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Abstract

We study in this paper two competing AIMD flows that share a common bottleneck link. When congestion occurs, one
(or both) flows will suffer a loss that will cause its throughput to decrease by a multiplicative factor. The identity of the flow
that will suffer a loss is determined by a randomized ‘‘loss strategy’’ that may depend on the throughputs of the flows at the
congestion instant. We analyze several loss strategies: the one in which the identity of the flow experiencing the loss is inde-
pendent of the current throughput and the one in which the flow with the largest throughput is to suffer the loss; this is
compared with the strategy that assigns loss probabilities proportionally to the throughputs (thus a flow with a larger
throughput has a larger loss probability). After deriving some results for the general asymmetric case, we focus in partic-
ular on the symmetric case and study the influence of the strategy on the average throughput and average utilization of the
link. As the intuition says, a strategy that assigns a loss to a flow with a higher throughput is expected to give worse per-
formance since the total instantaneous throughput after a loss is expected to be lower with such a strategy. Surprisingly, we
show that this is not the case. We show that the average throughput and average link utilizations are invariant: they are the
same under any possible strategy; the link utilization is 6/7 of the link capacity. We show, in contrast, that the second
moment of the throughput does depend on the strategy.
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1. Introduction

The mathematical analysis of the performance of TCP has been a major research area in networking. Dif-
ferent types of approaches have been suggested and validated. On the one hand, there have been models focus-
ing on a single connection that is subject to some exogenous loss process (which does not depend on that
connection), see e.g. [2]. This approach is appealing when there is a large amount of traffic, so that we can
neglect the effect of the single connection on events that cause losses. An alternative approach is necessary
when the window increase of a connection is itself a central cause for losses. This occurs typically when a small
number of connections compete over bandwidth, say, at a bottleneck link. A main mathematical approach for
studying this situation has been to study several connections sharing a bottleneck, and then make the simpli-
fying assumption that all connections reduce their windows simultaneously upon congestion [3–5]. With this
approach, it has been shown [4] that the throughput achieved by a TCP connection is inversely proportional to
RTTa with 1 < a < 2, where RTT is the two-way propagation delay of the connection. However, it turns out
that in practice this assumption does not hold, except for drop tail buffers and connections with similar Round
Trip Times (RTTs) [6]. Indeed, traces in [5] (e.g. Fig. 5) show that the synchronization assumption is invalid
for asymmetric connections for a drop tail buffer.

Instead of considering synchronization, two modeling approaches have been developed for determining
which connection will suffer a packet loss. In the model of Baccelli and Hong [7], the probability that a con-
nection will lose a packet is a constant: it does not depend on its current throughput. As argued in [8], such an
assumption is valid in describing AIMD protocols in which packet transmission rates are constant, and the
throughput is varied by changing the packet size. The use of fixed loss probabilities, with different probabilities
for different flows, can be justified by a pricing-based service differentiation policy where smaller loss proba-
bilities would be associated with sessions with a higher willingness to pay. An alternative model has been con-
sidered in [9] in which the probability that a connection loses a packet is proportional to the throughput at the
congestion instant. This is called the ‘‘proportional strategy’’. As validated by simulations [10], this model is
appropriate for standard TCP where packet size is constant.

Motivated by these two approaches, we raise the question of what is the throughput of an AIMD flow as a
function of the strategy that determines which flow loses a packet at a congestion instant. We focus on the
simple scenario of two competing flows.

Our findings are as follows. We first study the constant probability model from [7]. In that paper, a linear
set of stochastic recursive equations has been introduced for obtaining the throughput, in which the state vari-
ables correspond to the flows� throughputs after a loss. In this paper we present an alternative set of stochastic
recursive equations in which the states correspond to the throughput just before the loss occurs. We show that
our approach allows us to reduce the dimensionality of the system by one, so in particular, the case of two
flows can be described by a one-dimensional state equation. This allows us to obtain an explicit expression
for the throughput in the general asymmetric case for the constant probability model. As a corollary of this
result, it is seen in the symmetric case that the link utilization is 6/7 of its capacity.

We then study a new strategy in which the flow with the largest instantaneous throughput is the one to lose
a packet at congestion instants. Surprisingly, we obtain the same average throughput and link utilization in
the symmetric case as for the constant probability model. Moreover, this is the same utilization also obtained
for the proportional strategy. This motivated us to examine the behavior of an arbitrary strategy. Our main
finding is that although the expectation of throughputs at loss instants depend on the strategy, the average
throughput is an invariant quantity for the case of symmetric flows.

We finally derive a general expression for the second moment of the throughput and compare the perfor-
mance of the three strategies mentioned above in the symmetric case, in order to find out which one has the
smallest throughput variability.

The structure of the paper is as follows. In Section 2 we study the throughput of the constant loss strategy,
whereas the Largest Throughput Loss (LTL) strategy is analyzed in Section 3. Section 4 then presents some
numerical experimentations and comparisons between the strategies. Section 5 studies the average through-
puts in the symmetric setting under an arbitrary strategy and obtains the invariance property. Section 6 then
provides an expression for the second moment of the throughput under an arbitrary strategy and a compar-
ison for the three aforementioned strategies. We end with a concluding section.
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2. Fixed loss probabilities: model and analysis

2.1. Basic definitions and assumptions

This model is based on [7] where an additive increase, multiplicative decrease (AIMD) model is used to
describe the joint throughput evolution of a set of TCP sessions sharing a common router bottleneck.

In full generality, let N be the number of AIMD sessions competing for bandwidth, and C the capacity of
the bottleneck router. Let Tn be the nth congestion epoch and sn+1 = Tn+1 � Tn. Let also gi be the additive
increase rate for session i and bi be its multiplicative decrease rate. Usually, bi = 1/2 "i and gi is taken as
the square inverse of the round trip time of session i. We consider here Y ðiÞn , the throughput of session i before

the nth congestion epoch, instead of X ðiÞn , the throughput after the nth congestion epoch like in [7].
Denote by �Y ðiÞ session i�s mean throughput. As in [7], let aðiÞn be a Bernoulli random variable with value 1 if

session i experiences a loss at the nth congestion epoch, and 0 otherwise, so that E½aðiÞn � ¼ pi. Note that the
aðiÞn ð1 6 i 6 NÞ are correlated to make sure that at least one packet is lost at each congestion time.

We have
Y ðiÞnþ1 ¼ cðiÞn Y ðiÞn þ snþ1gi; ð1Þ
where cðiÞn ¼ 1� aðiÞn

� �
þ bia

ðiÞ
n .

As in [7], we assume here that there is a loss as soon as the router capacity is reached, i.e., as soon as
XN

i¼1

cðiÞn Y ðiÞn þ snþ1

XN

i¼1

gi ¼ C. ð2Þ
This assumption will allow us to derive the throughput at the different congestion epochs.

2.2. Practical justification: pricing for service differentiation

An important question is the justification and choice of the different loss probabilities for different flows.
Fixing different probabilities would actually allow service differentiation, which becomes compulsory in a con-
gested network with various QoS requirements. To make sure that users do not always choose the best QoS, a
pricing scheme has to be associated with the loss probability choice. For surveys on pricing schemes in tele-
communication networks, the reader can see e.g. [11–13].

For instance we can assume that each session tries to optimize its utility
UiðuÞ ¼ �Y ðiÞ � qu;
where

• u is session i�s willingness to pay (that will actually be charged), with optimal value ui, so that session i loss
probability is given by
pi ¼ f ðiÞðu1; . . . ; uN Þ

such that

PN
i¼1f ðiÞðu1; . . . ; uN ÞP 1. We just have to make sure that at least one loss is experienced (meaning

that the random variables describing whether a session experiences a loss are correlated). For instance, we
can choose
pi ¼
u�1

iPN
j¼1u�1

j

;

meaning that the loss probability for session i is inversely proportional to its willingness to pay and that
exactly one session will suffer from a loss at each congestion epoch.

• q is a constant representing the relative weight between the charge and the throughput (that is fixed by the
network manager, in order to maximize the network revenue).
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2.3. Computation of the average throughput

The goal of this subsection is to derive the average throughput of a session in terms of the loss probabilities
when the number of sessions is N = 2.

First, using (2), we get the time between the nth and (n + 1)th congestion epochs
snþ1 ¼
C �

PN
i¼1c

ðiÞ
n Y ðiÞnPN

i¼1gi

. ð3Þ
Using this relation we are able to derive a closed-form of the average throughput �Y ð1Þ of session 1. The average
throughput �Y ð2Þ of session 2 can be obtained in the same way (or by switching the indexes 1 and 2 in the
following formula).

Proposition 1. Assume that N = 2. If we denote p12 ¼ Eðað1Það2ÞÞ, ni = gi/(g1 + g2), ai = 1 � bi, p0i ¼ aipi "i = 1,2
and p012 ¼ a1a2p12, we have that
�Y ð1Þ ¼
Cn1 n1p02 þ n2p01

� �
2p01

ðn1a2 � 2Þp02 þ ð2� ð1þ n2Þa1Þp01 þ 2n2p012

ð2n2 � n2
1a1Þp01 þ ð2n1 � n2

2a2Þp02 � 2n1n2p1p012

 

� n1a2 þ 2n1

ð1� n1a2Þp02 � n2p012

n1p02 þ n2p01

� �
þ 2
ð1� n1a2Þp02 � n2p012

n1p02 þ n2p01
þ a2

!
. ð4Þ
The proof of this formula is provided in Appendix A.

Corollary 1. Still assuming N = 2, the symmetric case yields
�Y ð1Þ ¼ C
4

ð2p1 � ð1� b1Þp12Þð2ð1þ b1Þp1 þ ð1� b1Þð1� p1Þp12Þ
p2

1ð3þ b1 � ð1� b1Þp12Þ
. ð5Þ
Proof. Just replace g2 by g1, b2 by b1 and p2 by p1 in Proposition 1. h
2.4. Sampling the loss probabilities

The previous expressions of the average throughput are general in the sense that no special sampling struc-
ture has been used for the losses. In this section, we aim at studying how the losses can be sampled and how it
impacts on the average throughput formula.

2.4.1. Independent sampling

As in [7], we can assume that the aðiÞn are at first generated independently, such that P½aðiÞn ¼ 1� ¼ pi, with pi

given, but that the samples are restricted to the domain where at least one loss is experienced. This requires a
derivation of pi in terms of the pj.

Assuming N = 2, we have as in [7]
p1 ¼
p1

1� ð1� p1Þð1� p2Þ
;

p2 ¼
p2

1� ð1� p1Þð1� p2Þ
;

8><
>:
where pi is for the loss probability for user i, sampled independently, but reduced to the domain such that a
loss is actually experienced. This gives
p1 ¼ p1ðp1 þ p2 � p1p2Þ;
p2 ¼ p2ðp1 þ p2 � p1p2Þ.

�
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We obtain the relation
p1 ¼
p1

p2

p2;
which gives (assuming p2 > 0)
p2 ¼
p1 þ p2 � 1

p1
and then
p1 ¼
p1 þ p2 � 1

p2

.

Then an assumption p1 + p2 = 1 can not be used. Also, it seems difficult to make sure that p1 6 1 and p2 6 1
for every pair (p1,p2). Thus this sampling procedure does not work in full generality.

2.4.2. A single loss at congestion epochs

The simplest way to sample is by using the relation
að2Þn ¼ 1� að1Þn
with að1Þn a Bernoulli random variable such that P½að1Þn ¼ 1� ¼ p1. This means that at each congestion epoch,
one and only one session will see a decrease of its throughput. One way to achieve it would be for instance
to consider "i 2 {1,2}, pi ¼

u�1
i

u�1
1
þu�1

2

(see Section 2.2).
We then have
p2 ¼ 1� p1;

p12 ¼ 0.
Substituting these values in (4), we get
�Y ð1Þ ¼ Cn1ðn1a2ð1� p1Þ þ n2p01Þ
2p01

n1a2 þ 2n1

ð1� n1a2Þa2ð1� p1Þ
n1a2ð1� p1Þ þ n2p01

� ��

� ðn1a2 � 2Þa2ð1� p1Þ þ ð2� ð1þ n2Þa1Þp01
ð2n2 � n2

1a1Þp01 þ ð2n1 � n2
2a2Þa2ð1� p1Þ

þ 2
ð1� n1a2Þa2ð1� p1Þ
n1a2ð1� p1Þ þ n2p01

þ a2

�
. ð6Þ
The symmetric case (with p1 = p2 = 1/2, g2 = g1 and b2 = b1) yields
�Y ð1Þ ¼ 1þ b1ð ÞC
3þ b1

.

If b1 = 1/2, we obtain �Y ð1Þ ¼ 3
7
C, like in [9] for the proportional loss strategy.
3. The largest throughput loss (LTL) strategy

Let us look at the case where the session that is penalized is systematically the one with the largest through-
put. We call this the ‘‘Largest Throughput Loss’’ (LTL) strategy. Consider the nth congestion epoch, with
throughputs Y ð1Þn and Y ð2Þn such that Y ð1Þn þ Y ð2Þn ¼ C. Without loss of generality, assume Y ð1Þn > Y ð2Þn and that
the additive increase is 1.

3.1. The symmetric case: the periodic solution

We identify a periodic solution for the evolution of the system. In this regime, we assume (without loss of
generality) that at time n, flow 1 has a larger throughput than flow 2. We seek for a regime in which at time
n + 1 the situation is reversed, and so on. This gives the following dynamics:
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Y ð1Þn =2þ snþ1 ¼ Y ð2Þn ;

Y ð2Þn þ snþ1 ¼ Y ð1Þn ;

Y ð1Þn þ Y ð2Þn ¼ C;

8><
>:
leading to
snþ1 ¼
1

7
C; Y ð1Þn ¼

4

7
C and Y ð2Þn ¼

3

7
C.
As in the proof of Proposition 1, but due to the periodicity of the system, the average throughput is given by
S=E½2s� where S is the cumulative throughput of a session between congestion epochs n and n + 2 (in one per-
iod, the throughput is going from 2C/7 to 3C/7 and in the other one from 3C/7 to 4C/7). This gives S ¼ 12

98
C2,

leading again to �Y ð1Þ ¼ �Y ð2Þ ¼ 3
7
C and an average utilization of 6

7
as we obtained in the previous section and as

is the case in the model in [9]. Obviously, E½Y ðiÞn � are also the same in all three cases (and equal to C/2). One
could wonder whether in fact the distribution of the rates is independent of the way one chooses the flow to
decrease the rate at Tn. Note however, that E½ðY ðiÞn Þ

2� ¼ 25C2=98 in our example, which is different than the
value of 7C2/26 obtained in the regime considered in [9].

3.2. The dynamic equations for the asymmetric case

For each flow i = 1,2 we have
Y ðiÞnþ1 ¼
Y ðiÞn =2þ snþ1gi; if Y ðiÞn > C=2;

Y ðiÞn þ snþ1gi; if Y ðiÞn < C=2.

(
ð7Þ
For the case that Y ðiÞn ¼ C=2 any tie breaking rule can be considered. Combining this with the relation
Y ð2Þn ¼ C � Y ð1Þn as well as Y ð2Þnþ1 ¼ C � Y ð1Þnþ1 gives
snþ1 ¼

Y ðiÞn

2ðg1 þ g2Þ
; if Y ðiÞn > C=2;

C � Y ðiÞn

2ðg1 þ g2Þ
; if Y ðiÞn < C=2.

8>>><
>>>:
Substituting in (7) gives
Y ðiÞnþ1 ¼

1

2
1þ gi

g1 þ g2

� �
Y ðiÞn ; if Y ðiÞn > C=2;

1� gi

2ðg1 þ g2Þ

� �
Y ðiÞn þ

Cgi

2ðg1 þ g2Þ
; if Y ðiÞn < C=2.

8>>><
>>>:
These equations can be used to obtain the exact transient behavior of the system. The average throughput can
then be computed by
�Y ðiÞ ¼ lim
n!1

Pn
k¼1skþ1 Y ðiÞkþ1 þ cðiÞk Y ðiÞk

� �
=2Pn

k¼1skþ1

.

3.3. The case g2/g1! 0

We consider here the case of x! 0 where x :¼ g2/g1 and assume for simplicity that bi = 1/2. We present a
heuristic argument to compute the bandwidth sharing.

Flow 2 will increase its rate until it reaches C/2, so its trajectory at steady state will be periodic (with a
period of duration of C/(4g2)), linearly increasing between C/4 to C/2. Its average throughput is 3C/8.

Flow 1. Fix D ¼ ffiffiffi
x
p
=g2. We can view the problem as one with two time scales: flow 1 is much faster than

flow 2, so during the interval [nD, (n + 1)D), the throughput of flow 2 can be approximated by a constant which
we denote by Y(2)(n); assume that this constant is smaller than C/2. During that interval, the throughput of
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flow 1 will oscillate very quickly (between half of the remaining and all the remaining bandwidth) so that it will
use in average over that interval 3/4 of the remaining bandwidth. Thus its average bandwidth during the inter-
val is (3/4)(C � Y(2)(n)), and during the whole period of C/(4g2) it will be (3/4)(C � 3C/8) = 15C/32.

Thus as x! 0 we see that the fast flow will get 5/4 of the throughput of the slow flow under the LTL
strategy.

3.4. Symmetric case with more than two flows (N > 2): the periodic solution

Assume now that we have N > 2 symmetric flows. Assume that Y ð1Þn > Y ð2Þn > � � � > Y ðNÞn at time n. This gives
the following system of N + 1 equations:
Y ð1Þn =2þ snþ1 ¼ Y ðNÞn ;

Y ð2Þn þ snþ1 ¼ Y ð1Þn ;

..

.

Y ðN�1Þ
n þ snþ1 ¼ Y ðN�2Þ

n ;

Y ðNÞn þ snþ1 ¼ Y ðN�1Þ
n ;

Y ð1Þn þ Y ð2Þn þ � � � þ Y ðNÞn ¼ C.

8>>>>>>>>>><
>>>>>>>>>>:
By adding up the N first equations we get
Nsnþ1 þ
XN

i¼2

Y ðiÞn þ Y ð1Þn =2 ¼ C.
Since
PN

i¼2Y ðiÞn ¼ C � Y ð1Þn , the last equation becomes
Nsnþ1 þ C � Y ð1Þn þ Y ð1Þn =2 ¼ C;
leading to
snþ1 ¼
Y ð1Þn

2N
.

We then obtain
Y ðiÞ ¼ Y ð1Þ 1� i� 1

2N

� �
. ð8Þ
From
PN

i¼1Y ðiÞ ¼ C, we have
Y ð1Þ
XN

i¼1

1� i� 1

2N

� � !
¼ C;

Y ð1Þ N � N � 1

4

� �
¼ C;

Y ð1Þ
3N þ 1

4

� �
¼ C;
leading to
Y ð1Þ ¼ 4

3N þ 1
C.
From (8) we then have
Y ðiÞn ¼
2ð2N þ 1� iÞ

Nð3N þ 1Þ C; i ¼ 2; . . . ;N and snþ1 ¼
2

Nð3N þ 1ÞC.
As in the proof of Proposition 1, but due to the periodicity of the system, the average throughput is given by
S=E½Ns� where S is the cumulative throughput of a session between congestion epochs n and n + N. We have
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S ¼ 1

2
Y ð1Þnþ1 � Y ð1Þn =2
� �

snþ1 þ
XN

i¼2

Y ð1Þnþi þ Y ð1Þnþi�1

� �
snþi

 !
; ð9Þ

¼ s
2

2
XN�1

i¼1

Y ð1Þnþi þ
1

2
Y ð1Þn þ Y ð1ÞnþN

 !
¼ s

2
2
XN

i¼1

Y ð1Þnþi �
1

2
Y ð1Þn

 !
; ð10Þ

¼ 1

Nð3N þ 1ÞC 2C � 2

3N þ 1
C

� �
¼ 6

ð3N þ 1Þ2
C2. ð11Þ
Thus, the average throughput is given by
�Y ðiÞ ¼ 3N
Nð3N þ 1ÞC; i ¼ 1; 2; . . . ;N .
4. Numerical results for the fairness in bandwidth sharing

We study in this section the fairness in throughput as a function of the round trip times (when N = 2). We
recall that the square root formula of TCP as well as its refinements (see [14,2]) predict that the throughput of
a connection should be inversely proportional to its RTT. We shall compare this with the fairness obtained
under our model of interacting flows.
4.1. Constant loss strategy

We now look at the ratio �Y 1=�Y 2 of average throughputs. To simplify the expressions, let us assume that
b1 = b2 = 1/2 and that p1 = p2 = p P 1/2. We also assume that the linear growth rates are inversely propor-
tional to the square of the round trip times, i.e., gi ¼ 1=R2

i for i = 1,2. (Indeed, the window increases by one
each RTT, and since the throughput is given by the window size divided by the RTT, the increase rate of the
throughput is 1/RTT2.)

We then obtain from (5) that
�Y 1

�Y 2

¼ R2

R1

� �2 3p R2

R1
þ 5p � 2p12

5p R2

R1

� �2

þ 3p � 2p12
R2

R1

� �2
.

If we further assume that exactly one flow will experience a loss, then we have p12 = 0 and p = 1/2 giving
�Y 1

�Y 2

¼ R2

R1

� �2 3 R2

R1

� �2

þ 5

5 R2

R1

� �2

þ 3
.

We depict the fairness in throughputs for the fixed loss strategy in Fig. 1.
As can be seen in Fig. 1, the ratio of average throughputs is very close to be linear in the square of the ratio

of round trip times.
4.2. The LTL strategy

In Fig. 2 we depict the throughput ratios as a function of the ratio of the inverse of the square of RTTs for
the LTL strategy. The values are obtained by computing the throughput as in Section 3.2. We observe that
although in general the throughput has a tendency to increase as the corresponding RTT decreases, we see
that the throughput curve is quite irregular and fractal, and locally there are many points where the opposite
behavior is observed: increasing the RTT of a flow results in increasing its throughput. This can perhaps be
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explained in part by changes in the periodicity of the steady state behavior and in other discrete nature behav-
ior. The analysis of this phenomenon is beyond the scope of this paper. We note that other fractal aspects of
AIMD flows in networks with several nodes have already been reported in [15]. We finally observe that as the
RTT of a flow becomes negligible with respect to the other, its share of the throughput converges to 5/4 of the
throughput of the other flow, as predicted in Section 3.3.
4.3. Comparisons

We first observe that the throughput sharing in the LTL strategy is much more fair than in the probabilistic
sharing: it is much less sensible to the differences in RTT. Indeed, a flow with 3 times smaller RTT gets only
1.21 times more throughput in the LTL strategy, whereas it gets 6 times more throughput in the case of the
constant probabilities strategy.

The fairness behavior of the proportional drop strategy has already appeared in [10], where the flow with
3 times smaller RTT gets 2.75 times more throughput. Comparing to these results we see that, in terms of
fairness, the LTL strategy gives the best results whereas the worse performance is provided by the fixed loss
probabilities strategy.
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The behavior of the throughput as the ratio of RTT goes to zero is in particular interesting. The throughput
of the long flow and its share of the throughput tend to zero in the constant loss strategy, as well as with the
proportional strategy [9, Sections 7 and 8], whereas it tends to a positive constant under the LTL strategy.

Note that the fact that we obtain different average throughput sharing under different policies reflects the
fact that, in contrast to the symmetric case, the throughput is not invariant with respect to the strategy in the
general asymmetric case.

5. The symmetric case: invariance of the throughput for a general strategy

Consider now a general strategy for deciding which flow will decrease its rate when capacity is reached. The
decrease is by a constant b and the increase rate is g. We still restrict ourselves to the symmetric case of two
flows, and assume that one and only one flow decreases its rate when the capacity is reached. At such a mo-
ment, flow 1 that transmits at a rate of y will decrease its rate with probability f(y) and flow 2 will decrease its
rate with probability 1 � f(y). We assume that the rate process of both flows is in a stationary ergodic regime.
In particular we shall focus again on Y ð1Þn , the rate of flow 1 just before a rate decrease occurs.

5.1. The Markov chain

We focus on flow 1; Y n :¼ Y ð1Þn is a semi-Markov process. If the state at time Tn is Yn = y, then

• If flow 1 is the one to decrease its rate (this occurs with probability f(y)) then we shall have at Tn+1
Y ð1Þnþ1 ¼ by þ gsnþ1; Y ð2Þnþ1 ¼ C � y þ gsnþ1.
Since the sum of the rates of the flows at that time is C, we obtain sn+1 = y(1 � b)/(2g), and thus
Y nþ1 ¼ y
1þ b

2

� �
.

Finally, the surface S :¼ S(1) is given by
S ¼ 1

2
ðbY n þ Y nþ1Þsnþ1 ¼ y2 ð1þ 3bÞð1� bÞ

8g
.

• If flow 2 is the one to decrease its rate (this occurs with probability 1 � f(y)) then
Y ð1Þnþ1 ¼ y þ gsnþ1; Y ð2Þnþ1 ¼ bðC � yÞ þ gsnþ1.
Since the sum of the rates of the flows at that time is C, we obtain sn+1 = (C � y)(1 � b)/(2g), and thus
Y nþ1 ¼ y
1þ b

2
þ C

1� b
2

.

Next we compute S:
S ¼ 1

2
ðY n þ Y nþ1Þsnþ1 ¼

1� b
8g
ð�ð3þ bÞy2 þ 2Cð1þ bÞy þ C2ð1� bÞÞ.
Below we shall use Y to denote a random variable distributed like Yn at steady state. Similarly we shall use
the notation s to denote sn+1 at steady state.
5.2. Expectations

By symmetry we have E½Y � ¼ C=2, and also clearly E½f ðY Þ� ¼ 1=2. Using the previous expressions for s and
then taking expectation we obtain at steady state
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E½s� ¼ E Y
1� b

2g
f ðY Þ þ ðC � Y Þð1� bÞ

2g
ð1� f ðY ÞÞ


 �
¼ ð1� bÞE½Yf ðY Þ�=g. ð12Þ
This can also be obtained alternatively by an up-down crossing argument: If we denote by Zn the rate of flow 1
just after Tn, then the expected decrease in rate at Tn is
E½Y n � Zn� ¼ ð1� bÞE½Yf ðY Þ�.

The average increase in the rate gE½s� should compensate for the average decrease in the rate, from which we
obtain (12). Next we express the expectation of the surface:
E½S� ¼ 1� b
8g

E ð1þ 3bÞY 2f ðY Þ þ ð�ð3þ bÞY 2 þ 2Cð1þ bÞY þ C2ð1� bÞÞð1� f ðY ÞÞ
� 

¼ 1� b
8g

�ð3þ bÞE½Y 2� þ 4ð1þ bÞE½Y 2f ðY Þ� � 2Cð1þ bÞE½Yf ðY Þ� þ C2 3þ b
2

� �
.

Proposition 2. The average throughput of a flow in a symmetric network of two flows is given by
�Y ¼ 1þ b
3þ b

C;
independent of the sampling function f.
Proof. We need to compute E½S�=E½s�, but for that we first need to compute several unknowns: E½Yf ðY Þ�; E½Y 2�
and E½Y 2f ðY Þ�. In order to obtain them, we shall also need to obtain the unknown E½Y 3�.

Our first relation between the unknowns is obtained by writing that E½ðY nÞ2� ¼ E½ðY nþ1Þ2� and using our
previous expressions to write Yn+1 in terms of Yn
E½Y 2� ¼ E
1þ b

2

� �2

Y 2f ðY Þ þ 1

4
ð1þ bÞY þ ð1� bÞCð Þ2ð1� f ðY ÞÞ

" #
Note that the term E½Y 2f ðY Þ� cancels out here, and we obtain a simple relation between the unknowns E½Y 2�
and E½Yf ðY Þ�.
E½Y 2� 1� 1þ b
2

� �2
 !

¼ C2

8
ð1� bÞð3þ bÞ � C

2
ð1� b2ÞE½Yf ðY Þ�. ð13Þ
To obtain an expression for E½Y 2f ðY Þ� we use the fact that at steady state E½ðY nÞ3� ¼ E½ðY nþ1Þ3� and substitute
our previous expressions to write Yn+1 in terms of Yn:
E½Y 3� ¼ E
1þ b

2

� �3

Y 3f ðY Þ þ 1

8
ð1þ bÞY þ ð1� bÞCð Þ3ð1� f ðY ÞÞ

" #
.

Note that the term E½Y 3f ðY Þ� cancels out here, and we obtain a relation between all the unknowns
E½Y 3�; E½Y 2�; E½Y 2f ðY Þ� and E½Yf ðY Þ�:
E½Y 3� 1� 1

8
ð1þ bÞ3

� �
¼ 3C

8
ð1þ bÞ2ð1� bÞE½Y 2� � 3C

8
ð1þ bÞ2ð1� bÞE½Y 2f ðY Þ�

� 3C2

8
ð1þ bÞð1� bÞ2E½Yf ðY Þ� þ C3

8
ð1� bÞ2ð2þ bÞ.
Another relation is obtained by using the fact that by symmetry E½Y 3� ¼ E½ðC � Y Þ3� (since C � Y is the rate of
the second flow). This gives
E½Y 3� ¼ 1

2
3CE½Y 2� � 3

C3

2
þ C3

� �
¼ 1

2
3CE½Y 2� � C3

2

� �
. ð14Þ
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We thus have three equations with four unknowns. If we had four independent equations this would have
given us a single solution for the unknowns. But noting that the coefficients of these unknowns do not depend
on the function f, this would mean that the unknowns do not depend on f. This is however not the case, since
we already saw above that E½Y 2� is different for different functions f. We shall carry however the calculations in
order to check whether the average rates will turn out not to depend on f.

Using the previous relations, we can express E½S� in terms of E½Yf ðY Þ� by
E½S� ¼ ð1� bÞð1þ bÞE½Y ðf ðY Þ�C
gð3þ bÞ .
Using the expression (12) of E½s�, we obtain the result. h
6. The symmetric case: second moment of the throughput

Even if all possible loss strategies provide the same average throughput in steady-state in the symmetric case
we can wonder about the variability of the throughput. In real-time applications that may use AIMD proto-
cols in order to be TCP-friendly, it is clearly advantageous to have the lowest possible throughput variability.

The following Proposition gives a general expression for the second moment of the throughput. As will be
seen, this expression is not invariant any more, in contrast to the first moment.

Proposition 3. Let E½S2� denote the mean cumulative of the square throughput between two loss epochs. The
(average) second moment of throughput is
E½S2�
E½s� ¼

1

3
ð1þ bþ b2Þ E½Y

3f ðY Þ�
E½Yf ðY Þ� .
Proof. The mean cumulative of the square throughput between two loss epochs is given by
S2 ¼
1

3

ðY nþ1Þ3 � ðbY nÞ3

Y nþ1 � bY n
snþ1 ¼

1

3
ðb2Y 2

n þ bY nY nþ1 þ Y 2
nþ1Þsnþ1
if the loss is experienced at time n by session 1, and
S2 ¼
1

3

ðY nþ1Þ3 � ðY nÞ3

Y nþ1 � Y n
snþ1 ¼

1

3
ðY 2

n þ Y nY nþ1 þ Y 2
nþ1Þsnþ1
otherwise. Using the previous results we have
E½S2� ¼
1� b

6g
E b2Y 2 þ b

1þ b
2

� �
Y 2 þ Y 2 1þ b

2

� �2
 !

Yf ðY Þ
"

þ Y 2 þ Y
2

Y ð1þ bÞ þ Cð1� bÞð Þ þ 1

4
Y ð1þ bÞ þ Cð1� bÞð Þ2

� �
� ðC � Y Þð1� f ðY ÞÞ

#

¼ 1� b
24g

ð8þ 8bþ 8b2ÞE½Y 3f ðY Þ� � ð7þ 4bþ b2ÞE½Y 3� þ Cð3þ 6bþ 3b2ÞE½Y 2�
�

�Cð3þ 6bþ 3b2ÞE½Y 2f ðY Þ� � C2ð3� 3b2ÞE½Yf ðY Þ� þ C3ð2� b� b2Þ
�
.

Following the proof of Proposition 2, the only unknowns left are E½Yf ðY Þ� and E½Y 3f ðY Þ� and we get
E½S2� ¼
1

3g
ð1� bÞð1þ bþ b2ÞE½Y 3f ðY Þ�.
We then obtain the result. h

Since we still have two unknowns, one could argue that their ratio is constant. Actually, it is not the case
from the following proposition where we compare the second order moment for the three loss strategies
(constant, proportional or largest flow).
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Proposition 4. Let b = 1/2. Using the constant loss probability scheme, we get
Qcst ¼
E½S2�
E½s� ¼

5

24
C2 � 0:2083C2;
whereas when the loss is applied to the largest flow (LTL strategy), we have
Qltl ¼
E½S2�
E½s� ¼

4

21
C2 � 0:1905C2
and the scheme with proportional losses gives
Qpro ¼
E½S2�
E½s� ¼

679

3396
C2 � 0:19994C2.
We see from the proposition that in the symmetric case, the LTL strategy is to be preferred (in terms of
lower second moment), whereas the strategy of fixed loss probability has the worst performance.

Proof of Proposition 4. Consider the scheme with constant loss probability. Since f(Y) = 1/2, we have
E½Y jf ðY Þ� ¼ E½Y j�=2 8j. From Eq. (13), we get E½Y 2� ¼ 2C2=7. Then, from (14), E½Y 3� ¼ 5C3=28, leading to the
result.

If we look at the scheme where the loss is experienced by the largest flow in its periodic behavior, we can
directly get E½S2� from the mean cumulative of the square throughput between loss epochs Tn and Tn+2 by
2E½S2� ¼
Z 2C=7

0

ðxþ 2C=7Þ2 dx ¼ 8

147
C3.
Since E½s� ¼ C=7, we get the result.
Let us now look at the scheme with proportional losses. We have F(Y) = Y/C. From [9], we have

E½Y � ¼ C=2; E½Y 2� ¼ 7C2=26; E½Y 3� ¼ 2C3=13; E½Y 4� ¼ 679C4=7358. This leads to E[Yf(Y)] = 7C/26 and
E[Y3f(Y)] = 679C3/7358, which gives the result. h
7. Discussion and future research

We have presented in this paper various loss strategies that determine which flow will lose a packet when a
congestion occurs. We have shown that such loss strategies may have an impact on the throughput variability
(which may be an important performance measure in real-time applications that use AIMD protocols to be
TCP-friendly) but that they all lead to the same average throughput in the special case of a symmetric network
with two flows. Among three specific strategies that we introduced, we have shown in the above setting that
the LTL strategy (i.e., the strategy that drops a packet from the flow with highest throughput) has the best
performance in terms of throughput variability, and moreover, it guarantees a positive share of the through-
put even when the RTT of one of the flows becomes arbitrarily large.

The mathematical study of the sharing of bandwidth under various loss strategies turns out to be quite in-
volved. So far we have not been able to get explicit expressions for the asymmetric network with two flows
when the LTL or the proportional loss strategies are used. We have provided however an (involved) explicit
expression for the throughput for the case of constant loss strategy. For the symmetric case, however, we have
obtained an explicit expression for the throughput under an arbitrary loss strategy.

The cases of more than one link and more than two flows, however interesting, are beyond the scope of this
paper. In particular, we indeed use the model of [7] where there is a single bottleneck, common to all the flows
that traverse it. So far we have not been able to apply our analytical approach to study more than two flows;
this is left for future research.

Many open problems remain: 1. Is there any probabilistic argument that can explain the invariance of the
average throughput in the loss strategy phenomenon in the case of two flows? 2. Does the invariance of
the throughput holds for the case of more than two competing symmetric flows? 3. What is the reason for
the fractal behavior of the throughput sharing under LTL? 4. How to implement LTL? Note that a desirable
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way of implementation should be stateless, and it should make use only of local information available at the
bottleneck element.

Appendix A. Proof of Proposition 1

Using (3), the recursive equation (1) becomes
Y ðiÞnþ1 ¼ cðiÞn Y ðiÞn 1� giPN
j¼1gj

 !
� gi

P
j 6¼ic

ðjÞ
n Y ðjÞnPN

j¼1gj

þ C
giPN
j¼1gj

. ðA:1Þ
Since N = 2, we have
Y ð2Þn ¼ C � Y ð1Þn ðA:2Þ
and "i 2 {1,2} and j 2 {1,2} with j 5 i,
Y ðiÞnþ1 ¼ cðiÞn Y ðiÞn 1� giP2
k¼1gk

 !
� gi

cðjÞn ðC � Y ðiÞn ÞP2
k¼1gk

þ C
giP2
k¼1gk

;

leading to
Y ðiÞnþ1 ¼ Y ðiÞn cðiÞn � cðiÞn � cðjÞn

� � giP2
k¼1gk

 !
þ C

giP2
k¼1gk

ð1� cðjÞn Þ. ðA:3Þ
If we define
BðiÞn ¼ cðiÞn � ðcðiÞn � cðjÞn Þ
giP2
k¼1gk
and
AðiÞn ¼ C
giP2
k¼1gk

ð1� cðjÞn Þ.
Eq. (A.3) can be written
Y ðiÞnþ1 ¼ Y ðiÞn BðiÞn þ AðiÞn . ðA:4Þ
In steady-state, we get
EðY ðiÞÞ ¼ EðAðiÞÞ
1� EðBðiÞÞ

. ðA:5Þ
To compute the mean throughput of session i, we have
�Y ðiÞ ¼ EðSðiÞÞ
EðsÞ ;
where E½SðiÞ� is the average cumulated throughput between two congestion epochs.
First, since ððað1Þn ; að2Þn ÞÞn is a sequence of independent random vectors, cðiÞn and Y ðiÞn are independent and
E½s� ¼ C � E½cð1Þ�E½Y ð1Þ� � E½cð2Þ�E½Y ð2Þ�P2
k¼1gk

. ðA:6Þ
Let
ni ¼
giP2
k¼1gk

.
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Using
E½cðiÞ� ¼ 1� pi þ bipi;

E½AðiÞ� ¼ Cnið1� E½cðjÞ�Þ ¼ Cnipjð1� bjÞ;
E½BðiÞ� ¼ 1� nið ÞE½cðiÞ� þ niE½cðjÞ� ¼ njE½cðiÞ� þ niE½cðjÞ�

¼ 1�
ð1� biÞgjpi þ ð1� bjÞgipjP2

k¼1gk

;

E½Y ðiÞ� ¼ E½AðiÞ�
1� E½BðiÞ�

¼
Cgipjð1� bjÞ

ð1� b2Þg1p2 þ ð1� b1Þg2p1

.

Note that E½BðiÞ� ¼ E½BðjÞ� do not depend on the session and can then be written E½B�.
We can deduce that
E½s� ¼ C
ð1� b1Þð1� b2Þp1p2

ð1� b2Þg1p2 þ ð1� b1Þg2p1

.

We now need to compute E½SðiÞ� in terms of p1 and p2. If we note SðiÞn , the cumulated throughput between nth
and (n + 1)th congestion epochs, we have
SðiÞn ¼
1

2
ðY ðiÞnþ1 þ cðiÞn Y ðiÞn Þsnþ1 ¼

1

2
ðY ðiÞn BðiÞn þ AðiÞn þ cðiÞn Y ðiÞn Þ

C � cðiÞn Y ðiÞn � cðjÞn Y ðjÞnP2
k¼1gk

¼ 1

2
ðY ðiÞn BðiÞn þ AðiÞn þ cðiÞn Y ðiÞn Þ

ð1� cðjÞn ÞC þ ðcðjÞn � cðiÞn ÞY ðiÞnP2
k¼1gk

¼
�

Y ðiÞn Cð1� cðjÞn ÞðBðiÞn þ cðiÞn Þ þ ðcðjÞn � cðiÞn ÞAðiÞn

� �
þ CAðiÞn ð1� cðjÞn Þ
� �

þðY ðiÞn Þ
2 ðcðjÞn � cðiÞn ÞðBðiÞn þ cðiÞn Þ
� ��

2
X2

k¼1

gk

 !�1

. ðA:7Þ
From (A.4), since BðiÞn and Y ðiÞn are independent, we get
E½ðY ðiÞnþ1Þ
2� ¼ E½ðBðiÞn Þ

2�E½ðY ðiÞn Þ
2� þ E½ðAðiÞn Þ

2� þ 2E½Y ðiÞn �E½BðiÞn AðiÞn �;
leading to
E½ðY ðiÞÞ2� ¼ E½ðAðiÞÞ2� þ 2E½Y ðiÞ�E½BðiÞAðiÞ�
1� E½ðBðiÞÞ2�

. ðA:8Þ
Using the fact that 8k 2 f1; 2g; ðaðkÞn Þ
2 ¼ aðkÞn , we have
E½ðcðiÞÞ2� ¼ 1� 2ð1� biÞpi þ ð1� biÞ
2
E½ðaðiÞÞ2�

¼ 1� ð1� b2
i Þpi;

E½cð1Þcð2Þ� ¼ 1�
X2

k¼1

ð1� bkÞpk þ
Y2

k¼1

ð1� bkÞ
 !

E½að1Það2Þ�;

E½ðAðiÞÞ2� ¼ C2n2
i ð1� 2E½cðjÞ� þ E½ðcðjÞÞ2�Þ

¼ C2n2
i ð1� bjÞ

2pj;

E½ðBðiÞÞ2� ¼ n2
1E½ðcð2ÞÞ

2� þ n2
2E½ðcð1ÞÞ

2� þ 2n1n2E½cð1Þcð2Þ�

¼ 1� 2n1ð1� b2Þp2 � 2n2ð1� b1Þp1 þ E n1ð1� b1Það1Þ þ n2ð1� b2Það2Þ
� �2
h i

;

E½BðiÞAðiÞ� ¼ CniE nic
ðjÞ � niðcðjÞÞ2 þ njc

ðiÞ � njc
ðiÞcðjÞ

h i

¼ Cni ð1� bjÞpj � nið1� bjÞ
2pj � nj

Y2

k¼1

ð1� bkÞ
 !

E½að1Það2Þ�
" #

.
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E½ðY ðiÞÞ2� ¼ C2n2
i ð1� bjÞ

2pjþ 2
C2n2

i pjð1� bjÞ ð1� bjÞpj� nið1� bjÞ
2pj� nj

Q2
k¼1ð1� bkÞ

� �
E½að1Það2Þ�

h i
n1p2 þ n2p1 � b2n1p2� b1n2p1

0
@

1
A

� 2n1ð1� b2Þp2þ 2n2ð1� b1Þp1� E n1ð1� b1Það1Þ þ n2ð1� b2Það2Þ
� �2
h i� ��1

. ðA:9Þ
We also have
E½ð1� cðjÞn ÞAðiÞn � ¼ CniE½ð1� cðjÞÞ2� ¼ Cnið1� bjÞ
2pj; ðA:10Þ

E½ðcðjÞn � cðiÞn ÞðBðiÞn þ cðiÞn Þ� ¼ E ð1� biÞaðiÞ � ð1� bjÞaðjÞ
� ��

� 1� njð1� biÞaðiÞ � nið1� bjÞaðjÞ þ 1� ð1� biÞaðiÞ
� �

¼ nið1� bjÞ
2pj � ð1þ njÞð1� biÞ

2pi � 2ð1� bjÞpj

þ 2njð1� bjÞð1� biÞE aðiÞaðjÞ
� 

þ 2ð1� biÞpi; ðA:11Þ

E C 1� cðjÞn

� �
BðiÞn þ cðiÞn

� �
þ ðcðjÞn � cðiÞn ÞAðiÞn

� 
¼ E Cð1� bjÞaðjÞ 2� ð1þ njÞð1� biÞaðiÞ � nið1� bjÞaðjÞ

� 
ð1� biÞaðiÞ � ð1� bjÞaðjÞ
� �

Cnið1� bjÞaðjÞ
� 

¼ C 2ð1� bjÞpj � 2nið1� bjÞ
2pj � 2njð1� bjÞð1� biÞE aðiÞaðjÞ

� � �
. ðA:12Þ
Inserting (A.9)–(A.12) into (A.7), we get an expression of E½SðiÞ�. Dividing by the expression (A.6) of E½s�, and
denoting p12 ¼ Eðað1Það2ÞÞ, ai = 1 � bi, p0i ¼ aipi "i = 1,2 and p012 ¼ a1a2p12, we obtain the result.
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