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Abstract

Strange behavior may occur in networks due to the non-cooperative nature of decision making, when the latter are

taken by individual agents. In particular, the well known Braess paradox illustrates that when upgrading a network by

adding a link, the resulting equilibrium may exhibit larger delays for all users. We present here some guidelines to avoid

the Braess paradox when upgrading a network. We furthermore present conditions for the delays to be monotone

increasing in the total demand.

� 2003 Elsevier B.V. All rights reserved.
1. Introduction

Service providers or network administrators

may often be faced with decisions related to up-

grading of the network. For example, where

should one add capacity? or where should one add

new links? Decisions related to the network ca-
pacity and topology have direct influence on the

equilibrium that would be attained.

A frequently used heuristic approach for up-

grading a network is through bottleneck analysis.

A system bottleneck is defined as ‘‘a resource or

service facility whose capacity seriously limits the

performance of the entire system’’ [11, p. 13].
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Bottleneck analysis consists of adding capacity to

identified bottlenecks until they cease to be bot-

tlenecks. In a non-cooperative framework, how-

ever, this approach may have devastating effects;

it may cause delays of all users to increase; in an

economic context in which users pay the service

provider, this may further cause a decrease in the
revenues of the provider. The first problem has

already been identified in road-traffic context by

Braess [4] (see also [8,19]), and has further been

studied in networking context in [1,3,5,7,6,12,14].

The focus of Braess paradox on the bottleneck

link in a queuing context, as well as the para-

doxical impact on the service provider have been

studied in [16]. The Braess paradox has further
been identified and studied in the context of dis-

tributed computing [9,10] where arriving of jobs

may be routed and performed on different pro-

cessors.

Braess paradox illustrates that the network

designer or service providers have to take into

consideration the reaction of non-cooperative
ed.
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users to their decisions. This is in particular im-

portant when upgrading the network. Some up-

grading guidelines have been proposed in [12–14]

so as to avoid the Braess paradox or so as to

obtain a better performance. Our first objective is

to pursue that direction and to provide new
guidelines for avoiding the Braess paradox when

upgrading the network. Another related issue is

that of monotonicity of the performance mea-

sures in the demand. Our second objective is to

check under what conditions are delays as well as

the marginal costs at equilibrium increasing in the

demands.

The paper is organized as follows: In Section
2 we present the model, formulate the problem,

and mention some related works. In Section 3 we

present a sufficient condition for the monoto-

nicity of performance measures when the de-

mands increase. In Section 4, we present an

example of Braess paradox. We propose some

methods for adding capacities in a network in

Section 5. We illustrate these methods numeri-
cally in Section 6.
2. Problem formulation

We consider a network ðN;LÞ where N is a

finite set of nodes and L is a set of directed links.

For simplicity of notation and without loss of

generality, we assume that at most one link exists

between each pair of nodes (in each direction). For

a node v 2 N, the sets InðvÞ ¼ fl 2 Lj9w 2
N; l ¼ ðw; vÞg and OutðvÞ ¼ fl 2 Lj9w 2 N; l ¼
ðv;wÞg denote respectively the set of its in-coming

links, and the set of its out-going links.

We are given a set I ¼ f1; 2; . . . ; Ig of users

that share the network. We assume that all users

ship flow from a common source node s to a

common destination node d. Each user i has a

throughput demand ri. Denote r ¼
P

i2I ri the

total throughput demand of users.
User i splits its demand ri among the paths

connecting the source to the destination. Let xil
denote the flow that user i sends on link l. The user
i flow configuration X i ¼ ðxilÞl2L is called a routing

strategy of user i. A user flow configuration is said

to be admissible, if it satisfies its demand, and if it
preserves its flow at each node. We denote Si the

set of admissible flows, (or admissible strategies)

of user i, i.e. the set defined by Si ¼
fX i 2 RjLj:

P
l2OutðvÞ x

i
l ¼

P
l2InðvÞ x

i
l þ riv; v 2 Vg,

where ris ¼ ri, rid ¼ 
ri and riv ¼ 0 for v 6¼ s; d. A
flow configuration profile X ¼ ðX 1; . . . ;X IÞ 2 S ¼
�i2IS

i is called a routing strategy profile.

The objective of each user i is to find an

admissible routing strategy X i 2 Si so as to mini-

mize some performance objective, or cost func-

tion, J i, that depends upon X i but also upon the

routing strategies X j 2 Sj of any other user j 6¼ i,
i.e. J i : S ! R. Hence J iðXÞ is the cost of user i
under routing strategy profile X. For example, the
user may want to minimize the average delay for

its flow to reach the destination from the source.

This delay depends upon its routing strategy,

but also upon the load of the links used by the

user, i.e. upon the routing strategies of the other

users.

We will use the following sets of assumptions.

Assumption 2.1

A1. J iðXÞ ¼
P

l2L xilTlðxlÞ, where xl ¼
P

i2I xil.
A2. Tl : ½0;þ1½! ½0;þ1�.
A3. Tlð�Þ is positive, strictly increasing and convex.

A4. Tlð�Þ is continuously differentiable.

Functions that comply with these assumptions

are referred to as type-A functions.

Remark 2.1. In Assumption A1, TlðxlÞ is the cost

per unit of flow (for example mean delay) on the

link l, for the total utilization, xl ¼
P

i2I xil, of that
link. Note that if TlðxlÞ is the average delay on link

l, it depends only on the total flow on that link.

The average delay should be interpreted as a

general congestion cost per unit of flow, which
encapsulates the dependence of the quality of ser-

vice provided by a finite capacity resource on the

total load xl offered to it.

Let cl denote the capacity of link l. The vector

c ¼ ðclÞl2L is called the capacity configuration of

the network. Although the cost Tl depends also

upon the physical capacity cl of link l, we omit to
write this dependency, nevertheless we have the

following set of assumptions.



E. Altman et al. / Computer Networks 43 (2003) 133–146 135
Assumption 2.2

B1. J i is a type-A cost function.

B2. Tl and T 0
l are strictly decreasing with respect to

capacity cl of link l where T 0
l ¼ oTl=oxl.

Functions that comply with these assumptions

shall be referred to as type-B functions.

Cost function used in real networks are often

related to some performance measure such as ex-

pected delay. Frequently, linear link costs, i.e.

TlðxlÞ ¼ alxl þ bl are used (see e.g. [15]). Another

possibility often used in the literature to represent

delay is to assume.
Assumption 2.3

C1. J i is a type-B cost function.

C2. TlðxlÞ ¼
1=ðcl 
 xlÞ; xl < cl;
1; xl P cl;

�
where cl is the capacity of link l.

This represents the expected delay of a M/M/1

queue operating under the FIFO regime (pack-

ets are served at arrival order, see [15] or the

delay of a M/G/1 queue operating under the pro-

cessor sharing regime). cl has the interpretation

of the queuing capacity. Other possibilities for

the costs related to rejection probabilities can be

found in [1]. Functions that comply with these
assumptions shall be referred to as type-C func-

tions.

We note that the above different sets of as-

sumptions on the users� costs have already been

introduced in the context of the analysis of

uniqueness of equilibria in [17].

Each user of the network strives to find its best

routing strategy so as to minimize it own objective
function. Nevertheless its objective function de-

pends upon its own choice but also upon the

choices of the other users. In this situation, the

solution concept widely accepted is the concept of

Nash equilibrium.
1 The following assumption is also made in that reference:

for every flow configuration X, if not all cost are finite then at

least one user with infinite cost (J iðXÞ ¼ 1) can change its own

flow configuration to make its cost finite.
Definition 2.1. A Nash equilibrium of the routing

game is a routing strategy profile X ¼
ðX 1;X 2; . . . ;X IÞ 2 S from which no user have any

incentive to deviate. More precisely the strategy
profile, X is a Nash equilibrium, if the following

holds true for any i 2 1; 2; . . . ; I ,

X i 2 arg min
Y i2Si

J iðX 1; . . . ;X i
1; Y i;X iþ1; . . . ;X IÞ:

X i is the best user i can do if the other users

choose the routing strategies X
i ¼ ðX 1; . . . ;X i
1;
X iþ1; . . . ; X IÞ.

Remark 2.2. The set of Assumptions A guarantees

the existence of a Nash equilibrium, see [17]. 1

Note that the proof of existence in [17] is based on

[18] that restricted to finite costs. We conclude that

if the costs are finite for any strategy, an equilib-

rium indeed exists.

For the routing strategy profile X
i ¼
ðX 1; . . . ;X i
1;X iþ1; . . . ;X IÞ of all the users except

user i fixed, the best user i can do is to choose the

unique solution to the (single-user) optimal rout-

ing problem for a network, that is the solution of a

constrained minimization problem. The unique-

ness follows from the facts that any cost function
of type-A, B or C is convex with respect to the

variable X i, and the setSi is bounded for all i 2 I.

Note that the uniqueness of best response strate-

gies does not imply the uniqueness of the Nash

equilibrium.

The Kuhn–Tucker conditions (for this single

user optimization problem) imply that X i is the

optimal response of user i to X
i if and only if
there exist Lagrange multipliers ðki

uÞu2V P 0 (that

may depend upon X i and X
i), such that [14,17]

ki
u ¼ xiuvT

0
uv þ Tuv þ ki

v; if xiuv > 0; ðu; vÞ 2 L;

ki
u 6 xiuvT

0
uv þ Tuv þ ki

v; if xiuv ¼ 0; ðu; vÞ 2 L;

ki
d ¼ 0:

ð1Þ
Therefore, a strategy profile X 2 S is a Nash

equilibrium if and only if there exist ki
u, such that

the conditions (1) are satisfied for all i 2 I.
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In a constrained optimization problem, the

Lagrange multipliers are often interpreted as the

impact on the cost function, of the level of

constraint at the optimality point. These multipli-

ers are referred to as marginal costs. Hence in Eqs.

(1) ki
s will be interpreted as the marginal cost at the

source node for user i at the optimality point. This

quantity have been advocated in [14] as another

important performance measure for the network.

As a matter of fact it accounts for the level of

congestion, as seen by users, and are the direct

indication of how each user could accommodate

fluctuations in the system�s state. We will refer to

ki
s as the price for user i.
We consider the problem of the service provider

or the network designer that have to distribute

some additional capacity among the links of the

network. We assume the service provider or net-

work designer is interested in reducing the sum of

the costs or the sum of the prices of all users at

Nash equilibrium. Hence the problem of the ser-

vice provider or network designer is to distribute
the additional capacity so as to improve the per-

formance (total cost or price) at Nash equilibrium.

In particular the service provider does not want

any Braess paradox to occur.
Definition 2.2. The evaluation function of the

service provider is either the total cost at equilib-

rium, that is,

J ¼ JðXÞ ¼
X
i2I

J iðXÞ;

or the total price at equilibrium, that is

k ¼
X
i2I

ki;

where ki are the Lagrangemultipliers at equilibrium.

In order to compare Nash equilibria corre-

sponding to different parameters, it may seem de-

sirable to make assumptions on the topology and

costs such that under any throughput demand of

users or any additional capacity, the equilibrium is

unique. Indeed, some results on avoiding the
Braess paradox (when adding capacity) have al-

ready been obtained in [14] under conditions that

imply uniqueness of the equilibria. We have cho-
sen not to make any such assumption since our

results are stronger and allow us to compare the

performance of any equilibrium in a system, with

any other which is obtained by increasing the ca-

pacity or the demand appropriately.

In [14] the results were obtained in the restrictive
cases where the users are identical (all the users

have the same demand), and the users are said

simple (i.e. all the flow of a simple user is routed

through paths of minimum delay) with link costs

corresponding to M/M/1 type queues. We do not

have such assumptions. The proposed methods in

[14] for adding some capacity in the network were

1. Multiplying the capacity of each link by some

constant factor a > 1.

2. Adding a link between the source and the desti-

nation.

In our work we generalize the first method by

multiplying the capacity of each link by a link-de-

pendent factor al (Proposition 5.1).We show, in our
paper that the second method of upgrading leads to

an improvement not only of the price but also of the

cost. Only the price was considered in [14].

In the sequel, we shall first study the monoto-

nicity of the total price and the total cost at

equilibrium with respect to the demands ðriÞi2I.
This will allow us then to investigate methods of

adding links (which can be viewed as adding ca-
pacity to a link with zero capacity) to the network

so that the total performance is improved.
3. Impact of throughput variation on the equilibrium

In this section, we study the monotonicity with

an increase of the total demand, at equilibrium, of
the performance measure given by the total price

ks ¼
P

i2I ki
s and the total cost J ¼

P
i2I J i. Under

some assumption, the following establishes that an

increase of the total demand of users, results in an

increase of the total price.

We suppose that the cost function J ið�Þ are

some type-A functions. For a fixed capacity

ðclÞl2L, we consider two throughput demands
ð~rriÞi2I and ðr̂riÞi2I such that r̂r ¼

P
i2I r̂ri < ~rr ¼P

i2I ~rri. Let ~kki and k̂ki (respectively, eJJ i and bJJ i) be
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the prices (respectively, the cost) of user i at the

respective Nash equilibria eXX and bXX. The following

holds true:

Lemma 3.1. There exists some path p� between the
source and destination such that j~xxl 
 x̂xlj > 0 for all
the links in that path.

Proof. We construct a directed network ðN0;L0Þ,
where the set of nodes is the same than in the

original network, N0 ¼ N, and the set of links L0

is constructed as follows:

• For each link l ¼ ðu; vÞ 2 L, such that ~xxl P x̂xl,
we have a link l0 ¼ ðu; vÞ 2 L0; to such a link

l0 we assign a (flow) value zl0 ¼ ~xxl 
 x̂xl.
• For each link l ¼ ðu; vÞ, such that ~xxl < x̂xl, we

have a link l0 ¼ ðv; uÞ 2 L0; to such a link we as-

sign a (flow) value zl0 ¼ x̂xl 
 ~xxl.

It is easy to verify that the value zl0 constitutes a
nonnegative, directed flow in the network ðN0;
L0Þ. Since r̂r < ~rr, the network must carry some

flow (the amount of ~rr 
 r̂r) from the source s to

the destination d. This implies that there exists

a path p� from s to d, such that zl0 > 0 for all

l0 2 p�. �

Assumption 3.1. For all l 2 p� (defined by Lemma

3.1) for which ~xxl > 0 (resp. x̂xl > 0) all users send

positive flows in the equilibrium eXX (resp. bXX), i.e.
~xxil > 0 (resp. x̂xil > 0) for all i 2 I.

This assumption is inspired by the (much

stronger) assumption in [17] for uniqueness of

Nash equilibrium. It states that if at equilibrium a

flow on a link is positive then all users have posi-

tive flow on that link. The next proposition es-

tablishes the monotonicity of the total price in the
demand.

Proposition 3.1. Suppose the cost functions of users
are type-A function. Suppose we have two
throughput demands ð~rriÞi2I and ðr̂riÞi2I such that
r̂r ¼

P
i2I r̂ri < ~rr ¼

P
i2I ~rri. Denote eXX and bXX the two

respective Nash equilibria. Suppose that Assumption
3.1 holds. Then the total price at eXX is larger than the
total price at bXX. That is k̂ks < ~kks.
Proof. Consider now a link l0 ¼ ðu; vÞ 2 p� (defined
in Lemma 3.1). Since zl0 > 0 (defined in the proof

of Lemma 3.1), either ~xxuv > x̂xuv P 0 or x̂xvu > ~xxvu.

• In the case where ~xxuv > x̂xuv, under Assumption
3.1, ~xxiuv > 0, 8i. Hence, from the Kuhn–Tucker

conditions (1), we have, for all i 2 I,

~kki
u 
 ~kki

v ¼ ~xxiuveTT 0
uv þ eTTuv; and

k̂ki
u 
 k̂ki

v 6 x̂xiuvbTT 0
uv þ bTTuv;

where eTT , bTT , eTT 0, and bTT 0 stands for Tuv and T 0
uv

computed at ~xxuv and x̂xuv.
Summing over i 2 I, we obtain: ~kku 
 ~kkv ¼
~xxuveTT 0

uv þ I eTTuv, and k̂ku 
 k̂kv 6 x̂xuvbTT 0
uvþ I bTTuv, where

~kkw ¼
P

i2I
~kki
w and k̂kw ¼

P
i2I k̂ki

w for all w 2 N.

Since ~xxuv > x̂xuv and bTTuv ¼ Tuvðx̂xuvÞ, then eTTuv > bTTuv

and eTT 0
uv >

bTT 0
uv (Assumption 2.1-A3), we deduce

that ~kku 
 ~kkv ¼ ~xxuveTT 0
uv þ I eTTuv > x̂xuvbTT 0

uvþ I bTTuv P
k̂ku 
 k̂kv. Thus,

~kku 
 k̂ku > ~kkv 
 k̂kv: ð2Þ
• In the case x̂xvu > ~xxvu, we have by symmetry that

k̂kv 
 k̂ku > ~kkv 
 ~kku; thus we obtain (2).

Define more precisely the path p�, by

p� ¼ ðs; u1; u2; . . . ; un� ; dÞ, where uk, k ¼ 1; 2; . . . ; n�,
is the kth node after the source s on the path p� and
n� is the number of nodes between the source s
and the destination d. Hence, from (2) we

have ~kks 
 k̂ks > ~kku1 
 k̂ku1 > � � � > ~kkun� 
k̂kun� >
~kkd


k̂kd ¼ 0 ð~kkd ¼ k̂kd ¼ 0Þ, and we conclude that
~kks > k̂ks. �

In the sequel, we will give sufficient conditions

for obtaining the monotonicity of the total cost,

when the total throughput demand of the users
increases, in the case where the cost functions of

the users are of type-C. We first need the following

definition.
Definition 3.1. Users are said to be consistent (for

a given capacity configuration) if, at the Nash

equilibrium, they all use same set of links.

In the following proposition we obtain rela-

tions between costs under two different demands
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assuming only that users are consistent at

Nash equilibrium bXX. This assumption weakens

the much stronger ‘‘all-positive flows’’ assumption

of [12].

Proposition 3.2. Suppose the cost functions of
the users are of type C. Suppose we have two
throughput demands ð~rriÞi2I and ðr̂riÞi2I such that
~rr=r̂rP I , with r̂r ¼

P
i2I r̂ri < ~rr and ~rri ¼

P
i2I ~rri.

Denote eXX and bXX the two respective Nash equilibria.
Suppose that users are consistent at the Nash equi-
librium bXX.

Then the total cost at eXX is larger than the total
cost at bXX. That is bJJ ¼ JðbXXÞ < JðeXXÞ ¼ eJJ .

Proof. Let cLL1 be a subset of L defined bycLL1 ¼ fl 2 L j x̂xl > 0g. Consider a link l in cLL1.

Since the users are consistent at Nash equilibriumbXX, it follows that x̂xil > 0, 8i 2 I. This implies, by

Kuhn–Tucker conditions (1), that 8i 2 I,

k̂ki
u ¼ x̂xilbTT 0

uv þ bTTuv þ k̂ki
v, 8l ¼ ðu; vÞ 2 L1, and we al-

ways have 8i 2 I, k̂ki
u 6 x̂xilbTT 0

uv þ bTTuv þ k̂ki
v. By sum-

ming up over i 2 I, we obtain k̂ku ¼ x̂xlbTT 0
uv þ

I bTTuv þ k̂kv if x̂xl > 0, and k̂ku 6 x̂xlbTT 0
uv þ I bTTuv þ k̂kv if

x̂xl ¼ 0. Thus,

k̂ku ¼
x̂xl

ðcl 
 x̂xlÞ2
þ I
cl 
 x̂xl

þ k̂kv if x̂xl > 0;

k̂ku 6
x̂xl

ðcl 
 x̂xlÞ2
þ I
cl 
 x̂xl

þ k̂kv; if x̂xl ¼ 0: ð3Þ

Define the function V by
V ððylÞl2LÞ ¼
X
l2L

yl
cl 
 yl


 ðI 
 1Þ
X
l2L

lnðcl 
 ylÞ;

ð4Þ

where ðylÞl2L 2 bSS :¼ fðtlÞl2L 2 RjLj:
P

l2OutðvÞ tl ¼P
l2InðvÞ tl þ r̂rv; v 2 Vg, where r̂rs ¼ r̂r, r̂rd ¼ 
r̂r and

r̂rv ¼ 0 for v 6¼ s; d.
Denote ðx̂xlÞl2L the vector of total link flows at

the Nash equilibrium bXX. The condition (3) can be

interpreted as Kuhn–Tucker condition for a sin-

gle-user minimization of the function V , under

the constraints ðyÞl2L 2 bSS . This shows that the

vector ðx̂xlÞl2L is the unique minimum of the

function V .
Let ð�xxlÞl2L 2 RjLj defined by �xxl ¼ ðr̂r=~rrÞ~xxl, hence
ð�xxlÞl2L 2 bSS , and since ðx̂xlÞl2L minimizes the func-

tion V , we haveX
l2L

x̂xl
cl 
 x̂xl


 ðI 
 1Þ
X
l2L

lnðcl 
 x̂xlÞ

6

X
l2L

�xxl
cl 
 �xxl


 ðI 
 1Þ
X
l2L

lnðcl 
 �xxlÞ: ð5Þ

It follows thatX
l2L

x̂xl
cl 
 x̂xl

6

X
l2L

ðr̂r=~rrÞ~xxl
cl 
 ðr̂r=~rrÞ~xxl


 ðI 
 1Þ
X
l2L

ln
cl 
 ðr̂r=~rrÞ~xxl

cl 
 x̂xl

 !

<
X
l2L

ðr̂r=~rrÞ~xxl
cl 
 ðr̂r=~rrÞ~xxl


 ðI 
 1Þ
X
l2L

ln 1
 ðr̂r=~rrÞ~xxl
cl

 !
:

Hence, in order to prove that bJJ ¼ JðbXXÞ ¼P
l2L ðx̂xl=ðcl
 x̂xlÞÞ< eJJ ¼JðeXXÞ¼

P
l2L ð~xxl=ðcl
~xxlÞÞ,

it is enough to show that

~xxl
cl 
 ~xxl


 ðr̂r=~rrÞ~xxl
cl 
 ðr̂r=~rrÞ~xxl

þ ðI 
 1Þ ln 1

 

 ðr̂r=~rrÞ~xxl

cl

!
> 0;

which holds if ~rr=r̂rP I (see Appendix A with

a ¼ ~rr=r̂r). �

If we assume that the ‘‘all-positive flows’’ as-

sumption of [17] holds true, or equivalently that

the users are consistent at Nash equilibria eXX andbXX, then each link of the network satisfies the as-

sumptions in Propositions 3.1 and 3.2, and we

have the result.

Corollary 3.1. Assume that users are consistent at
Nash equilibria eXX and bXX. Then

1. For the cost functions of type-A, if r̂r < ~rr then
k̂ks < ~kks.

2. For the cost functions of type-C, if ~rr=r̂rP I thenbJJ < eJJ .
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4. Braess paradox

In this section, we present an example of Braess

paradox. It demonstrates that addition of capacity

may, in general, increase both the total price and
total cost. To obtaining we present a simple com-

putation approach that allows us to compute the

equilibrium.

Consider the network depicted in Fig. 1. In this

example we choose the capacity c2 large enough so

that the delays on link (2,4) or on link (1,3) have low

sensitivities to flow changes. Such constructions are

necessary so as to represent the infinite-service
queue (the average delay is independent of the flow)

in order to produce an example of a queuing net-

work setting [6]. In this example adding capacity

may lead to an increase in the mean transit time.

We set the capacity of the links (1,2) and (3,4)

to c1 ¼ 2:7. Link (1,3) and link (2,4) are made of n
tandem links, each with capacity c2 ¼ 27. Similarly

the link (2,3) is a path of n consecutive links having
each capacity c3 ¼ D, while D varies from 0 (ab-

sence of the link) to infinity. We suppose that the

network is used by I users, each sending a flow ri

from node 1 to node 4.

We study here the scenario where the capacity D
is added to path (2,3). We take n ¼ 54, I ¼ 2,

r1 ¼ 0:8 and r2 ¼ 1:2. Denote pl the left path using

link (1,2) and link (2,4), pr the right path using link
2

4

3

1

output

input

c

c1

1c2, n

c2, n

c3, n

Fig. 1. Network example.
(1,3) and link (2,4), and pz the zigzag path using

link (1,2), links (2,3) and (2,4).

The total marginal cost for a path is defined by

Dp ¼
P

i2I oJ i=oxip, where x
i
p is the flow of user i on

path p. Note that the function Dp is exactly the

total price k at Nash equilibrium if path p is used.
We have computed the equilibrium iteratively with

the following relaxation method. This method has

been proved to converge to the Nash equilibrium

for some topologies, see [2].

1. Define an initial candidate fxð0Þgl2L for the

equilibrium total link flows profile. fxð0Þgl2L
is obtained by minimizing the function V de-
fined in (4). The flow of each user i in the ini-

tial iteration is then defined as xilð0Þ ¼
xlð0Þri½

P
j2I rj�
1

.

2. At iteration n > 0, we first compute the best re-

sponses fxilðnÞg for each user i when all the

other users use fxjlðn
 1Þgj 6¼i;l.

3. The approximation of the equilibrium at step n
is then given by xilðnÞ ¼ axilðn
 1Þþ ð1
 aÞxilðnÞ,
for all i 2I and l2L.

4. The procedure ends when xðnÞ is sufficiently

close to xðn
 1Þ.
Remark 4.1. Note that if the ‘‘all-positive flows’’

condition (defined before Corollary 3.1) holds at

equilibrium, then fxlð0Þgl will already be the total
link flow at equilibrium, and only the individual

link flows have to be defined. Note also that if the

users were identical, then by [17], there would be a

unique equilibrium and it would be symmetric.

Hence the condition of ‘‘all-positive flows’’ would

indeed hold, and fxilð0Þgi;l would already corre-

spond to the equilibrium. No further iteration

would be needed.

In our experimentation below (and in the ex-

perimentation of Section 6), it turned out that the

condition of ‘‘all-positive flows’’ was satisfied.

Consequently, we could check that our algorithm

provided the correct value for the total link flows

at equilibrium. The number of iterations that were

required was around 20 (which leads to a differ-
ence between xðnÞ and xðnþ 1Þ of less than 10
5).

We used a ¼ 1=2, as relaxation coefficient.
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In Figs. 2 and 3, we observe that there is no

traffic on the zigzag path for 06D < 39:9. For

39:96D, the three paths, pl, pr and pz are used.

Fig. 2, shows that, for 39:96D6 58:1, the total

cost is, paradoxically, worse than it would be

without the zigzag path, i.e., eliminating the zigzag
path would lead to an improvement of perfor-

mance. The total cost diminishes to 4.6966 as D
goes to infinity. Fig. 3 shows that the total price

increases when the additional capacity is more

than 39.9. More surprisingly, it can be verified that

this paradoxical behavior persists even if D ¼ 1
(this is possible, if node 2 and node 3 are merged

into a single node). The total price increases to
8.111 when D goes to infinity.
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When the additional capacity D is greater than

39.9, first traffic in the zigzag path does benefit a

smaller marginal cost, while the marginal costs in

paths pl and pr increase because of congestion in

the shared links (1,2) and (3,4).

As traffic approaches equilibrium, the marginal
cost in the zigzag path increases and becomes

larger that the marginal cost when D ¼ 0. The

marginal costs in the right and left paths increase

even more. Thus, users continue to choose the

zigzag path to the extent that, when equilibrium is

reached, marginal cost (total prices) have in-

creased along the old paths. However total cost

(respectively, average delay) increases since the
delay of the three paths have increased along the

old paths.

This example have shown that in this network

one have to be careful when adding some capacity,

since this may result in an increase of both the

price and the cost of every single user. This indi-

cates that the total price and total cost may in-

crease when upgrading (in term of capacity or
addition of links) a general network. This counter-

intuitive result is referred to as Braess paradox.
5. Impact of extra capacity on the equilibrium

The example presented in Section 4, demon-

strates that adding capacity to a network may re-
sult in an increase of both the price and the cost of

every single user. In this section, we propose some

methods for adding resources to general network

that guarantee an improvement in performance so

that the Braess paradox does not occur. We study

several ways to upgrade a general network:

1. Multiplying the capacity of some specific links
ðl 2 LÞ by a constant factor al > 1.

2. Adding some capacity to an existing direct link

from the source to the destination or adding a

new direct link from the source to the destina-

tion.

5.1. Multiplying the capacity of each link

We first consider an upgrade achieved by mul-

tiplying the capacity of each link l 2 L by a factor
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al P 1. For a fixed throughput demands ðriÞi2I, we
consider two capacity configurations ~cc and ĉc such

that ĉcl ¼ al~ccl where al P 1. Let eXX and bXX be the

Nash equilibria under capacity configurations ~cc
and ĉc, respectively. Consider the set fLL1 defined byfLL1 ¼ fl 2 L j~xxl > 0g, i.e., fLL1 is the set of links
such that at Nash equilibrium eXX, at least on user

sends some flow through those links.

We have the following proposition,

Proposition 5.1. Suppose that the cost functions are
of type-C; assume that users are consistent at Nash
equilibrium bXX. If al P I for all l 2 fLL1 then the
configuration ĉc is total cost efficient relative to
configuration ~cc, i.e. JðbXXÞ6 JðeXXÞ, where bXX and eXX
are the respective Nash equilibria for capacity con-
figuration ~cc and ĉc.

Proof. We start the proof as the proof of Propo-

sition 3.2, we obtain the following equation (in-

stead of Eq. (3) in the proof of Proposition 3.2):

k̂ku ¼
x̂xl

ðal~ccl 
 x̂xlÞ2
þ I

al~ccl 
 x̂xl
þ k̂kv if x̂xl > 0;

k̂ku 6
x̂xl

ðal~ccl 
 x̂xlÞ2
þ I

al~ccl 
 x̂xl
þ k̂kv if x̂xl ¼ 0: ð6Þ

We define the function bVV bybVV ððylÞl2LÞ ¼
X
l2L

yl
al~ccl 
 yl


 ðI 
 1Þ
X
l2L

lnðal~ccl 
 ylÞ;

where ðylÞl2L 2 bSS with

bSSa ¼ ðtlÞl2L 2 RjLj: 0

(
6 tl 6 al~ccl; l 2 L;

X
l2OutðvÞ

tl ¼
X
l2InðvÞ

tl þ rv; v 2 V

)
;

and rs ¼ r, rd ¼ 
r and rv ¼ 0 for v 6¼ s; d.
Denote ðx̂xlÞl2L the vector of total link flows at

the Nash equilibrium bXX. The condition (6) can be

interpreted as Kuhn–Tucker condition for a sin-

gle-user minimization of function bVV under con-

straints ðyÞl2L 2 bSSa. Then we can deduce that the

vector ðx̂xlÞl2L is the unique minimum of the

function V , and since ð~xxlÞl2L 2 bSSa, we have
X
l2L

x̂xl
al~ccl 
 x̂xl

6

X
l2L

~xxl
al~ccl 
 ~xxl


 ðI 
 1Þ
X
l2L

ln
al~ccl 
 ~xxl
al~ccl 
 x̂xl

 !

<
X
l2L

~xxl
al~ccl 
 ~xxl


 ðI 
 1Þ
X
l2L

ln 1

 

 ~xxl

al~ccl

!

¼
X
l2eLL1

~xxl
al~ccl 
 ~xxl


 ðI 
 1Þ
X
l2eLL1

ln 1

 

 ~xxl

al~ccl

!
:

Hence, in order to prove that bJJ ¼ JðbXXÞ ¼P
l2L ðx̂xl=ðal~ccl 
 x̂xlÞÞ < JðeXXÞ ¼

P
l2L ð~xxl=ð~ccl 
 ~xxlÞÞ,

it is enough to show that for all l 2 ~LL1:

~xxl
~ccl 
 ~xxl


 ~xxl
al~ccl 
 ~xxl

þ ðI 
 1Þ ln 1

 

 ~xxl

al~ccl

!
> 0

which holds if al P I (see Appendix A). �
5.2. Adding a direct link

We now consider an upgrade achieved by add-

ing a new link l̂l connecting directly the source to

the destination. That direct path could be in fact a

whole new network, provided that it is disjoint

with the previous network.

We consider the throughput demands ðriÞi2I
fixed, and we examine the two capacity configu-
ration ĉc and ~cc. These two capacity configurations

differ only by the addition of the new link, l̂l, in
capacity configuration ĉc. Denote bXX and eXX the

Nash equilibria corresponding to the two capacity

configurations capacity configurations ĉc and ~cc.
The following result shows that adding a link

between the source and the destination, may lead

to a decrease of both the total price and the total
cost.

Proposition 5.2

1. Suppose that the cost functions are type-A func-
tions. Suppose that Assumption 3.1 holds.
If x̂xl̂l > 0, then the total price k̂ks computed at
equilibrium for configuration ĉc, is smaller than
the total price ~kks computed at equilibrium for
configuration ~cc. That is k̂ks < ~kks.
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2. Suppose that the cost functions are type-C func-
tions. Assume that users are consistent at the
Nash equilibrium X̂X, corresponding to capacity
configuration ĉc.
If x̂xl̂l P ĉcl̂lð1


Q
l2L ð1
 ~xxl=~cclÞÞ, where x̂xl̂l is the

total flow on link l̂l at Nash equilibrium bXX. Then
the total cost JðbXXÞ computed at equilibrium for
configuration ĉc is smaller than the total cost JðeXXÞ
computed at equilibrium for configuration ~cc. That
is JðbXXÞ < JðeXXÞ.
Proof

1. Consider the initial network ðN;LÞwith the ini-
tial capacity configuration ~cc and throughput de-

mand ð�rriÞi2I where �rri ¼ ri 
 x̂xi
l̂l
for i 2 I. Let �XX

the Nash equilibrium associated to the through-

put demand ð�rriÞi2I. From conditions (1) we de-

duce that �xxil ¼ x̂xil for all i 2 I and that l 2 L,
and that we have the equality between the Lag-

range multipliers �kki
u ¼ k̂ki

u, for all i 2 I and

u 2 N. In other word, if x̂xl̂l > 0, then �rr < r,
and we deduce from Proposition 3.1 that
�kks < ~kks. Consequently we have k̂ks < ~kks.

2. If x̂xl̂l ¼ 0, by the above analysis, we show that

x̂xl ¼ ~xxl, 8l 2 L. Hence bJJ ¼ eJJ .
If x̂xl̂l > 0, then, using same procedure in the
proof of Proposition 5.1, we obtain that the

vector ðx̂xlÞl2L0 where L0 ¼ L [ fl̂lg is the un-

ique minimum of the function:

eVV ððylÞl2L0 Þ ¼
X
l2L0

yl
ĉcl 
 yl


 ðI 
 1Þ
X
l2L0

lnðĉcl 
 ylÞ;

where ðylÞl2L0 2 bSS 0 :¼fðtlÞl2L0 2RjLjþ1:06tl6ĉcl;
l2L0;

P
l2OutðvÞ tl¼

P
l2InðvÞ tlþrv; v2Vg, where

rs¼ r, rd ¼
r and rv¼0 for v 6¼ s;d.
Let ð�xxlÞl2L0 2 RjLjþ1 defined by: �xxl ¼ ~xxl for

l 2 L and �xxl̂l ¼ 0. Clearly ð�xxlÞl2L 2 bSS 0. Since

ðx̂xlÞl2L minimizes the function eVV , we have

X
l2L0

x̂xl
ĉcl 
 x̂xl


 ðI 
 IÞ
X
l2L0

lnðĉcl 
 x̂xlÞ

6

X
l2L0

�xxl
ĉcl 
 �xxl


 ðI 
 1Þ
X
l2L0

lnðĉcl 
 �xxlÞ: ð7Þ
Since �xxl ¼ ~xxl and ĉcl ¼ ~ccl for l 2 L, and �xxl̂l ¼ 0

Eq. (7) becomesX
l2L0

x̂xl
ĉcl 
 x̂xl

6

X
l2L

~xxl
~ccl 
 ~xxl


 ðI 
 1Þ
X
l2L

ln
~ccl 
 ~xxl
~ccl 
 x̂xl

 !

þ ðI 
 1Þ ln ĉcl̂l 
 x̂xl̂l
ĉcl̂l

 !
<
X
l2L

~xxl
~ccl 
 ~xxl


 ðI 
 1Þ

�
X
l2L

ln 1

 "

 ~xxl

~ccl

!

 ln 1

 

 x̂xl̂l
ĉcl̂l

!#
:

To prove that bJJ ¼
P

l2 L0ðx̂xl=ðĉcl 
 x̂xlÞÞ <eJJ ¼
P

l2L ð~xxl=ð~ccl 
 ~xxlÞÞ, it suffices to show thatX
l2L

ln 1

 

 ~xxl

~ccl

!

 ln 1

 

 x̂xl̂l
ĉcl̂l

!
P 0:

This is equivalent to x̂xl̂l P ĉcl̂lð1

Q

l2L ð1

~xxl=~cclÞÞ, which is true by assumption. This ends

the proof of the proposition. �

5.3. Increasing the capacity of a direct link

Now, we consider a network ðN;LÞ such that

there exists a direct link connecting the source to

the destination. We derive sufficient conditions

that guarantee an improvement in the perfor-

mance when we increase the capacity of the link

that connects the source s to the destination d.
Denote by l̂l the link connecting s and d.

Consider ~cc and ĉc be two capacity configurations
such that ĉcl ¼ ~ccl for l 6¼ l̂l and ĉcl̂l ¼ a~ccl̂l where

a 2 Rþ. Let eXX and bXX be the Nash equilibria under

capacity configurations ~cc and ĉc, respectively.

Proposition 5.3

1. Suppose that the users cost functions are type-B
functions. Suppose that Assumption 3.1 holds
true.
If a > 1 and ~xxl̂l > 0. then the total price k̂ks com-
puted at equilibrium for configuration ĉc,
is smaller than the total price ~kks computed
at equilibrium for configuration ~cc. That is
k̂ks < ~kks.
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2. Suppose that the users cost functions are type-C
functions. Suppose that the users are consistent
at the Nash equilibrium bXX (corresponding to
capacity configuration ĉc). If x̂xl̂l P a~ccl̂l ð1
Q

l2L ð1
 ~xxl=~cclÞÞ. Then the total cost JðbXXÞ com-
puted at equilibrium for configuration ĉc is smaller
than the total cost JðeXXÞ computed at equilibrium

for configuration ~cc. That is JðbXXÞ < JðeXXÞ.
4

output

c3

c1+

+

+c2 ∆ /4

∆ /10

∆/5
Proof

1. Assume first that x̂xl̂l 6~xxl̂l. Since ~xxl̂l > 0, and since

the users are consistent at the Nash equilibriumeXX, we have 8i 2 I, ~kki
s ¼ ~xxi

l̂l
eTT 0
l̂l þ eTTl̂l. By summing

up over i 2 I, we obtain that ~kks ¼ ~xxl̂leTT 0
l̂l
þ I eTTl̂l.

On the other hand, we have that k̂ks 6 x̂xl̂lbTT 0
l̂l
þ

I bTTl̂l. Finally, by the fact that x̂xl̂l 6~xxl̂l and a > 1,

we deduce that k̂ks < ~kks.

Now we assume that x̂xl̂l > ~xxl̂l. Let us consider the
two networks that differ only by the presence or

absence of the link l̂l that connects the source s
to the destination d. In both networks we have
the same initial capacity configuration ~cc, the

same set I of users, but respective demands
�rri ¼ ri 
 x̂xi

l̂l
and �rri ¼ ri 
 ~xxi

l̂l
.

Since x̂xl̂l > ~xxl̂l we have �rr ¼
P

i2N ~rri < �rr ¼P
i2N �rri. Hence from Proposition 3.1 we obtain

�kks < �kks. On the other hand, for the network with

demands ð�rriÞi2I, it is easy to see that the condi-

tions (1) are satisfied by the system flow con-

figuration �XX, with �xxil ¼ x̂xil, ð8i 2 I, 8l 2 LÞ, and
�kki
u ¼ k̂ki

u ð8u 2 NÞ. Similarly we conclude that

the network with demands �rri has the system flow

configuration �XX, with �xxil ¼ ~xxil ð8i 2 I; 8l 2 LÞ,
and �kki

u ¼ ~kki
u, ð8u 2 NÞ. Hence from the fact that

�kks < �kks, we obtain k̂ks < ~kks.

2. The proof for the second part follows the same

reasoning than the proof of the second part of

Proposition 5.2. �
2 3

1

input

c2c1+ ∆ /5 +∆ /4

Fig. 4. New network.
Remark 5.1

1. For the first part of Proposition 5.3, we can ob-
tain some results in the case where ~xxl̂l ¼ 0 by as-

suming that x̂xl̂l > 0 (Proposition 5.2).

2. For the second part of Propositions 5.2 and 5.3,

we can obtain some results in the case where the

following condition is verified
Q

l2L0 ðĉcl 
 x̂xlÞ6
ĉcl̂l
Q

l2L ð~ccl 
 ~xxlÞ. This condition weakens the

much stronger condition presented in Proposi-

tions 5.2 and 5.3 and it is always verified when

the capacity of direct link is big enough. We can

use this condition when the total capacity is
much larger than the total demand, i.e. c � r.
6. Experimental result

In this section, we illustrate the methods pro-

posed in Section 5.1. We consider the same ex-

ample as in Section 4 where we have shown that a
Braess paradox (increase of both price and cost)

may occur when adding some capacity. Now, to

avoid paradox, the previous section advocates the

addition of capacities either to all links or directly

from the source node to the destination node.

We used the same algorithm than previously to

compute Nash equilibrium. As previously we ob-

tain convergence after around 20 iterations.
6.1. Increasing the capacity of some specific links

Here we add capacity to all links of the network

so that c1 ¼ 2:7þ D=5, c2 ¼ 27þ D=4 and c3 ¼
36þ D=10 (see Fig. 4).

With these parameters, there is no traffic in the

zigzag path for 06D6 2:1 and 53:36D. For
2:1 < D < 53:3, the three paths are used. Fig. 5

displays the total cost as a function of additional

capacity D.



c3, n

c1

c2, n

c2, n

c1

3

1

4

2

Fig. 6. New network.
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For D6 2:1 the zigzag path is not used. Nev-

ertheless the increase of the capacity in the other

links leads to a decrease of the total cost. We ob-

served furthermore that the Nash equilibrium did
not change (each user send the same proportion of

flow in every link). When D increases up to 53.3,

then all the paths are used, in particular the zigzag

path is used. The total cost decreases. In that case

the capacity of all links were increased. In partic-

ular the capacity of the links (1,2) and (3,4) have

been increased, and then these links do not suffer

from congestion as it was the case in Section 4
where only the capacity of the path (2,3) have been

increased. Hence the total cost decreases as the

capacity D increases, as Proposition 5.1 suggested.

Hence the Braess paradox is indeed avoided.

6.2. Adding capacity or link directly from the source

and destination

Propositions 5.2 and 5.3 suggest to upgrade, or

add a direct link from the source to the desti-

nation. Direct link is made of n ¼ 54 tandem links

with capacity D, while D varies from 0 (absence of

the direct link) to infinity. We illustrate these

methods (see Fig. 6).

For values of D less than 18.52, the users do not

have any advantage to use the direct path. We can
observe that there is no traffic on that path. When

D increases above 18.74 but below 28 then the

direct path start to be attractive, and we observe

some traffic in that path. The consequence of that
is that there is less traffic on the old network (i.e.

the network without the direct link). From Prop-

ositions 5.2 and 5.3, it comes that the total cost
and total price decreases in the old network. We

observe in our numerical example that the total

cost in the new network (i.e. with the direct link)

decrease. Note that this is not a consequence of

Propositions 5.2 and 5.3 since at the beginning

the assumption x̂xl̂l may no be greater that Dð1
Q
l2L ð1
 ~xxl=~cclÞÞ. This is consequence of Remark

5.1, in which the condition
Q

l2L0 ðĉcl 
 x̂xlÞ6
D
Q

l2L ð~ccl 
 ~xxlÞ is verified when the direct link is

attractive.

Then the addition of the direct path never leads

to an increase of the delay which is illustrated in
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Figs. 7 and 8, where we can observe that the total

costs and total prices decrease.
Appendix A

In this appendix, we study the function

Ha : ½0; a�ccÞ ! R defined by

HaðxÞ ¼
x

�cc
 x

 x

ac
 x
þ ðI 
 1Þ ln 1

 

 x

a
c

!
;

ðA:1Þ
where aP 1 and �cc is a positive constant. More
precisely, we wish to determine a such that Ha is

positive for every x in ½0; acÞ. By remarking that

Hð0Þ ¼ 0, for all a, it is enough to determine a such

that

oHa

ox
¼ c

ðc
 xÞ2

 ac

ðac
 xÞ2

 ðI 
 1Þ 1

ac
 x
> 0:

This last inequality is equivalent to

c

ðc
 xÞ2
>

Iac
 ðI 
 1Þx
ðac
 xÞ2

which is equivalent to ða2 
IaÞc3 þ cx2 cð3
 Ia

2IÞ > c2xð2a 
 2Ia 
 I þ 1Þ 
 ðI 
 1Þx3. If aP I , it
is enough to show that cxð3
 Ia 
 2IÞ > c2ð2a

2Ia 
 I þ 1Þ 
 ðI 
 1Þx2. Since x2 þ c2 P 2cx, it is

sufficient to verify that c2ð1þ 3Ia 
 4aÞ >
x2ðIa 
 1Þ, or c2ðaðI 
 2Þ þ 1Þ > 0, which trivially

holds.
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