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Abstract—Is it profitable for players to unite and merge to a single
player? Obviously, the sum of utilities at an equilibrium cannot exceed
the sum obtained if all players join together. But what happens if only a
subset of players join together? Previous work on collusion have already
shown that the society may either gain or loose from collusion of a subset
of players. In this paper we show for a simple load balancing example
that not only the society may loose, but also the subset of players that
collude may end up with a worse performance than without collusion. In
doing so, we introduce new concepts that measure the price of collusion.

I. INTRODUCTION

To evaluate the efficiency of an equilibrium, simple measures such
as the price of anarchy (or the price of stability) can summarize
how bad does worst (respectively, the best) possible equilibrium
perform with respect to the socially optimal solution. Although this
indeed gives insight into the inefficiency of not joining together, these
measures are far from being sufficient for evaluating possible benefits
from aggregating several players into a single one.

First, one may question why we compare the sum of utilities. In
fact, quite often one is interested in maximizing other function of
the utilities rather than the sum. One may be interested in the impact
of the merging on the performance of the player that has the worst
performance. More generally, one may prefer a measure that indicates
how well does an equilibrium perform in terms of Pareto efficiency.
This direction has been carried by Kameda in [2] who provides a
new definition of the efficiency of an equilibrium.

Next, one may wish to assess the effect of players merging together
to one or more coalitions, on the equilibrium without requesting that
all players merge to a single player (which is called then a grand
coalition). One can then question how beneficial is it for the society
to see the set of players replaced by coalitions of these players. In
[1], the authors define the price of collusion as the ratio between
the social cost at equilibrium before and after the (worst possible)
collusion scenario.

We argue that coalitions tend to form if there is an advantage to
those involved in forming a coalition in merging together. Therefore,
it seems to us fundamental to introduce a measures for price of
collusion that would quantify the effect of collusion(s) on those
involved in the collusion(s). We thus propose several other alternative
definitions of price of collusion: one related to a single coalition, and
another related to various coalitions that may occur coincidentally.

We investigate these concepts through a motivating example of a
load balancing routing game. In particular we show that when a few
players merge together, not only the society may loose but also the
subgroup that colludes.

All proofs are left out due to space. They can be sent upon request
from the authors.

Fig. 1. Load balancing topology

II. THE LOAD BALANCING PROBLEM

Model. Assume there is a set N1 of n players such that player
i among them has an amount of θ(i) to ship from node 1 to node
3. Each player among a set N2 of m players with m ≥ n, has an
amount of θ(i) to ship from node 2 to node 3. Node 3 has a link from
both node 2 as well as from node 1, each with the same link cost of
f . Let g denote the derivative of f . Links 1 and 2 are connected by
a delay line with a fixed cost of d. The network is depicted in figure
1.

We denote for all user i, xi1 (resp. xi2) the amount of traffic that
uses the link 1-3 (resp. the link 2-3). Note that for user i ∈ N2,
xi1 follows the two links 2-1 and 1-3. We set x1 (resp x2) the total
amount of traffic on link 1-3 (resp. on link 2-3). We have: x1 =∑2

j=1

∑
i∈Nj

xi1, and x2 =
∑2

j=1

∑
i∈Nj

xi2. For any player
i, the cost of player i is given by

J i(x) =

{
xi1f(x1) + (θ(i)− xi1)f(x2) + (θ(i)− xi1)d for i ∈ N1

xi1f(x1) + (θ(i)− xi1)f(x2) + xi1d for i ∈ N2

(1)

Thus,
∂J i(x)

∂xi1
= f(x1)+xi1g(x1)−f(x2)−(θ(i)−xi1)g(x2)+δ(i)

(2)
where δ(i) = d for i ∈ N2 and δ(i) = −d for i ∈ N1. Assume
that at equilibrium, xi1 and xi2 are strictly positive for all i. Then the
equilibrium flows are obtained by equating (2) to zero. This gives

xi1 =
f(x2)− f(x1) + θ(i)g(x2)− δ(i)

g(x1) + g(x2)
. (3)

Define ξ =
∑2

j=1

∑
i∈Nj

θ(i) as the total demand on the network.

Definitions of Measures for Collusion In [1], the authors define the
price of collusion as the ratio between the social cost at equilibrium
before and after the (worst possible) collusion scenario. We are
interested in addition to quantify the effect of collusion on those
involved in the collusion. We thus propose several other alternative
definitions of price of collusion.



Consider a game Γ = (I, {A(i), Ci, i ∈ I}) where I is the set
of players, A(i) is the set of strategies and Ci the cost for player
i (which is a function of the actions of all players). For a given
multistrategy a = (a(i) ∈ A(i), i ∈ I) and a′ = (a′(i) ∈ A(i), i ∈
I) we define the following:

• a(J) is given by (a(j) ∈ A(j), j ∈ J).
• a(−J) is given by (a(j) ∈ A(j), j /∈ J).
• [a′(J),a(−J)] is the multistrategy where player j /∈ J uses

action a(j) and player i ∈ J plays a′(i).

Let H be a partition of I . It is thus given as a set of disjoint
subsets of I whose union is I . We shall call H a collusion pattern.
Each h ∈ H will be identified with a player in a new game Γ(H) =
(H, {A(h), Ch, h ∈ H}). We can view a set of players that collude
as a coalition. Ch is called (as in coalition games) the imputation for
a coalition h.

For discrete games we define for any h ⊂ I , C[h](a) =
∑

i∈h C
a.

Definition 1: Consider a game Γ = (I, {A(i), Ci, i ∈ I}) along
with a collusion pattern H . a[h] is called a H-equilibrium if it is an
equilibrium in the game Γ(G).

Definition 2: We say that a collusion pattern H is a single collu-
sion if there is some J ⊂ I such that H = H(J) := {J, {i}, i /∈ J}.
In other words, there is only one coalition that is formed by all
i ∈ J merging together. Let SC denote the set of all possible single
collusions.

Definition 3: Let a be an equilibrium in a game Γ and let a[H]
be a corresponding equilibrium in the game Γ(H). We define

• The individual single collusion-price: we consider the impact of
a single collusion, that of all players within a group h acting
together as a single player. The collusion pattern is thus H(h).

ISCP (h) =
C[h](a)

Ch(a[H])

This ratio measures the harm for a group h of players to
collude together. After colluding, they get together at the new
equilibrium Ch(a[H]). If they did not collude then they would
get together C[h](a) at equilibrium.

• The individual collusion-price (ICP): we now allow for several
colluding groups and define the ICP as the worst degradation
over all new coalitions.

ICP (H) = sup
h∈H

C[h](a)

Ch(a[H])

• The social single collusion-price:

SSCP (h) =
C[I](a)

C[I](a[H])

where H = H(h). This measures the impact on the whole
society of a single collusion among players in h ⊂ I .

• The social collusion-price:

SCP (H) = sup
h⊂I

C[I](a)

C[I](a[H])

This measures the impact on the whole society of a collusion
pattern H .

• The single collusion externality-price:

SCEP (h) =
C[I \ h](a)

C[I \ h](a[H])

This measures the impact of a collusion h over the non-colluding
players.

• The collusion externality-price:

CEP (H) = sup
h⊂I

C[I \ h](a)

C[I \ h](a[H])

This measures the worst degradation over all coalitions on the
non-colluding players.

We shall use the above definition in cases where the equilibrium
is unique both before as well as after collusion. In case of several
equilibria, one may define the worst case and the best case ratios (as
in the definitions of price of anarchy and of price of stability).

III. THE SYMMETRIC CASE, BRAESS PARADOX AND COLLUSIONS

In this section, we observe similar results as in [4] in which authors
study in details symmetric systems.

Assume that n = m. Taking the sum over i, we get

x1 =
2nf(x2)− 2nf(x1) + ξg(x2)

g(x1) + g(x2)
(4)

which does not depend on d any more!
Assume that we have symmetry in the demands as well, in the

sense that for every player i1 ∈ N1 there is a player in N2 with the
same demand. Since we know that there is a unique equilibrium, we
shall derive it by showing that there is an equilibrium when restricting
to symmetric ones. In a symmetric equilibrium, x1 = x2 = ξ/2.
This gives by substituting in (3) xi1 = θ(i)

2
− δ(i)

2g(ξ/2)
and xi2 =

θ(i)
2

+ δ(i)
2g(ξ/2)

. The above values of xkj indeed satisfies the positivity
assumption provided that d ≤ γ where γ := g(ξ/2)θ(i). If this
condition is not satisfied then there is no flow forwarded between
one source node to another, i.e. on the link 1-2.

A. Braess-type paradox

It follows from (1) that at equilibrium, J i(x) = θ(i)f(ξ/2) +

d
(
θ(i)
2
− d

2g(ξ/2)

)
. we conclude that ∂Ji

∂d
= θ(i)

2
− d

g(ξ/2)
, which

is nonnegative for d ∈ (γ/2, γ). In this region J i decreases as d
increases, which is a Braess type paradox. This paradox was obtained
in the context of a load balancing network in [3].

B. Collusions

Assume that a group K of k ≤ n players among N1 collude
together to become a single player. Assume that at the same time,
the set K′ of players among N2 corresponding to K (a player in
N2 corresponds to one in N1 if they both have the same demand)
also collude to become one single player. We then have 2(n−k+1)
players instead of 2n. Then we observe the following:

• The performance of all players other than the colluding ones is
unchanged.

• The sum of the performance of the colluding players is also
unchanged over the region d ≤ g(ξ/2) mini θ(i). This is the
region in which we had mutual forwarding among all pairs of
corresponding players in K and K′. The mutual forwarding
remains after the collusion.

• We see however that after the collusion, we still have mutual
forwarding in larger region of delays: d ≤ g(ξ/2)

∑
i
θ(i).

Thus there is strict deterioration in the sum of the costs when
g(ξ/2) mini θ(i) ≤ d ≤ g(ξ/2)

∑
i
θ(i).

We thus showed that a particular type of collusion in which
two sets of players merged into two coalitions, resulted in a worse
performance at equilibrium. It is natural to ask whether one can
observe deterioration due to collusion when only one group is formed.



IV. ASYMMETRIC LOAD BALANCING GAMES

The behavior of colluding players was easy to describe in the
symmetric case, since we know for symmetric routing games that
the costs are also symmetric. To use this tool for the study of
collusions, we needed to restrict to collusions that kept the system
symmetric. This excluded the situation in which only one group of
players collude. To study the latter, we therefore have to go beyond
symmetric games, which we do next.

We shall obtain an implicit equation to compute the total equi-
librium flow over link 1. This is used in the following section to
compute the equilibrium flow in the case of linar costs. Summing
over i, in (2) we get

∆ :=

n+m∑
i=1

∂J i(x)

∂xi1
=

(n+m)f(x1)+x1g(x1)−(n+m)f(x2)−(ξ−x1)g(x2)+d(m−n)

Substitute the flow conservation constraint x2 = ξ−x1, we get ∆ =

(n+m)f(x1)+x1g(x1)−(n+m)f(ξ−x1)−(ξ−x1)g(ξ−x1)+d(m−n)

Define R(x) = (n + m − 1)
∫ x
0
f(s)ds + xf(x), and D(x) =

(m − n)xd Then ∆ is the derivative of J(x) at x = x1 where
J(x) := R(x) +D(x) +R(ξ − x).

Assume that there exists an equilibrium in which all players send
strictly positive amount of traffic to both paths available to them.
Then the equilibrium flow x1 satisfies ∆ = 0. In the next section, in
order to give explicit expressions of the collusion measures defined
in section II, we consider the linear cost function.

A. Linear cost function

By considering the linear cost function, we are able to determine
explicitly the new collusion measures. So let define the following
function f(x) = ax.

Proposition 1: Considering the linear cost function, the equilib-
rium rates are described as follows.

• If d > a(m + n + 1) θ(1)
2m+1

, then ∀i ∈ N1, (xi1)∗ = θ(1),
otherwise (xi1)∗ = θ(i)

2
+ d

2a
2m+1
n+m+1

.
• If d > a(m+n+1) θ(2)

2n+1
, then ∀i ∈ N2, (xi1)∗ = 0, otherwise

(xi1)∗ = θ(i)
2
− d

2a
2n+1
n+m+1

.

Given the equilibrium rates, the cost of player i ∈ N1 is:

J i(x∗1, x
∗
2) = − d

2

2a

(
2m+ 1

n+m+ 1

)2

+
dθ(1)

2
+ θ(1)

aξ

2
.

We observe that this cost is a concave function in d and has a unique
maximum for d = d1 := aθ(1)

2
(m+n+1

2m+1
)2. Then for d higher than d

the cost is decreasing, it is Braess type paradox. Moreover, we can
see that d1 < dmax.

We have the similar result for any player i ∈ N2. The cost function
is given by

J i(x∗1, x
∗
2) = − d

2

2a

(
2n+ 1

n+m+ 1

)2

+
dθ(2)

2
+ θ(2)

aξ

2
,

and this function has a unique maximum at d = d2 :=
aθ(2)

2
(
m+ n+ 1

2n+ 1
)2 < dmax. Then we observe also in this asym-

metric network a Braess paradox.

B. Equilibrium and costs with collusion

We consider that k players in N1 decide to collude. Then we have
n − k users in N1 that do not collude, one collusion with k users
from N1 and m users in N2 which do not collude as well. The total
number of individuals is still n + m but as we see the collusion
as an individual, we are faced with a non-symmetric system with
m+n−k+1 users. We call the collusion h. For all user i ∈ N1 \h,
the demand is θ(1), for all user j ∈ N2, the demand is θ(2) and for
the ”collusion” player h the demand is kθ(1). We denote by y the
amount of traffic of the ”collusion” player that uses the link 1-3.

Proposition 2: The equilibrium rates are given by:

• If d > an−k+2+m
2m+1

then ∀i ∈ N1 \ g, (xi1)∗ = θ(1) and
y∗ = kθ(1),otherwise (xi1)∗ = θ(1)

2
+ d

2a
2m+1

n−k+2+m
and y∗ =

kθ(1)
2

+ d
2a

2m+1
n−k+2+m

.
• If d > a n−k+2+m

2(n−k+1)+1
then ∀j ∈ N2, (xj1)∗ = 0 otherwise,

(xj1)∗ = θ(2)
2
− d

2a
2(n−k+1)+1
n−k+2+m

.

Then we have the following cost for any type of player:

∀i ∈ N1\g, J i(x∗, y∗) = − d
2

2a

(
2m+ 1

n− k +m+ 2

)2

+
dθ(1)

2
+θ(1)

aξ

2
,

∀i ∈ N2, J
i(x∗, y∗) = − d

2

2a

(
2(n− k + 1) + 1

n− k +m+ 2

)2

+
dθ(2)

2
+θ(2)

aξ

2
,

and Ch(x[H]) = Jh(x∗, y∗) =

− d
2

2a

(
2m+ 1

n− k +m+ 2

)2

+
kdθ(1)

2
+ kθ(1)

aξ

2
.

C. Measures of Collusion

The individual single collusion-price (ISCP) is defined in section
II as the ratio between the summation of individual costs without
collusion of the players that collude and the global cost of the
collusion seen as a single player. If the ISCP is lower than 1, then
it means that the collusion is not of benefit to the individuals who
want to collude. The ISCP for a single collusion h is expressed by:

ISCP (h) =
C[h](x)

Ch(x[H])

The numerator of the ISCP is the summation of the individual cost
Jk at equilibrium where there is no collusion, for all user k that will
collude in h, i.e.

C[h](x) =
∑
k∈h

Jk(x∗1, x
∗
2) =

ISCP (h) =
−kd

2

2a

(
2m+ 1

n+m+ 1

)2

+
kdθ(1)

2
+ kθ(1)

aξ

2

− d
2

2a

(
2m+ 1

n− k +m+ 2

)2

+
kdθ(1)

2
+ kθ(1)

aξ

2

Proposition 3: If the size k of the collusion h is higher than
(−1/2 + 1/2

√
1 + 4(n+m+ 1))2, then it is beneficial to the

collusion users to collude together; otherwise it is not beneficial to
them, i.e.

ISCP (h) > 1⇔ k > (−1/2 + 1/2
√

1 + 4(n+m+ 1))2.

Proposition 4: The individual single-collusion price is minimized
when k = m+n+2

3
.

The proof can be found in the full paper.



SSCP =

−d2
2a(n+m+1)2

(n(2m+ 1)2 +m(2n+ 1)2) + ( d
2

+ aξ
2

)ξ

−d2
2a(n−k+m+2)2

((n− k + 1)(2m+ 1)2 +m(2(n− k + 1) + 1)2) + ( d
2

+ aξ
2

)ξ
. (5)

The single collusion externality price (SCEP) of a collusion h is given by

−d2
2a(n+m+1)2

((n− k)(2m+ 1)2 +m(2n+ 1)2) + ( d
2

+ aξ
2

)((n− k)θ(1) +mθ(2))

−d2
2a(n−k+m+2)2

((n− k)(2m+ 1)2 +m(2(n− k + 1) + 1)2) + ( d
2

+ aξ
2

)((n− k)θ(1) +mθ(2))
. (6)

Fig. 2. Some collusion measures

Given this result, we have the worst loss of cost induced by a col-
lusion for colluding players which is given by maxh(1−ISCP (h)),
that is:

max
h

(1− ISCP (h)) = ISCP (
m+ n+ 2

3
) =

−
m+n+2

3
d2

2a

(
2m+ 1

n+m+ 1

)2

+
m+n+2

3
dθ(1)

2
+
m+ n+ 2

3
θ(1)

aξ

2

−
d2

2a

(
2m+ 1

2m+n+2
3

)2

+
m+n+2

3
dθ(1)

2
+
m+ n+ 2

3
θ(1)

aξ

2

.

Note that this result is an approximation as the size of the collusion
is an integer and the ratio m+n+2

3
is generally a real.

Proposition 5: The optimal collusion size in order to maximize
the individual single collusion price is given by:

k∗ =

{
.1 if n < (m+ 1)2,
n otherwise.

In other words, the worst degradation over all coalitions in N1,
measured with ICP (N1), depends only on n and m. Thus, we have
the following result:

ICP (N1) =
1 if n < (m+ 1)2,

−
nd2

2a

(
2m+ 1

n+m+ 1

)2

+
ndθ(1)

2
+ nθ(1)

aξ

2

−
d2

2a

(
2m+ 1

m+ 2

)2

+
ndθ(1)

2
+ nθ(1)

aξ

2

otherwise.

Now we look at the impact of a collusion on the whole society,
meaning through the social welfare. For doing this, we use the
measure of the social single collusion price (SSCP) which is defined
as the ratio between the social welfare without collusion and the
social welfare when there is a collusion. The social, welfare C[I](a)
of the system without a collusion is given by:

= nJ1(x∗1, x
∗
2) +mJ2(x∗1, x

∗
2),

=
−d2

2a(n+m+ 1)2
(n(2m+ 1)2 +m(2n+ 1)2) + (

d

2
+
aξ

2
)ξ,

with ξ = nθ(1) + mθ(2) is the total demand. We have the social
welfare when there is a collusion h:

C[I](a(H)) =
∑

i∈N1\g

J i(x∗, y∗) +
∑
i∈N2

J i(x∗, y∗) + Jg(x∗, y∗),

=
−d2

2a(n− k +m+ 2)2
×

((n− k + 1)(2m+ 1)2 +m(2(n− k + 1) + 1)2) + (
d

2
+
aξ

2
)ξ.

Thus the social single collusion price, SSCP, is expressed by the ratio
given in (5).

Finally, we look at the impact of the collusion only on the non
colluding users N1 \ h

⋃
N2. We use the measure called the single

collusion externality price (SCEP) defined in section II which is
defined as the ratio between total cost perceived by the non colluding
users when there is no collusion and when there is a collusion. The
total cost perceived by those users when there is no collusion is given
by:

C[I \ h](a) = (n− k)J1(x∗1, x
∗
2) +mJ2(x∗1, x

∗
2) =

−d2

2a(n+m+ 1)2
((n− k)(2m+ 1)2 +m(2n+ 1)2)+

(
d

2
+
aξ

2
)((n− k)θ(1) +mθ(2)).

The total cost perceived by those users when there is a collusion is
given by:

C[I \ h](a[H]) =

−d2

2a(n− k +m+ 2)2
((n−k)(2m+ 1)2 +m(2(n−k+ 1) + 1)2)+

(
d

2
+
aξ

2
)((n− k)θ(1) +mθ(2)).

Thus the single collusion externality price (SCEP) of a collusion h
is given by eq. (6).

V. CONCLUDING REMARKS

Our contribution has been to define different new measures for
collusion and to illustrate them through the load balancing routing
game. In particular, we have shown that merging into a coalition may
be harmful not only for society but also to those who collude.
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