(θ2)

]
(45)

where C is a normalization constant. We observe that the CDF
of the normalized contact time is independent of R and V ,
and that it is easy to compute numerically the moments of
Ã. For example for δ = 0.1π, we have that C = 0.3298,
E[A] = 1.1778R

V , and E[A2] = 2.3365
(

R
V

)2.
Supposing that L1 is independent of A, the mean and

variance of σ are derived. So based on (38), in heavy-traffic

the RB size at the the beginning of the cycles is approximately
exponentially distributed with mean value

E[B̃] = (0.403 + 0.5889
β

1− β
)
r2
s + r2

d

rd − rs

R

V
, (46)

for rs ≈ rd with rs < rd. We observe that E[B̃] is function
of R, and V only through the ratio R/V . Further in Section
VII-H that the event average E[B̃] converges to, E[Bt], the
time average of the RB size in the heavy-traffic.

VII. NUMERICAL RESULTS

In this section we present simulation results to validate
results in Theorem 1 (stability issues), Theorem 2 (throughput
depends only on stationary distribution), Section V (through-
puts obtained by Random Waypoint and Random Direction
Models), the probability of two-hop route, the relay buffer
behavior as studied in Section VI, and the probability distri-
bution of the contact time. Throughout this section, we will
assume that the transmission range of the nodes is constant
and is equal to R.

A. Validation of Theorem 1

We consider the scenario of three nodes: a source, a
destination, and a relay node. each moving according to a
symmetric random walk over a circle of circumference length
equal to 4000m. It follows from Remark 2 that the relay node
buffer occupancy is stable iff the ratio p = rs

rd
< 1. Figure 4

plots the evolution of relay node buffer with time for different
values of p.
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Fig. 4. Time-evolution of relay node buffer for Random Walk model over a
circle for different values of ratio, p = rs

rd
.

It is evident from the figure that when p = 1.0, the buffer
occupancy process is unstable. While for the case p = 0.9 <
1.0, this process is stable. Similar results were obtained even
for p ≈ 1.0 with p < 1.0 but are not shown here.

Figure 5 plots the evolution of the mean relay node buffer
as a function the ratio p for Random Direction model inside
a square of side-length 1000m and for two different values of
R = {50, 100}m. The nodes’ speed (resp. nodes’ travel time)
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is uniformly distributed inside [5m/s, 15m/s] (resp. [9s, 11s]).
Observe that the mean relay node buffer size increases rapidly
as p approaches one.
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Fig. 5. Mean relay buffer size as a function of the ratio p = rs
rd

for Random
Direction mobility and for diferent value of R.

B. Validation of Theorem 2 and Section V

Theorem 2 states that the relay throughput depends only on
the stationary node distribution. Section V provides the value
of relay throughput under Random Direction and Random
Waypoint mobility models. To validate both of these results,
we ran simulations to find the relay throughput for case of the
Random Direction and the Random Waypoint mobility models
with different parameters.

We illustrate that the throughput depends only on the
stationary distribution of the node position by looking at the
scenario where three nodes move over a line of length L =
4000m according to the Random Direction model. We assume
that the time between two consecutive decision instants (travel
time) is fixed and equal to 15 seconds and the distribution of
speed was chosen to be i) Uniform over some interval, ii)
Exponentially distributed, and iii) fixed. Note that the case
where speed is fixed corresponds to the Random Walk. Since
the stationary node location distribution is same for all the
three choice of speed distribution, Theorem 2 implies that
the relay throughput will be identical. The numerical results
plotted in Figure 6 are in accordance with this result. Also
evident is the fact that relay throughput Tr = πs, for rs = 1.
In Figure 7 we plot values of πs when the three nodes move
according to the Random Waypoint model over a square of
side-lengths L for different values of transmission range, R.
We keep the speed of the mobiles fixed. The plot shows
that πs (and hence Tr) is a function of ρ = R

L alone. The
numerical values also support the result of Section V-B where
for the Random Waypoint model in square, the throughput is
approximately 1.36πρ2. Similarly, the values of the throughput
from theory and simulations provide a good match for all
of the scenario studied in Section V. Because of the space
restriction, we did not include these numerical results due to
space constraints.
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shown are corresponding values from Section V-B.

C. Validation of Section III-B

Section III-B studies multiple relay nodes with fixed source
nodes and destination nodes. It reports stability condition and
derives the value of the relay throughput and the network
throughput. To validate the stability condition, we take the
scenario of one source node, one destination node, and 3
relay nodes move according to the Random Waypoint model
inside a square of side-length L = 4000m. The source and
destination nodes are fixed and they are symmetric according
to the center of the square, and the separated distance between
them is of 2000m. The stable case is shown in Figure 8 where
rs = 0.9rd, and the unstable case is shown in Figure 9 where
rs = 1.1rd. The network throughput as a function of the
number of the relay nodes are shown in Figure 10 for different
value of R/L. In this scenario, the probability that the relay
node is neighbor of the source of location (1000, 1000) is
equal to 0.0485, 0.0275, and 0.0126 for R/L equal to 0.1,
0.075, and 0.05 respectively.
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Fig. 8. Time-evolution of relay buffer for three relay nodes moving according
to Random Waypoint model inside a square of side-length 4000m, with fixed
and symmetric source and destination node w.r.t. to square center. Here rs =
0.9rd (the stable case)
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D. Validation of Section III-B

In this section we validate the approximation of Section
III-B of the case where all source and destination nodes are
moving (c.f, Equation (16)). We consider a scenario of N relay
nodes and K source nodes and M destination nodes. All the
nodes move according to the Random Waypoint model within
a square region of side-length L equal to 4000m. We assume
that the lifetime of the packets in hops is equal to 4 hops. In
Figure 11, we show the approximation (c.f, Equation (16)) as
well as the simulation result of, τm

S , the long-term arrival rate
to the queue m of the relay node n from the source nodes. We
observe that the above approximation is accurate for R/L ≤
0.05, and the relative error between the approximation and
simulation is less than 5%, for R/L = 0.05.
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E. Validation of Two-Hop Route Probability

We have N +2 nodes moving inside a square of side length
L = 4000m according to the Random Waypoint model. We
validate the approximation formula for the probability of a
two hops route for different values of N (cf., section V-B.2).
In Figure 12, we show the results of the simulation and the
approximation for R/L ∈ {0.025, 0.0375, 0.05}. We observe
that for R/L ≤ 0.05 the approximation is accurate.

F. Validation of Section VI-A

We consider the relay node buffer occupancy in the scenario
in Section VI-A. Figure 13 plots the percentage of the relative
error of the relay buffer occupancy found in (41) and the
corresponding simulated value E[Bsim] as a function of the
load rs

rd
and for different values of the parameters R and w

with rd = 1, µ = 100m, and v = 10m/s. Parameters R and
w are chosen so that the circumference of the circle is equal to
3000 meters (i.e. (4R+2w)µ = 3000m). In the simulation the
relay node buffer is sampled at the beginning of each cycle (as



13

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5
x 10

−3

Number of nodes

P
ro

ba
bi

lit
y 

of
 2

 h
op

s 
ro

ut
e

Approx. R/L=0.05
Sim. R/L=0.05
Approx. R/L=0.0375
Sim. R/L=0.0375
Approx. R/L=0.025
Sim. R/L=0.025

Fig. 12. Probability of two-hop route as function of number of nodes. All
nodes move according to Random Waypoint model inside square of side length
4000m.

defined in Section III). Throughout these experiments, when
rs

rd
> 0.9, so as to reflect the heavy-traffic scenario under

which (41) was established. We observe that this relative error
is almost independent of R and w. Furthermore, for rs

rd
≥ 0.95

the relative error between (41) and the simulation is smaller
than 8%.
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Fig. 13. Percentage of relative error between model in (41) and simulation
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µ = 100m, and v = 10m/s.

G. Validation of Section VI-B

We consider the scenario where the nodes move according
to the Random Direction model inside a square of side length
L = 4000m. The nodes speed is constant and is equal to V .
The node travel time, T , is constant and is greater than R/V .
First, we validate the approximation of, Ã, the normalized
contact time, and next the approximation of the mean buffer
size E[B̃] at cycle time. In Figure 14, we compare the normal-
ized contact time distribution of the simulations for different
values of R/V and T with the model (c.f, Equation (45))

for δ = 0.1π. We observe that similarly as the model predict
that the CDF of Ã is almost independent of R/V , of R/L,
and of T . We note that same observations are also valid in
the case of the Random Waypoint model, see Figure 15. In
Table II, we show the relative error between the average buffer
size computed using the model (c.f, Equation (46)) and the
simulation as a function of the R and V for the case of
Random Direction model and for rs

rd
= 0.99. We observe that

the model is accurate for R/V < 10.
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R (m) 75 100
V (m/s) 7.5 15 10 20

|E[Bsim]−E[B̃]|
E[B̃]

0.14 0.03 0.14 0.05

TABLE II
VALIDATION OF EQUATION (46) FOR rs/rd = 0.99 AND rd = 10.
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H. Comparison between E[B̃] and E[B]

In this section we study the relative difference between,
E[B], the RB time average and, E[B̃], the RB average at the
cycle time (event average). We consider the scenario where
three nodes move according to the Random Waypoint or
to the Random Direction with reflection inside a square of
side-length L = 1000m. For both cases, the nodes speed
is uniformly distributed in the interval [5m/s, 15m/s]. For
the Random Direction model the travel time is uniformly
distributed inside [9s, 11s]. Tables III and IV show the relative
difference defined as follows E[B]−E[B̃]

E[B] as a function of R,
the node’s transmission range, and the ratio rs

rd
. Note that the

time average E[B] is computed by sampling the RB size
every 0.1s. The simulation time is considered to be equal
to 109s. We observe that for different values of the R as
the rs

rd
increases the relative difference decreases and when

rs

rd
= 0.99 the relative difference is almost negligible. This

means that the event average E[B̃] is converging to the time
average E[B] and these two quantities are almost equal in
heavy-traffic. Note that this observation is true for the two
mobility models considered.

rs/rd

R (m) 0.25 0.5 0.75 0.99
50 0.75 0.41 0.17 0.006
100 0.75 0.42 0.18 0.004
200 0.73 0.42 0.18 0.003

TABLE III
RELATIVE DIFFERENCE BETWEEN MEAN BUFFER SIZE AT t AND MEAN

BUFFER SIZE AT CYCLE TIME FOR RANDOM WAYPOINT.

rs/rd

R (m) 0.25 0.5 0.75 0.99
50 0.75 0.42 0.17 0.0015

100 0.74 0.42 0.18 0.004
200 0.73 0.42 0.18 0.005

TABLE IV
RELATIVE DIFFERENCE BETWEEN MEAN BUFFER SIZE AT t AND MEAN

BUFFER SIZE AT CYCLE TIME FOR RANDOM DIRECTION.

VIII. CONCLUSIONS

We have studied the performance of relaying in mobile ad
hoc networks by developing a queueing model. The parameters
of the queueing model depend on the node mobility pattern.

Our main findings are that (under the assumptions placed
on our model) the relay throughput depends only on the sta-
tionary node location distribution, and that uniform stationary
distribution of nodes results in the smallest relay throughput.
Approximate throughput formulas have been derived for both
the Random Waypoint and the Random Direction mobility
models; these formulas have been found to be in agreement
with simulation results. Approximation formula for the mean
buffer occupancy of the relay node has been obtained for the
Random Walk mobility model and the Random Direction in
both one and two dimensional movement.

We have implicitly assumed that the order of delivery of data
does not matter. This is an important simplifying assumption
that has allowed us to assume that the relay node does not
transmit data from its relay buffer when there is either a direct
or two-hop route (via the relay node) between the source and
destination. Even though this is a realistic assumption for the
delay tolerant networks, relaxing this assumption would be
important for applications using TCP-like protocols.

Most of our work in this paper has focused on the relay
throughput and average behavior of the relay node buffer
occupancy in the abscence of any interference between nodes.
It would be more realistic to study the impact of considering
nodes’ inteference on both throughput and relay buffer size in
our future work.

This study forms a research effort towards developing
performance models for relay protocol, and understanding the
impact of mobility on their performance.
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